AULA 08 Correlação e Análise Fatorial
|
|
|
- Evelyn Mônica Ribeiro Bergler
- 8 Há anos
- Visualizações:
Transcrição
1 1 AULA 08 Correlação e Análise Fatorial Ernesto F. L. Amaral 12 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo 10 (pp ).
2 VISÃO GERAL 2 Nas próximas aulas, vamos falar de métodos para: Fazer inferências sobre a relação (correlação) entre duas variáveis. Agrupar variáveis que medem dimensões conceituais similares e criar índices (análise fatorial). Elaborar uma equação que possa ser usada para prever o valor de uma variável dado o valor de outra (regressão). Serão considerados dados amostrais que vêm em pares. No capítulo anterior, as inferências se referiam à média das diferenças entre pares de valores. Neste capítulo, as inferências têm objetivo de verificar relação entre duas variáveis.
3 CORRELAÇÃO 3
4 CONCEITOS BÁSICOS 4 Existe uma correlação entre duas variáveis quando uma delas está relacionada com a outra de alguma maneira. Antes de tudo é importante explorar os dados: Diagrama de dispersão entre duas variáveis. Há tendência? Crescente ou decrescente? Outliers?
5 DIAGRAMAS DE DISPERSÃO (correlação linear) 5
6 DIAGRAMAS DE DISPERSÃO (não há correlação linear) 6
7 CORRELAÇÃO 7 O coeficiente de correlação linear (r): Medida numérica da força da relação entre duas variáveis que representam dados quantitativos. Mede intensidade da relação linear entre os valores quantitativos emparelhados x e y em uma amostra. É chamado de coeficiente de correlação do produto de momentos de Pearson.
8 OBSERVAÇÕES IMPORTANTES 8 Usando dados amostrais emparelhados (dados bivariados), estimamos valor de r para concluir se há ou não relação entre duas variáveis. Serão tratadas relações lineares, em que pontos no gráfico (x, y) se aproximam do padrão de uma reta. É importante entender os conceitos e não os cálculos aritméticos. r é calculado com dados amostrais. Se tivéssemos todos pares de valores populacionais x e y, teríamos um parâmetro populacional (ρ).
9 REQUISITOS 9 Os seguintes requisitos devem ser satisfeitos ao se testarem hipóteses ou ao se fazerem outras inferências sobre r : Amostra de dados emparelhados (x, y) é uma amostra aleatória de dados quantitativos independentes. Não pode ter sido utilizado, por exemplo, amostra de resposta voluntária. Exame visual do diagrama de dispersão deve confirmar que pontos se aproximam do padrão de uma reta. Valores extremos (outliers) devem ser removidos se forem erros. Efeitos de outros outliers devem ser considerados com estimação de r com e sem estes outliers.
10 VALORES CRÍTICOS DO COEFICIENTE DE CORRELAÇÃO DE PEARSON (r) 10 Arredonde o coeficiente de correlação linear r para três casas decimais, permitindo comparação com esta tabela. Interpretação: com 4 pares de dados e nenhuma correlação linear entre x e y, há chance de 5% de que valor absoluto de r exceda 0,950.
11 INTERPRETANDO r 11 O valor de r deve sempre estar entre 1 e +1. Se r estiver muito próximo de 0, concluímos que não há correlação linear significativa entre x e y. Se r estiver próximo de 1 ou +1, concluímos que há uma relação linear significativa entre x e y. Mais objetivamente: Usando a tabela anterior, se valor absoluto de r excede o valor da tabela, há correlação linear. Usando programa de computador, se valor P é menor do que nível de significância, há correlação linear.
12 PROPRIEDADES DE r 12 Valor de r está entre: 1 r +1 Valor de r não muda se todos valores de qualquer das variáveis forem convertidos para uma escala diferente. Valor de r não é afetado pela inversão de x ou y. Ou seja, mudar os valores de x pelos valores de y e vice-versa não modificará r. r mede intensidade de relação linear, não sendo planejado para medir intensidade de relação que não seja linear. O valor de r 2 é a proporção da variação em y que é explicada pela relação linear entre x e y.
13 ERROS DE INTERPRETAÇÃO 13 Erro comum é concluir que correlação implica causalidade: A causa pode ser uma variável oculta. Uma variável oculta é uma variável que afeta as variáveis em estudo, mas que não está incluída no banco. Erro surge de dados que se baseiam em médias: Médias suprimem variação individual e podem aumentar coeficiente de correlação. Erro decorrente da propriedade de linearidade: Pode existir relação entre x e y mesmo quando não haja correlação linear (relação quadrática, por exemplo).
14 TESTE DE HIPÓTESE FORMAL PARA CORRELAÇÃO 14 É possível realizar um teste de hipótese formal para determinar se há ou não relação linear significativa entre duas variáveis. Critério de decisão é rejeitar a hipótese nula (ρ=0) se o valor absoluto da estatística de teste exceder os valores críticos. A rejeição de (ρ=0) significa que há evidência suficiente para apoiar a afirmativa de uma correlação linear entre as duas variáveis. Se o valor absoluto da estatística de teste não exceder os valores críticos (ou seja, o valor P for grande), deixamos de rejeitar ρ=0. H 0 : ρ=0 (não há correlação linear) H 1 : ρ 0 (há correlação linear)
15 MÉTODO 1: ESTATÍSTICA DE TESTE É t 15 Estatística de teste representa o valor do desvio padrão amostral dos valores de r : Valores críticos e valor P: use tabela A-3 com n 2 graus de liberdade. Conclusão: Se t > valor crítico da Tabela A-3, rejeite H 0 e conclua que há correlação linear. Se t valor crítico da Tabela A-3, deixe de rejeitar H 0 e conclua que não há evidência suficiente para concluir que haja correlação linear.
16 MÉTODO 2: ESTATÍSTICA DE TESTE É r 16 Estatística de teste: r Valores críticos: consulte Tabela A-6. Conclusão: Se r > valor crítico da Tabela A-6, rejeite H 0 e conclua que há correlação linear. Se r valor crítico da Tabela A-6, deixe de rejeitar H 0 e conclua que não há evidência suficiente para concluir que haja correlação linear.
17 TESTE DE HIPÓTESE PARA CORRELAÇÃO LINEAR 17
18 TESTES UNILATERAIS 18 Os testes unilaterais podem ocorrer com uma afirmativa de uma correlação linear positiva ou uma afirmativa de uma correlação linear negativa. Afirmativa de correlação negativa (teste unilateral esquerdo): H 0 : ρ = 0 H 1 : ρ < 0 Afirmativa de correlação positiva (teste unilateral direito): H 0 : ρ = 0 H 1 : ρ > 0 Para isto, simplesmente utilize α=0,025 (ao invés de α=0,05) e α=0,005 (ao invés de α=0,01).
19 FUNDAMENTOS 19 Essas fórmulas são diferentes versões da mesma expressão:
20 FUNDAMENTOS 20 Dada uma coleção de dados em pares (x,y), o ponto (xbarra, y-barra) é chamado de centróide. A estatística do produto dos momentos de Pearson (r) se baseia na soma dos produtos dos momentos: Se pontos são reta ascendente, valores do produto estarão nos 1º e 3º quadrantes (soma positiva). Se é descendente, os pontos estarão nos 2º e 4º quadrantes (soma negativa).
21 OU SEJA Podemos usar esta expressão para medir como pontos estão organizados: Grande soma positiva sugere pontos predominantemente no primeiro e terceiro quadrantes (correlação linear positiva). Grande soma negativa sugere pontos predominantemente no segundo e quarto quadrantes (correlação linear negativa). Soma próxima de zero sugere pontos espalhados entre os quatro quadrantes (não há correlação linear).
22 PORÉM Esta soma depende da magnitude dos números usados: Para tornar r independente da escala utilizada, usamos a seguinte padronização: Sendo s x o desvio padrão dos valores amostrais x... Sendo s y o desvio padrão dos valores amostrais y... Padronizamos cada desvio pela sua divisão por s x... Usamos o divisor n 1 para obter uma espécie de média:
23 ANÁLISE FATORIAL 23
24 ANÁLISE FATORIAL Os fatores ou construtos são variáveis hipotéticas, combinações lineares das variáveis observadas, que explicam partes da variabilidade dos dados. 24 Análise fatorial é usada principalmente com o objetivo de simplificar os dados: 1) Pegar um pequeno número de variáveis (preferencialmente não-correlacionadas) de um grande número de variáveis (em que maioria é correlacionada com a outra). 2) Criar índices com variáveis que medem dimensões conceituais similares.
25 TIPOS DE ANÁLISE FATORIAL 25 Exploratória: quando não temos uma idéia pré-definida da estrutura e de quantas dimensões estão presentes em um conjunto de variáveis. Confirmatória: quando queremos testar hipóteses específicas sobre a estrutura de um número de dimensões subjacentes a um conjunto de variáveis. Por exemplo, pensamos que nossos dados possuem duas dimensões e queremos verificar isto.
26 MATRIZES 26 A matriz de correlação é uma matriz quadrada cujos elementos são as correlações entre as variáveis analisadas. Na diagonal principal todos os elementos são iguais a 1 (um), visto que cada variável é totalmente correlacionada com ela mesma. A matriz de covariância é uma matriz quadrada cujos elementos fora da diagonal principal são as covariâncias entre as variáveis e na diagonal principal são as variâncias de cada variável.
27 MATRIZ DE CORRELAÇÃO 27. corr terpro aguarg escoarg lixod eletrica (obs=134) terpro aguarg escoarg lixod eletrica terpro aguarg escoarg lixod eletrica
28 MATRIZ DE CORRELAÇÃO 28. pwcorr terpro aguarg escoarg lixod eletrica if!missing(terpro, aguarg, escoarg, lixod, eletrica), sig terpro aguarg escoarg lixod eletrica terpro 1,0000 aguarg 0,0021 1,0000 0,9810 escoarg -0,0192 0,2343 1,0000 0,8253 0,0064 lixod 0,1246 0,4393 0,5296 1,0000 0,1514 0,0000 0,0000 eletrica 0,1214 0,2126 0,1253 0,1435 1,0000 0,1624 0,0136 0,1493 0,0982
29 ANÁLISE DE COMPONENTES PRINCIPAIS 29 Na análise de componentes principais - ACP (principal component factors - PCF), quase todas variáveis estão altamente correlacionadas ao primeiro fator. Ou seja, é definido que a primeira componente (fator) explique a maior parte da variabilidade dos dados e por conseqüência as variáveis estarão mais correlacionadas a ela.
30 COMPONENTES DA ANÁLISE FATORIAL 30. factor terpro aguarg escoarg lixod eletrica, pcf (obs=134) Factor analysis/correlation Number of obs = 134 Method: principal-component factors Retained factors = 2 Rotation: (unrotated) Number of params = Factor Eigenvalue Difference Proportion Cumulative Factor Factor Factor Factor Factor LR test: independent vs. saturated: chi2(10) = Prob>chi2 = Factor loadings (pattern matrix) and unique variances Variable Factor1 Factor2 Uniqueness terpro aguarg escoarg lixod eletrica
31 AUTOVALORES & DIFERENÇA Os autovalores (eigenvalues) são valores obtidos a partir das matrizes de covariância ou de correlação, cujo objetivo é obter um conjunto de vetores independentes, não correlacionados, que expliquem o máximo da variabilidade dos dados. 31 Indicam o total da variância causado por cada fator. A soma de todos autovalores é igual ao número de variáveis. Quando há valores negativos, a soma dos autovalores é igual ao número total de variáveis com valores positivos. O critério de Kaiser sugere utilizar os fatores com autovalores iguais ou superiores a uma unidade. Diferença (difference) é a subtração entre um autovalor e o próximo autovalor.
32 PROPORÇÃO & CUMULATIVA 32 Proporção (proportion) indica o peso relativo de cada fator na variância total (variabilidade) dos dados. Proporção cumulativa (cumulative) indica o total da variância explicado por n+(n-1) fatores.
33 CARGAS FATORIAIS 33 Cargas fatoriais (factors) são as correlações entre as variáveis originais e os fatores. Esse é um dos pontos principais da análise fatorial, quanto maior a carga fatorial maior será a correlação com determinado fator. Um valor negativo indica um impacto inverso no fator. A quantidade de cargas fatoriais é automaticamente calculada pelo SPSS com base nos autovalores (iguais ou superiores a uma unidade - critério de Kaiser). Por sua vez, as cargas fatoriais relevantes são aquelas com valores maiores que 0,5.
34 COMUNALIDADE & ESPECIFICIDADE 34 As comunalidades (communalities) são quantidades das variâncias (correlações) de cada variável explicada pelos fatores. Quanto maior a comunalidade, maior será o poder de explicação daquela variável pelo fator. Desejamos comunalidades superiores a 0,5. A especificidade (uniqueness) ou erro é a parcela da variância (correlação) dos dados que não pode ser explicada pelo fator. É a proporção única da variável não compartilhada com as outras variáveis. É igual a 1 menos a comunalidade. Quanto maior a especificidade, menor é a relevância da variável no modelo fatorial. Desejamos especificidades inferiores a 0,5.
35 ROTAÇÃO FATORIAL 35 A ACP é um método estatístico multivariado que permite transformar um conjunto de variáveis iniciais correlacionadas entre si, num outro conjunto de variáveis não-correlacionadas (ortogonais), as chamadas componentes principais, que resultam de combinações lineares do conjunto inicial. Uma rotação fatorial (rotation) é o processo de manipulação ou de ajuste dos eixos fatoriais para conseguir uma solução fatorial mais simples e pragmaticamente mais significativa, cujos fatores sejam mais facilmente interpretáveis. A nova matriz padrão apresenta de forma mais clara a relevância de cada variável em cada fator.
36 . rotate EXEMPLO DE ROTAÇÃO FATORIAL 36 Factor analysis/correlation Number of obs = 134 Method: principal-component factors Retained factors = 2 Rotation: orthogonal varimax (Kaiser off) Number of params = Factor Variance Difference Proportion Cumulative Factor1 1, , ,3714 0,3714 Factor2 1, ,2238 0, LR test: independent vs. saturated: chi2(10) = 84,37 Prob>chi2 = 0,0000 Rotated factor loadings (pattern matrix) and unique variances Variable Factor1 Factor2 Uniqueness terpro -0,0536 0,8430 0,2864 aguarg 0,6845 0,1140 0,5185 escoarg 0,7754-0,1122 0,3862 lixod 0,8426 0,1069 0,2786 eletrica 0,2728 0,6095 0, Factor rotation matrix Factor1 Factor Factor1 0,9687 0,2481 Factor2-0,2481 0,
37 TESTE KAISER-MEYER-OLKLIN 37 O teste de Kaiser-Meyer-Olklin (KMO) varia entre 0 e 1. Quanto mais perto de 1, melhor. Friel (2009) sugere a seguinte escala para interpretar o valor da estatística KMO: * Entre 0,90 e 1: excelente. * Entre 0,80 e 0,89: bom. * Entre 0,70 e 0,79: mediano. * Entre 0,60 e 0,69: medíocre. * Entre 0,50 e 0,59: ruim. * Entre 0 e 0,49: inadequado. Pallant (2007) sugere 0,60 como um limite razoável. Hair et al. (2006) sugerem 0,50 como patamar aceitável.
38 EXEMPLO DE TESTE KAISER-MEYER-OLKLIN 38. estat kmo Kaiser-Meyer-Olkin measure of sampling adequacy Variable kmo terpro 0,3311 aguarg 0,6166 escoarg 0,5726 lixod 0,5496 eletrica 0, Overall 0, O teste de Kaiser-Meyer-Olklin (0,5676) indica um resultado ruim, mas em patamar razoável (Hair et al. 2006).
39 CRIANDO NOVAS VARIÁVEIS 39 Criar novas variáveis automaticamente no programa estatístico. Outra opção seria criar manualmente índices para cada conglomerado de variáveis. Por exemplo, se temos variáveis binárias: fator1 = var1 + var2 Por exemplo, se temos variáveis contínuas e que possuem valores mínimos e máximos compatíveis: fator2 = (var3 + var4 + var5) / 3
40 SUGESTÕES DE LEITURA 40 Hamilton, Lawrence C Statistics with STATA (updated for version 9). Thomson Books/Cole. Moraes, Odair Barbosa; Alex Kenya Abiko Utilização da Análise Fatorial para a Identificação de Estruturas de Interdependência de Variáveis em Estudos de Avaliação Pós-Ocupação. XI Encontro Nacional de Tecnologia no Ambiente Construído (ENTAC). Kim, Jae-on; Charles W. Mueller Factor Analysis. Statistical Methods and Practical Issues. Sage publications. Kim, Jae-on; Charles W. Mueller Introduction to Factor Analysis. What it is and How To Do It. Sage publications. StatNotes ( StatSoft ( Torres-Reyna, Oscar. s.d. Getting Started in Factor Analysis (using Stata). ( Triola, Mario F Introdução à estatística. 10ª ed. Rio de Janeiro: LTC. Cap.10. UCLA ( Vincent, Jack Factor Analysis in International Relations. Interpretation, Problem Areas and Application. University of Florida Press, Gainsville.
AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013
1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de
AULAS 13, 14 E 15 Correlação, Análise Fatorial e Regressão
1 AULAS 13, 14 E 15 Correlação, Análise Fatorial e Regressão Ernesto F. L. Amaral 27 de setembro, 02 e 04 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução
AULA 28 Correlação e Análise Fatorial
1 AULA 28 Correlação e Análise Fatorial Ernesto F. L. Amaral 21 de junho de 2011 Avaliação de Políticas Públicas (DCP 046) CORRELAÇÃO 2 CONCEITOS BÁSICOS 3 Existe uma correlação entre duas variáveis quando
Estudo dirigido de Análise Multivariada
Estudo dirigido de Análise Multivariada Conceitos Iniciais De um modo geral, os métodos estatísticos de análise multivariada são aplicados para analisar múltiplas medidas sobre cada indivíduo ou objeto
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
Multivariada de dados aplicada à administração
Multivariada de dados aplicada à administração PROFA. DRA. LUCIANA ORANGES CEZARINO -AULA PPGAO/FEARP 2017 11 1 AGENDA 26/7 14h: Apresentações 14:15h 15:45h: Técnicas da pesquisa quantitativa : AF e Regressão
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 7 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Relações de interdependência entre variáveis quantitativas: A Análise Factorial Análise Factorial: técnica
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
Análise Fatorial Exploratória (AFE) Disciplina: Medidas em Psicologia Professora: Ana Carolina Rodrigues
Análise Fatorial Exploratória (AFE) Disciplina: Medidas em Psicologia Professora: Ana Carolina Rodrigues O que é análise fatorial? É uma técnica de interdependência, cujo propósito principal é definir
Estatística II. Tópico: Análise Fatorial. Exemplo completo (Livro Corrar modificado)
Estatística II Tópico: Análise Fatorial Exemplo completo (Livro Corrar modificado) Bibliografia: L.J. Corrar; E. Paulo; J.M. Dias Filho, Analise multivariada..., Atlas, 2007 1 Análise Fatorial x i explicada
AULA 02 Distribuição de Probabilidade Normal
1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario
5 Análise dos resultados
5 Análise dos resultados Os dados foram analisados utilizando o software SPSS (Statistical Package for Social Sciences) base 18.0. Para Cooper e Schindler (2003) a análise de dados envolve a redução de
Análise da Regressão. Prof. Dr. Alberto Franke (48)
Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
AULA 02 Distribuição de probabilidade normal
1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
9 Análise Multivariada de Dados
9 Análise Multivariada de Dados 9.1 Introdução Uma das dificuldades inerentes em estatística multivariada é a visualização dos dados, principalmente em dimensões maiores que três. No entanto, é importante
Modelos de Regressão Linear Simples - parte II
Modelos de Regressão Linear Simples - parte II Erica Castilho Rodrigues 14 de Outubro de 2013 Erros Comuns que Envolvem a Análise de Correlação 3 Erros Comuns que Envolvem a Análise de Correlação Propriedade
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
AULA 03 Estimativas e tamanhos amostrais
1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade
O que é Análise de Fatores. As principais aplicações da técnica da Análise de Fatores (Factor Analysis) são:
Prof. Lorí Viali, Dr. [email protected]; [email protected]; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/ A teoria dos métodos estatísticos multivariados pode ser explicada razoavelmente
Análise Fatorial. Matriz R de coeficientes de correlação: Não confundir análise de componentes principais com análise fatorial!
Análise Fatorial 1 Na análise fatorial as variáveis y1, y,..., Yp, são combinações lineares de umas poucas variáveis F1, F,..., Fm (m
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
CORRELAÇÃO. Flávia F. Feitosa
CORRELAÇÃO Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Junho de 2015 Revisão Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
RAD5017 Estatística II Aula 2 Análise Fatorial (Conceitos Teóricos) 1. Validade (definição do conceito) x Confiabilidade (consistência da medida)
Aula 2 Análise Fatorial (Conceitos Teóricos) 1 Conceitos importantes: Validade (definição do conceito) x Confiabilidade (consistência da medida) Análise Fatorial Técnica adequada para analisar os padrões
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão
ESTATÍSTICA MULTIVARIADA. 2º. Semestre 2006/07
ESTATÍSTICA MULTIVARIADA º. Semestre 006/07.Março.007 José Filipe Rafael Fez um inquérito a 45 potenciais clientes de um novo produto pedindo-lhes que avaliassem nove características diferentes numa escala
Aula 03 Estatística, Correlação e Regressão
BIS0005-15 Bases Computacionais da Ciência Aula 03 Estatística, Correlação e Regressão http://bcc.compscinet.org Prof. Rodrigo de Alencar Hausen [email protected] 1 Medidas de tendência central: Média,
Modelos de Regressão Linear Simples - parte I
Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir
Módulo 17- Análise fatorial Tutorial SPSS Análise dos Resultados
Tutorial SPSS Módulo 17 Análise Fatorial 1 Módulo 17- Análise fatorial Tutorial SPSS Análise dos Resultados Situação Problema Para facilitar o entendimento da análise dos resultados obtidos pelo SPSS,
A2 - ANÁLISE FATORIAL
A2 - ANÁLISE FATORIAL Prof. Evandro M Saidel Ribeiro A2.1 A Análise Fatorial A2.2 Modelo matemático da análise fatorial A2.3 Fatores em termos de variáveis A2.4 Exemplo Clientes de um banco A2.5 Exemplo
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
Estatística Aplicada à Administração II. Tópico. Análise de Componentes Principais
Estatística Aplicada à Administração II Tópico Análise de Componentes Principais Bibliografia: R.A. Johnson, Applied Multivariate Statistical Analysis, Prentice Hall, 99 Análise de Componentes Principais
AULA 11 Teste de Hipótese
1 AULA 11 Teste de Hipótese Ernesto F. L. Amaral 20 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Correlação e Regressão Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos 1. definir uma medida de associação entre duas
Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra
Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento
Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos
Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados 3-1 Visão Geral 3-2 Medidas de
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
Análise fatorial em R
Análise fatorial em R 1. Dados Referem-se a n = 54 observações de p = 7 variáveis apresentadas na Tabela 1.9, p. 44 em Johnson and Wichern (2007, Applied Multivariate Statisitical Analysis, sixth ed. Upper
Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável
Correlação Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável Exemplos Perímetro de um quadrado e o tamanho
REGRESSÃO E CORRELAÇÃO
Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem
Medidas de Dispersão ou variabilidade
Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou
1 Probabilidade - Modelos Probabilísticos
1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
AULA 19 Análise de Variância
1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Função prcomp. 1. Introdução
Função prcomp 1. Introdução Apresentamos alguns exemplos de utilização da função prcomp do pacote stats em R. Esta função permite realizar uma análise de componentes principais a partir de uma matriz de
Teste Anova. Prof. David Prata Novembro de 2016
Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar
Estatística Aplicada II. } Correlação e Regressão
Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,
ESTATÍSTICA MULTIVARIADA
Entrega: 26/27.Novembro.2009 ESTATÍSTICA MULTIVARIADA 1º. Semestre 2009/10 TPC 7 (Adaptado do exercício II do teste de 23.Mar.2009) José Filipe Rafael Actualmente a ComKal tem no seu portfolio de sumos
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
Estatística. Correlação e Regressão
Estatística Correlação e Regressão Noções sobre correlação Existem relações entre variáveis. Responder às questões: Existe relação entre as variáveis X e Y? Que tipo de relação existe entre elas? Qual
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad
Aula 25: Análise Fatorial Prof. Eduardo A. Haddad Utilização específica Como identificar o potencial de desenvolvimento agropecuário dos municípios brasileiros? Banco de dados municipais: Tamanho do rebanho,
UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada
UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Fatorial Exploratória Professor: Valdecy Pereira, D. Sc. /
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente
aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES
ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES 18 aula META Fazer com que o aluno seja capaz de realizar os procedimentos existentes para a avaliação da qualidade dos ajustes aos modelos. OBJETIVOS Ao final
Correlação e Regressão Linear
Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores
8. Análise em Componentes Principais - ACP
8. Análise em Componentes Principais - ACP 8.1 Introdução O propósito principal da ACP é substituir as variáveis originais por um número menor de variáveis que são função das variáveis originais. A ACP
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Métodos Quantitativos
Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 5 Análise Factorial de Componentes Principais
ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 21 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 5 Análise Factorial de Componentes Principais 26-4-11 5.1 5. ANÁLISE FACTORIAL DE COMPONENTES PRINCIPAIS 5.1. Admita 3 variáveis
1 semestre de 2014 Gabarito Lista de exercícios 3 - Estatística Descritiva III C A S A
Exercício 1. (1,0 ponto). A tabela a seguir mostra o aproveitamento conjunto em Física e Matemática para os alunos do ensino médio de uma escola. Notas Notas Notas Física/Matemática Altas Regulares Baixas
Análise fatorial aplicada à avaliação da satisfação de discentes do Instituto de Ciências Sociais Aplicadas da Universidade Federal de Ouro Preto.
Análise fatorial aplicada à avaliação da satisfação de discentes do Instituto de Ciências Sociais Aplicadas da Universidade Federal de Ouro Preto. Flávia Sílvia Corrêa Tomaz 1, Camila Regina Carvalho 2.
Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados. Seção 3-1 Visão Geral. Visão Geral. Estatísticas Descritivas
Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados 3-1 Visão Geral 3-2 Medidas de Centro 3-3 Medidas de Dispersão 3-4 Medidas de Forma da Distribuição 3-5 Análise Exploratória de
Modelos de Regressão Linear Simples - parte III
1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada
Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 )
ROTAÇÃO E INTERPRETAÇÃO DAS COMPONENTES PRINCIPAIS Consideremos o seguinte exemplo (exercício 6): 15 alunos de uma determinada escola foram sujeitos a testes de 6 disciplinas e os resultados obtidos encontram-se
