Modelos de Regressão Linear Simples - parte II

Tamanho: px
Começar a partir da página:

Download "Modelos de Regressão Linear Simples - parte II"

Transcrição

1 Modelos de Regressão Linear Simples - parte II Erica Castilho Rodrigues 14 de Outubro de 2013

2 Erros Comuns que Envolvem a Análise de Correlação

3 3 Erros Comuns que Envolvem a Análise de Correlação

4 Propriedade de linearidade Se r 0 não significa que as variáveis não estão correlacionadas de forma alguma. O coeficiente de correlação mede apenas associação linear entre as variáveis. É preciso sempre fazer o diagrama de dispersão!

5 5 Dados agrupados em taxas ou em médias Quando agrupamos os dados, suprimimos variações entre os indivíduos. A variabilidade parece menor do que é na verdade. Isso pode inflacionar o coeficiente de correlação linear. Considere o exemplo da pobreza e criminalidade. Suponha que agrupamos os municípios em macroregiões. Tomamos a médias das variáveis em cada região.

6 6 Quando agrupamos os dados a varibiliade diminui e a associação parece ser mais forte. Estamos escondendo uma fonte de variabilidade.

7 Concluir imediatamente que a correlação implica causalidade Uma pesquisa recente concluiu que: países onde as pessoas consomem mais chocolate ganham um número maior de Prêmios Nobel.

8 8 Temos a seguir o gráfico de dispersão das duas variáveis. Qual conclusão você tira?

9 Temos a seguir o gráfico de dispersão das duas variáveis. Qual conclusão você tira? Parece existir uma associação positiva. 8

10 9 Existe uma terceira variável oculta que leva ao aumento das duas quantidades. Qual variável é essa?

11 9 Existe uma terceira variável oculta que leva ao aumento das duas quantidades. Qual variável é essa? Renda per capita. Países com maior renda per capita: investem mais em educação, logo ganham mais Prêmios Nobel; têm mais dinheiro para consumir chocolate. Portanto o consumo de chocolate não torna as pessoas mais inteligentes!

12 10

13 Na regressão linear simples temos: uma variável explicativa (x) e uma variável resposta(y). O valor esperado de Y para cada valor de x é E(Y x) =β 0 + β 1 x. A variável Y pode ser descrita pelo modelo onde ɛ é um erro aleatório e Y = β 0 + β 1 x + ɛ ɛ N(0,σ 2 ). Os erros aleatório de diferentes observações são independentes.

14 Suponha que temos n pares (x 1, y 1 ),...,(x n, y n ). A figura mostra o gráfico de dispersão e uma candidata a reta de regressão.

15 13 Encontrar valores de β 0 e β 1 que minimizem a soma dos desvios ao quadrado.

16 Utilizando a equação Y = β 0 + β 1 x + ɛ as n observações da amostra podem ser expressas como para i = 1,...,n. y i = β 0 + β 1 x i + ɛ i A soma dos quadrados dos desvios das observações em relação a reta é dada por L = n ɛ 2 i = n (y i β 0 β 1 x i ) 2

17 15 Defina ˆβ 0 e ˆβ 1 os estimadores de mínimos quadrados de β 1 e β 2. Queremos encontrar os valores de β 0 e β 1 que minimizam o erro. Como fazemos isso?

18 15 Defina ˆβ 0 e ˆβ 1 os estimadores de mínimos quadrados de β 1 e β 2. Queremos encontrar os valores de β 0 e β 1 que minimizam o erro. Como fazemos isso? Deriva e iguala a zero. ˆβ0 e ˆβ 1 devem satisfazer L β = 0 ˆβ0, ˆβ 1

19 15 Defina ˆβ 0 e ˆβ 1 os estimadores de mínimos quadrados de β 1 e β 2. Queremos encontrar os valores de β 0 e β 1 que minimizam o erro. Como fazemos isso? Deriva e iguala a zero. ˆβ0 e ˆβ 1 devem satisfazer L n β = 2 (y i ˆβ 0 ˆβ 1 x i )=0 0 ˆβ0, ˆβ 1 L β = 1 ˆβ0, ˆβ 1

20 15 Defina ˆβ 0 e ˆβ 1 os estimadores de mínimos quadrados de β 1 e β 2. Queremos encontrar os valores de β 0 e β 1 que minimizam o erro. Como fazemos isso? Deriva e iguala a zero. ˆβ0 e ˆβ 1 devem satisfazer L n β = 2 (y i ˆβ 0 ˆβ 1 x i )=0 0 ˆβ0, ˆβ 1 L β = 2 1 ˆβ0, ˆβ 1 n (y i ˆβ 0 ˆβ 1 x i )x i = 0

21 16 Simplificando essas equações temos que

22 16 Simplificando essas equações temos que n ˆβ 0 + ˆβ i n x i = n y i ˆβ 0 n x i + ˆβ 1 n x 2 i = n y i x i. Essas equações são chamadas equações normais. A solução dessas equações resulta nos estimadores ˆβ 0 e ˆβ 1.

23 A estimativa de mínimos quadrados do intersepto é dada por ˆβ 0 = y ˆβ 1 x. A estimativa da inclinação é dada por Em que ˆβ 1 = n y ix i ( n y i )( n x i ) n n x 2 i n y = y i n ( n x i) 2 n n x = x i. n.

24 18 A linha de regressão ajustada é dada por ŷ = ˆβ 0 + ˆβ 1 x. Cada par de observações satisfaz y i = ˆβ 0 + ˆβ 1 x i + e i, i = 1,...,n onde e i é chamado resíduo e é dado por e i = ŷ i y i. O resíduo descreve o erro no ajuste do modelo para a i-ésima observação y i. Veremos adiante: como usar os resíduos para verificar adequação do modelo.

25 19 Podemos usar símbolos especiais para o numerador e denominador das expressões de ˆβ 0 e ˆβ 1. Considere os dados (x 1, y 1 ), (x 2, y 2 ),...,(x n, y n ). Defina as sequintes quantidades S xx = n (x i x) 2 = n x 2 i ( n x i) 2 n = n S xy = (y i y)(x i x) ( n n x i y i x )( n i y i) n

26 20 Vejamos as demonstrações dos resultados: S xx = n (x i x) 2 = n (x 2 i 2xx i + x 2 ) n x 2 i = 2x i n x i + nx 2 = x 2 i nx 2 = n n n x 2 i x 2 i ( i x i) 2 n x 2 i 2nx 2 + nx 2 ( i n x i n ) 2

27 n S xy = (y i y)(x i x) = n (y i x i y i x yx i + yx) = i y i x i x i y i y i x i + nxy = i y i x i nxy nxy + nxy = i y i x i nxy = i i y i x i n x i i y i n 2 = i y i x i i x i i y i n

28 Exemplo: Considere os dados de pureza de oxigênio:

29 23 Exemplo: Vamos ajustar o modelo de regressão linear simples para esses dados. Temos que n = x i = 23, y i = 1842, x = 1, 1960 y = 92, y 2 i = , x i y i = 2214, 6566 x 2 i = 29, 2892

30 20 S xx = x 2 i ( 20 ) 2 x i 20 = 29, 2892 (23, 92)2 20 = 0, S xy = x i y i ( 20 x i)( 20 y i) (23, 92)(1843, 21) = 2214, 6566 = 10, Então as estimativas de mínimos quadrados são ˆβ 1 = S xy 10, = = 19, S xx 0, ˆβ 0 = y ˆβ 1 x = 92, 1605 (14, 94748)1, 196 = 74, O modelo de regressão linear simples é: ŷ = 74, , 947x.

31 25 A figura a seguir mostra reta de regressão ajustada.

32 26 Exemplo: Vamos considerar as seguintes variáveis: número de armas automáticas registradas; taxa de criminalidade. Essas variáveis são observadas em 8 municípios americanos.

33 Exemplo: (continuação) O gráfico de dispersão é apresentado ao lado. Os crimes com armas de fogo parecem estar relacionados com a quantidade de armas automáticas?

34 Exemplo: (continuação) O gráfico de dispersão é apresentado ao lado. Os crimes com armas de fogo parecem estar relacionados com a quantidade de armas automáticas? Sim. Esta relação é linear?

35 Exemplo: (continuação) O gráfico de dispersão é apresentado ao lado. Os crimes com armas de fogo parecem estar relacionados com a quantidade de armas automáticas? Sim. Esta relação é linear? Sim. É crescente ou decrescente?

36 Exemplo: (continuação) O gráfico de dispersão é apresentado ao lado. Os crimes com armas de fogo parecem estar relacionados com a quantidade de armas automáticas? Sim. Esta relação é linear? Sim. É crescente ou decrescente? Crescente (ou positiva).

37 28 Erros Comuns que Envolvem a Análise de Correlação Exemplo: (continuação) Qual a intensidade?

38 28 Exemplo: (continuação) Qual a intensidade? Forte. Esse valor é significativo? Vamos testar as hipóteses r = 0, 885

39 28 Exemplo: (continuação) Qual a intensidade? Forte. Esse valor é significativo? Vamos testar as hipóteses r = 0, 885 H 0 : ρ = 0 vs H 1 : ρ 0. Vimos que a estatística de teste é dada por t = r n 2 1 r 2 =

40 28 Exemplo: (continuação) Qual a intensidade? Forte. Esse valor é significativo? Vamos testar as hipóteses r = 0, 885 H 0 : ρ = 0 vs H 1 : ρ 0. Vimos que a estatística de teste é dada por t = r n 2 1 r 2 = (0, 885) (0, 885) 2 = Sob H 0 temos que t t 6. Fixando α = 0, 05, t 0,025;6 =

41 29 Exemplo: (continuação) Fixamos o nível de significância em α = 0, 05. Temos então que t 0,025;6 =

42 29 Exemplo: (continuação) Fixamos o nível de significância em α = 0, 05. Temos então que t 0,025;6 = 2, 447.

43 30 Exemplo: (continuação) A região crítica é dada por

44 30 Exemplo: (continuação) A região crítica é dada por t < 2, 447 ou t > 2, 447. Qual a conclusã do teste?

45 30 Exemplo: (continuação) A região crítica é dada por Qual a conclusã do teste? t < 2, 447 ou t > 2, 447. Como t > 2, 447 rejeitamos H 0. Com 5% de significância pode-se dizer que existe uma associação significativa entre número de armas automáticas registradas e taxa de criminalidade.

46 31 Exemplo: (continuação) Vimos então que as variáveis estão linearmente associadas. Vamos agora ajustar um modelo de regressão linear simples. A variável resposta é

47 31 Exemplo: (continuação) Vimos então que as variáveis estão linearmente associadas. Vamos agora ajustar um modelo de regressão linear simples. A variável resposta é taxa de criminalidade. A variável explicativa é

48 31 Exemplo: (continuação) Vimos então que as variáveis estão linearmente associadas. Vamos agora ajustar um modelo de regressão linear simples. A variável resposta é taxa de criminalidade. A variável explicativa é número de armas automáticas registradas. O modelo de regressão é dada por onde ɛ iid N(0,σ 2 ). Y i = β 0 + β 1 x i + ɛ i

49 32 Exemplo: (continuação) As estimativas dos parâmetros β 0 e β 1 são dadas por ˆβ 1 = S xy S xx = 0, 85 ˆβ0 = y ˆβ 1 x = 4, 05. A reta ajustada é mostrada logo abaixo.

50 33 O que significa β 0 = 4, 05?

51 33 O que significa β 0 = 4, 05? Em um local com nenhuma arma registrada a taxa de criminalidade esperada é de 4,05 crimes por 100 mil habitantes. O que significa β 1 = 0, 85?

52 33 O que significa β 0 = 4, 05? Em um local com nenhuma arma registrada a taxa de criminalidade esperada é de 4,05 crimes por 100 mil habitantes. O que significa β 1 = 0, 85? Para cada aumento em uma unidade no número de armas registradas aumenta em 0,85 o número de crimes esperados por 100 mil habitantes.

53 34 Estimador de σ 2 Um outro parâmetro desconhecido do modelo é a variância do erro Var (ɛ) =σ 2. Podemos estimá-la usando os resíduos e i = y i ŷ i. Soma dos quadrados dos resíduos SQ E é dada por SQ E = n ei 2 = n (y i ŷ i ) 2

54 35 Pode-se mostrar que E(SQ E )=(n 2)σ 2 σ 2 = E(SQ E) n 2. Um estimador de σ 2 é dado por ˆ σ 2 = SQ E n 2

55 36 Programas computacionais são utilizados para ajustar modelos de regressão. Veremos como fazer esse ajuste usando o software R.

Modelos de Regressão Linear Simples - parte I

Modelos de Regressão Linear Simples - parte I Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir

Leia mais

Modelos de Regressão Linear Simples - parte III

Modelos de Regressão Linear Simples - parte III 1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada

Leia mais

Modelos de Regressão Linear Simples parte I

Modelos de Regressão Linear Simples parte I Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos

Leia mais

Análise de Regressão - parte I

Análise de Regressão - parte I 16 de Outubro de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos para dados coletados. Entender como método de mínimos é usado

Leia mais

Análise Multivariada Aplicada à Contabilidade

Análise Multivariada Aplicada à Contabilidade Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda

Leia mais

Introdução ao modelo de Regressão Linear

Introdução ao modelo de Regressão Linear Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe

Leia mais

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação

Leia mais

Análise de Regressão EST036

Análise de Regressão EST036 Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem

Leia mais

Modelos de Regressão Múltipla - Parte I

Modelos de Regressão Múltipla - Parte I Modelos de Regressão Múltipla - Parte I Erica Castilho Rodrigues 4 de Outubro de 2016 2 3 Introdução 4 Quando há apenas uma variável explicativa X, temos um problema de regressão linear simples onde ǫ

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo 1 Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 9 de Abril de 2015 2 3 Função Deviance Podemos ver o ajuste de um modelo a um conjunto de dados como: uma forma

Leia mais

ANÁLISE DE REGRESSÃO

ANÁLISE DE REGRESSÃO ANÁLISE DE REGRESSÃO Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de janeiro de 2017 Introdução A análise de regressão consiste na obtenção de uma equação

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Regressão Linear Simples

Regressão Linear Simples Regressão Linear Simples Capítulo 16, Estatística Básica (Bussab&Morettin, 8a Edição) 10a AULA 18/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 10a aula (18/05/2015) MAE229 1 / 38 Introdução

Leia mais

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos 1 Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 27 de Setembro de 2016 2 3 O modelo de regressão linear é dado por 3 O modelo de regressão linear é dado por Y i = β

Leia mais

AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado)

AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado) AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado) Susan Schommer Econometria I - IE/UFRJ Valor esperado dos estimadores MQO Nesta aula derivamos o valor esperado dos estimadores

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Modelos de regressão É usual estarmos interessados em estabelecer uma relação entre uma variável

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

Análise de Regressão Linear Simples e

Análise de Regressão Linear Simples e Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Estudar a relação entre duas variáveis quantitativas.

Estudar a relação entre duas variáveis quantitativas. Estudar a relação entre duas variáveis quantitativas. Exemplos: Idade e altura das crianças Tempo de prática de esportes e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

Análise de regressão linear simples. Diagrama de dispersão

Análise de regressão linear simples. Diagrama de dispersão Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2. Veremos

Leia mais

AULA 8 - MQO em regressão múltipla:

AULA 8 - MQO em regressão múltipla: AULA 8 - MQO em regressão múltipla: Definição, Estimação e Propriedades Algébricas Susan Schommer Econometria I - IE/UFRJ Regressão Múltipla: Definição e Derivação A partir de agora vamos alterar o nosso

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

Estatística Aplicada II. } Correlação e Regressão

Estatística Aplicada II. } Correlação e Regressão Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,

Leia mais

Exemplo 1. Conjunto de dados de uma amostra de 12 meninas da escola: y i x i

Exemplo 1. Conjunto de dados de uma amostra de 12 meninas da escola: y i x i Exemplo 1 Y : peso (kg) de meninas de 7 a 11 anos de uma certa escola de dança X : altura (m) das meninas A partir de 3 valores prefixados de X, foram obtidas, para cada valor de X, 4 observações independentes

Leia mais

Modelo de Regressão Múltipla

Modelo de Regressão Múltipla Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão

Leia mais

Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.

Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação

Leia mais

Exercícios Selecionados de Econometria para Concursos Públicos

Exercícios Selecionados de Econometria para Concursos Públicos 1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência

Leia mais

Modelos de Regressão Múltipla - Parte VI

Modelos de Regressão Múltipla - Parte VI 1 Modelos de Regressão Múltipla - Parte VI Erica Castilho Rodrigues 7 de Fevereiro de 2017 2 3 Podemos fazer uma transformação na variável resposta Y e/ou na preditora X para: solucionar problemas de variância

Leia mais

CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011

CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Exemplos: Correlação linear Estudar a relação entre duas variáveis quantitativas Ou seja, a força da relação entre elas, ou grau de associação linear. Idade e altura das crianças

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2

AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre

Leia mais

AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância)

AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) Susan Schommer Econometria I - IE/UFRJ Variância dos estimadores MQO Vamos incluir mais uma hipótese: H1 [Linear nos parâmetros]

Leia mais

Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho

Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste

Leia mais

Lucas Santana da Cunha de julho de 2018 Londrina

Lucas Santana da Cunha de julho de 2018 Londrina Análise de Correlação e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 26 de julho de 2018 Londrina 1 / 17 Há casos em que pode existir um relacionamento entre duas variáveis:

Leia mais

Modelos de Regressão Múltipla - Parte VII

Modelos de Regressão Múltipla - Parte VII 1 Modelos de Regressão Múltipla - Parte VII Erica Castilho Rodrigues 26 de Janeiro de 2016 2 3 Vimos como ajustar um modelo não linear fazendo transformações das variáveis, como, por exemplo Y = exp{β

Leia mais

Homocedasticidade? Exemplo: consumo vs peso de automóveis

Homocedasticidade? Exemplo: consumo vs peso de automóveis REGRESSÃO Análise de resíduos Homocedasticidade? Exemplo: consumo vs peso de automóveis 60 50 Consumo (mpg) 40 30 0 10 0 1500 000 500 3000 3500 4000 4500 Peso 0 Diagrama de resíduos 15 10 Resíduos 5 0-5

Leia mais

Ralph S. Silva

Ralph S. Silva ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:

Leia mais

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:

Leia mais

Revisão de Modelos de regressão. Prof. Thais C O Fonseca - DME, UFRJ

Revisão de Modelos de regressão. Prof. Thais C O Fonseca - DME, UFRJ Revisão de Modelos de regressão Prof. Thais C O Fonseca - DME, UFRJ Conteúdo Regressão linear simples Regressão linear múltipla Método de Mínimos Quadrados Introdução a Inferência Bayesiana em Regressão

Leia mais

AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância)

AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) Susan Schommer Econometria I - IE/UFRJ Variância dos estimadores MQO Vamos incluir mais uma hipótese: H1 [Linear nos parâmetros]

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Regressão Polinomial e Análise da Variância Piracicaba Setembro 2014 Estatística Experimental 18 de Setembro de 2014 1 / 20 Vimos

Leia mais

Cap. 13 Correlação e Regressão

Cap. 13 Correlação e Regressão Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 13 Correlação e Regressão Correlação X e Y variáveis quantitativas X Y Correlação

Leia mais

AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013

AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013 1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de

Leia mais

Análise de Dados Longitudinais Aula

Análise de Dados Longitudinais Aula 1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva

Leia mais

AULAS 14 E 15 Modelo de regressão simples

AULAS 14 E 15 Modelo de regressão simples 1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2

AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 AULA 12 - Normalidade e Inferência em Regressão Múltipla - Parte 2 Susan Schommer Econometria I - IE/UFRJ Testes de hipóteses sobre combinação linear dos parâmetros Na aula passada testamos hipóteses sobre

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Física Geral - Laboratório. Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções

Física Geral - Laboratório. Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções Física Geral - Laboratório Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções 1 Medidas indiretas: Ajuste de funções Ajuste de funções y = f (x; a 1,a 2,...,a p ) Medidas de duas grandezas

Leia mais

AULA 4 - MQO Simples: Propriedades algébricas e Estatísticas

AULA 4 - MQO Simples: Propriedades algébricas e Estatísticas AULA 4 - MQO Simples: Propriedades algébricas e Estatísticas Susan Schommer Econometria I - IE/UFRJ Estimação: MQO recapitulando Na aula passada aprendemos estimação por MQO. Recapitulando brevemente Em

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

1 semestre de 2014 Gabarito Lista de exercícios 3 - Estatística Descritiva III C A S A

1 semestre de 2014 Gabarito Lista de exercícios 3 - Estatística Descritiva III C A S A Exercício 1. (1,0 ponto). A tabela a seguir mostra o aproveitamento conjunto em Física e Matemática para os alunos do ensino médio de uma escola. Notas Notas Notas Física/Matemática Altas Regulares Baixas

Leia mais

Associação entre duas variáveis

Associação entre duas variáveis Associação entre duas variáveis Questões de interesse: Será que duas variáveis são independentes ou pelo contrário dependentes? E se forem dependentes, qual o tipo e grau de dependência? Existem diversas

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre. UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Métodos Empíricos de Pesquisa I. } Análise Bidimensional

Métodos Empíricos de Pesquisa I. } Análise Bidimensional Métodos Empíricos de Pesquisa I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE TRANSPORTES MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA CORRELAÇÃO E REGRESSÃO Professora: Cira Souza Pitombo Disciplina: ENG C 18 Métodos

Leia mais

Modelos de Regressão Múltipla - Parte VIII

Modelos de Regressão Múltipla - Parte VIII 1 Modelos de Regressão Múltipla - Parte VIII Erica Castilho Rodrigues 15 de Fevereiro de 2017 2 3 Observações não usuais 4 As observações não usuais podem ser: Outliers: não se ajustam bem ao modelo (resíduo

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO 1 1. CORRELAÇÃO 1.1. INTRODUÇÃO 1.. PADRÕES DE ASSOCIAÇÃO 1.3. INDICADORES DE ASSOCIAÇÃO 1.4. O COEFICIENTE DE CORRELAÇÃO 1.5. HIPÓTESES BÁSICAS 1.6. DEFINIÇÃO 1.7. TESTE DE HIPÓTESE.

Leia mais

Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.

Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre. UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/

Leia mais

Estatística CORRELAÇÃO E REGRESSÃO LINEAR. Prof. Walter Sousa

Estatística CORRELAÇÃO E REGRESSÃO LINEAR. Prof. Walter Sousa Estatística CORRELAÇÃO E REGRESSÃO LINEAR Prof. Walter Sousa CORRELAÇÃO LINEAR A CORRELAÇÃO mede a força, a intensidade ou grau de relacionamento entre duas ou mais variáveis. Exemplo: Os dados a seguir

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Regressão linear simples

Regressão linear simples Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação

Leia mais

Regressão Linear. Prof. Dr. Leandro Balby Marinho. Análise de Dados II. Introdução Regressão Linear Regressão Múltipla

Regressão Linear. Prof. Dr. Leandro Balby Marinho. Análise de Dados II. Introdução Regressão Linear Regressão Múltipla Regressão Linear Prof. Dr. Leandro Balby Marinho Análise de Dados II Prof. Leandro Balby Marinho 1 / 36 UFCG DSC Roteiro 1. Introdução 2. Regressão Linear 3. Regressão Múltipla Prof. Leandro Balby Marinho

Leia mais

Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES

Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizandose de dados históricos e sua projeção para o futuro, de fatores subjetivos

Leia mais

Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada

Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada Aula 2 Regressão Linear Simples Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada Conceitos Gerais A análise de regressão é utilizada para explicar ou modelar a relação entre

Leia mais

Prova de Estatística

Prova de Estatística Prova de Estatística 1. Para um número-índice ser considerado um índice ideal, ele precisa atender duas propriedades: reversão no tempo e o critério da decomposição das causas. Desta forma, é correto afirmar

Leia mais

Estatística Descritiva (III) Associação entre Variáveis

Estatística Descritiva (III) Associação entre Variáveis Estatística Descritiva (III) Associação entre Variáveis 1 Associação entre variáveis qualitativas Tabelas de Contingência 2 Podemos construir tabelas de frequências conjuntas (tabelas de contingência),

Leia mais

AULA 1 - Modelos determinísticos vs Probabiĺısticos

AULA 1 - Modelos determinísticos vs Probabiĺısticos AULA 1 - Modelos determinísticos vs Probabiĺısticos Susan Schommer Econometria I - IE/UFRJ O que é Econometria? Aplicação de métodos estatísticos e matemáticos para analisar os dados econômicos, com o

Leia mais

Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população.

Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população. UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução São duas técnicas estreitamente relacionadas, que visa estimar uma relação

Leia mais