Reconhecimento de Padrões
|
|
|
- Tomás Amarante Imperial
- 8 Há anos
- Visualizações:
Transcrição
1 Reconhecimento de Padrões André Tavares da Silva
2 Roteiro da aula Conceitos básicos sobre reconhecimento de padrões Visão geral sobre aprendizado no projeto de classificadores Seleção de características
3 Modelos para reconhecimento de padrões Reconhecimento sintático As características são textuais e a classificação é uma análise gramatical (e.g., por árvores de decisão). Reconhecimento estatístico As características são normalmente numéricas (i.e., as textuais podem ser transformadas em números) e a classificação é uma análise estatística dos dados. Obs: Este curso se concentrará no reconhecimento estatístico, construído a partir de um conjunto Z={z 1,z 2,..,z N } de N objetos observados (dados).
4 Modelo matemático Cada objeto z j de Z é representado por um vetor x j = [x 1,x 2,...,x n ] t de características e conhecemos a classe w i, i=1,2,...,c, de cada objeto para fins de avaliação. O conjunto de dados Z deve ser dividido em três subconjuntos, Z 1, Z 2, e Z 3, denominados subconjuntos de treinamento, avaliação, e teste. O projeto de um classificador consiste em aprender com Z 1 e Z 2, e avaliar o classificador projetado com Z 3. A classificação visa associar um rótulo l(z j )=w i, da classe correspondente, para qualquer objeto z j em Z com base em x j.
5 Modelo Matemático Um classificador D pode ser visto como um conjunto de funções discriminantes G={g 1,g 2,...,g c } tais que: x g 1 g 2 g c g 1 (x) g 2 (x) g c (x) Máximo w i
6 Aprendizado supervisionado Utilizamos o conhecimento da classe w i correspondente de todos os elementos em Z 1 para encontrar os parâmetros do classificador. O conjunto Z 2 é usado para avaliar o classificador projetado (pseudo-teste). Dependendo do resultado, podemos trocar elementos entre Z 1 e Z 2 e repetir o treinamento e o pseudo-teste até obtermos um classificador final D para avaliação final com Z 3. Esta avaliação testa uma a uma as amostras em Z 3.
7 Aprendizado não-supervisionado Não utilizamos o conhecimento das classes dos objetos em Z 1. Resolvemos um problema de clustering (particionamento de Z 1 ) e projetamos um classificador com base neste resultado. O conjunto Z 2 é usado para testar este classificador e atualizar os elementos de Z 1 com trocas até a obtenção de um modelo final D. O conjunto Z 3 pode então ser usado para avaliarmos o classificador projetado. Obs: Note que o classificador não é necessariamente um algoritmo de clustering. Em mineração de dados, podemos desconhecer de fato as classes em Z. A avaliação fica a critério do usuário e/ou medidas para detecção e correção de possíveis outliers.
8 Dicas O classificador deve ser testado com várias bases de dados. Crie um diretório para cada base, subdiretórios para as classes, e copie os objetos (vetores de características) da base para o subdiretório correspondente. Faça um programa para selecionar aleatoriamente objetos de cada classe para formar os conjuntos Z 1, Z 2, e Z 3 em três arquivos com descritor e classe de cada objeto. Faça um segundo programa para projetar o classificador e um terceiro para testá-lo. As bases podem ser criadas artificialmente, obtidas de projetos, ou pela internet (
9 Características em Problemas Gerais Quantitativas Contínuas (comprimento, altura, peso) Discretas (número de buracos, número de gols) Qualitativas (muito usadas em reconhecimento sintático) Ordinal (grau de educação) Nominal (profissão, marca, modelo) Obs.: estamos interessados em características quantitativas.
10 x 2 Seleção de características A dificuldade está no fato que características isoladas podem ser irrelevantes, mas quando juntas melhoram a classificação. A seleção pode ser feita com base em todo o conjunto Z. x 1
11 Seleção de características Temos um problema de otimização, onde o espaço de busca é o conjunto de todas as combinações de características e a função objetivo é minimizar os erros de classificação. Neste sentido, qualquer técnica de otimização (heurística ou não) pode ser utilizada. Seja B k =(b 1,b 2,...,b n ) uma possível combinação de características para k=1, 2,...,C n,1 +C n, C n,n, onde b j = 1 indica que a característica x j está incluída e b j = 0 indica que não. O problema consiste em encontrar a combinação B k que leva ao menor erro de classificação.
12 Algumas técnicas Seleção natural Seleção aleatória Seleção não-aleatória Forward and backward search Modelos baseados em classe favorita Seleção por Genetic Algorithms (GA) Seleção baseada em medidas de avaliação de clustering
13 Seleção natural Algumas características surgem naturalmente do problema. Por exemplo, características espectrais associadas ao pitch no reconhecimento de voz. Características de forma no reconhecimento de caracteres. Neste sentido, um bom método de seleção é usar de parcimônia.
14 Seleção aleatória Podemos selecionar aleatoriamente um subconjunto razoável de c combinações B k, construir c classificadores D k a partir de cada combinação B k e selecionar a combinação que gera o melhor classificador.
15 Busca forward Podemos testar cada característica individualmente e selecionar a melhor. Depois testar pares de características fixando a melhor da etapa anterior e selecionar o melhor par. Repetir o processo com três, quatro,..., até n características. No final selecionamos a melhor combinação entre todas testadas.
16 Busca backward Podemos testar B k =(1,1,...,1) primeiro. Verificar qual característica quando retirada piora menos ou até melhora o resultado. Repetir o processo até sobrar uma única característica. Escolher a melhor combinação entre todas testadas.
17 Modelo baseado em classe favorita Este modelo é usado em sistemas com múltiplos classificadores. Assumimos uma classe wi, i=1,2,...,c favorita para cada classificador D i. Para encontrar a combinação Bk,i mais adequada para D i nós definimos uma variável v i (z j ) para cada classe, onde v i (z j )=0 se z j não pertence a w i e v i (z j )=1 no caso contrário. Calculamos para cada wi, a correlação entre os valores de cada característica x k, k=1,2,...,n, e os valores de v i (z j ) para cada objeto z j de Z. As ni características com os maiores valores absolutos de correlação são selecionadas para B k,i. O classificador Di porém é projetado para reconhecer todas as classes usando B k,i.
18 Modelo baseado em algoritmos genéticos Este modelo é também adotado para sistemas com múltiplos classificadores. Cada combinação Bk é vista uma população. como um indivíduo (cromossomo) de Selecionamos uma população inicial de L indivíduos para projetar L classificadores. Mutações e crossing-over são feitos diretamente nos bits dos indivíduos. O fitness value de um indivíduo está relacionado com o desempenho de seu classificador, mas desejamos manter uma população com indivíduos diferentes (genótipo), que juntos produzem os melhores resultados de classificação (fenótipo).
19 Modelo baseado em separabilidade e compacticidade Um bom conjunto de características (descritor) Bk é aquele que separa mais as classes distintas mantendo os elementos de uma mesma classe bem agrupados. Medidas de avaliação de clustering buscam capturar estes conceitos de separabilidade e compacticidade de um descritor. Neste caso, podemos considerar a partição das classes em Z, uma dada métrica, e avaliar a medida (e.g., o corte normalizado) de cada descritor sobre esta partição, selecionando o descritor com o melhor valor de medida (e.g., corte mínimo).
20 Redução do número de características A redução de características (PCA, ICA) pode ser importante para eliminar características irrelevantes e melhorar a eficiência do classificador (curse of the high-dimensionality). x 2 y 1 x 1 Qual é o impacto que isto tem no desempenho do classificador e na eficiência do sistema como um todo?
21 Teorema de Cover (1965) Um problema complexo de classificação de padrões disposto não linearmente em um espaço de alta dimensão tem maior probabilidade de ser linearmente separável do que em um espaço de baixa dimensionalidade. Alguns classificadores, tais como RNA com Funções de Ativação de Base Radial e máquinas de vetor de suporte (SVM), exploram este teorema. O teorema se aplica mesmo que as classes não sejam separáveis no espaço de menor dimensão?
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas Wrapper Filtros Muitos algoritmos de AM são projetados de modo a selecionar os
Reconhecimento de Padrões
Reconhecimento de Padrões André Tavares da Silva [email protected] Kuncheva pg. 8 a 25 (seções 1.3 e 1.4) Roteiro da aula Cálculo do erro de um classificador Técnicas de treinamento, avaliação e teste
Aprendizado de Máquinas. Seleção de Características
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Seleção de Características David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução Um dos principais aspectos na construção de um
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 01 Motivação, áreas de aplicação e fundamentos Max Pereira Nem todo conhecimento tem o mesmo valor. O que torna determinado conhecimento mais importante que
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 02 Representação dos dados Pré-processamento Max Pereira Tipo de Dados Os atributos usados para descrever objetos de dados podem ser de diferentes tipos: Quantitativos
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Conceitos básicos Classificação não-supervisionada:
Combinação de Classificadores (fusão)
Combinação de Classificadores (fusão) André Tavares da Silva [email protected] Livro da Kuncheva Roteiro Sistemas com múltiplos classificadores Fusão por voto majoritário voto majoritário ponderado
SEMINÁRIO DOS ARTIGOS:
SEMINÁRIO DOS ARTIGOS: Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning End-to-End Text Recognition with Convolutional Neural Networks Fernanda Maria Sirlene
SUPPORT VECTOR MACHINE - SVM
SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.5. Support Vector Machines 2.5. Support Vector Machines (SVM) 2.5.2.
Inteligência Artificial
Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução
Algoritmos Genéticos
Algoritmos Genéticos Roteiro Introdução Algoritmos Genéticos Otimização Representação Seleção Operadores Genéticos Aplicação Caixeiro Viajante Introdução Algoritmos Genéticos (AGs), são métodos de otimização
Introdução aos Algoritmos Genéticos
Introdução aos Algoritmos Genéticos Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Algoritmos Genéticos: Introdução Introduzidos
Aula 6 Mineração Streams Representação dos Dados. Profa. Elaine Faria UFU
Aula 6 Mineração Streams Representação dos Dados Profa. Elaine Faria UFU - 2017 Agradecimentos Este material é baseado No livro Tan et al, 2006 Nos slides do prof. Andre C. P. L. F. Carvalho Agradecimentos
Introdução ao Reconhecimento. Prof. Dr. Geraldo Braz Junior
Introdução ao Reconhecimento Prof. Dr. Geraldo Braz Junior O que você vê? 2 Pergunta: Essa imagem tem um prédio? Classificação 3 Pergunta: Essa imagem possui carro(s)? Detecção de Objetos Vários 4 Pergunta:
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem
Modelos Evolucionários e Tratamento de Incertezas
Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 01 Computação Evolucionária Max Pereira Motivação Se há uma multiplicidade impressionante de algoritmos para solução de problemas,
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Metodologia Aplicada a Computação.
Metodologia Aplicada a Computação [email protected] Pré-processamento de dados Técnicas utilizadas para melhorar a qualidade dos dados; Eliminam ou minimizam os problemas como ruídos, valores incorretos,
Classificação Linear. André Tavares da Silva.
Classificação Linear André Tavares da Silva [email protected] Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais Escola de Verão do Laboratório Associado de Computação e Matemática Aplicada Rafael Santos Dia 2: 1 /59 Programa Dia 1: Apresentação
Métodos para Classificação: - Naïve Bayes.
Métodos para Classificação: - 1R; - Naïve Bayes. Visão Geral: Simplicidade em primeiro lugar: 1R; Naïve Bayes. 2 Classificação: Tarefa: Dado um conjunto de exemplos préclassificados, construir um modelo
KDD E MINERAÇÃO DE DADOS
KDD E MINERAÇÃO DE DADOS Etapas do Processo de KDD Livro: Data Mining Conceitos, técnicas, algoritmos, Orientações e aplicações Ronaldo Goldschmidt, Eduardo Bezerra, Emmanuel Passos KDD Knowledge Discovery
Redes Neurais Artificial. Prática. Inteligência Artificial
Redes Neurais Artificial Prática Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução a MLP 2. Base de dados e Pré-Processamento 3. Prática MLP - Introdução Redes
Aprendizagem de Máquina
Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:
4 Implementação Computacional
4 Implementação Computacional 4.1. Introdução Neste capítulo é apresentada a formulação matemática do problema de otimização da disposição das linhas de ancoragem para minimizar os deslocamentos (offsets)
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP) 2 Computação Bioinspirada
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular André C. P. L. F. de Carvalho Monitor: Valéria Carvalho Agrupamento de Dados Tópicos Agrupamento de dados Análise de cluster Dificuldades em agrupamento Algoritmos
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 14 Support Vector Machines (SVM) 2016.1 Prof. Augusto Baffa Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Aprendizado de Máquina
Aprendizado de Máquina O que é Aprendizado? Memorizar alguma coisa Aprender fatos por meio de observação e exploração Melhorar habilidades motoras/cognitivas por meio de prática Organizar novo conhecimento
Maldição da dimensionalidade
EXTRAÇÃO E SELEÇÃO DE ATRIBUTOS Maldição da dimensionalidade 2 Maldição da dimensionalidade (ou Curse of dimensionality) Termo que se refere a vários fenômenos que surgem na análise de dados em espaços
Aprendizagem de Máquina. Prof. Júlio Cesar Nievola PPGIA - PUCPR
Aprendizagem de Máquina Prof. Júlio Cesar Nievola PPGIA - PUCPR Introdução Justificativa Recente progresso em algoritmos e teoria Disponibilidade crescente de dados online Poder computacional disponível
Aprendizado de Máquinas. Classificadores Lineares
Universidade Federal do Paraná (UFPR) Departamento de Informática Aprendizado de Máquinas Classificadores Lineares David Menotti, Ph.D. web.inf.ufpr.br/menotti Objetivos Introduzir o conceito de classificação
Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law
Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não
Otimização com Algoritmos Genéticos no MATLAB. Prof. Rafael Saraiva Campos CEFET-RJ
Otimização com Algoritmos Genéticos no MATLAB Prof. Rafael Saraiva Campos CEFET-RJ Conteúdo do Mini-Curso PARTE 1 Teoria PARTE 2 Prática Conteúdo do Mini-Curso PARTE 1 Teoria 1.1. Conceitos Básicos de
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo
Classificadores Lineares
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support
Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade
Thiago Zavaschi ([email protected]) Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUC-PR) Conceitos relacionados a classificação
Exemplo de Aplicação de Algoritmos Genéticos. Prof. Juan Moisés Mauricio Villanueva cear.ufpb.br/juan
Exemplo de Aplicação de Algoritmos Genéticos Prof. Juan Moisés Mauricio Villanueva [email protected] cear.ufpb.br/juan Estrutura do Algoritmo Genético Algoritmo genético Inicio t = 0 inicializar P(t)
Thiago Marzagão 1. 1 Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21
MINERAÇÃO DE DADOS Thiago Marzagão 1 1 [email protected] ÁRVORE DE DECISÃO & VALIDAÇÃO Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21 árvore de decisão Aulas passadas: queríamos
Introdução a Algoritmos Genéticos
Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
4 Construção dos Classificadores
4 Construção dos Classificadores 4.1. Modelagem O aprendizado supervisionado contém a etapa de modelagem, nessa etapa definimos quais serão as características encaminhadas ao classificador para o treinamento.
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 17 Support Vector Machines (SVM) Formas de Aprendizado Aprendizado Supervisionado Árvores de decisão. K-Nearest Neighbor
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 10 Modelos Preditivos - Árvore de Decisão 2 de 20 Aula 10 - Árvore de
Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca
Algoritmos Genéticos. Indivíduos em uma população competem por recursos e parceiros. Os indivíduos mais bem sucedidos em cada competição vão produzir
Algoritmos Genéticos Algoritmos Genéticos (GA) são algoritmos de busca heurística baseados em ideias de seleção natural e genética. Dessa forma, eles representam uma forma inteligente de se fazer uma busca
Aprendizado por Reforço usando Aproximação
Aprendizado por Reforço usando Aproximação de Funções Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Aproximação de Funções 2. Do the evolution 1 Aproximação de Funções Função Utilidade
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 16 Aprendizado Não-Supervisionado Edirlei Soares de Lima Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Inteligência Artificial. Algoritmos Genéticos. Aula I Introdução
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Algoritmos Genéticos Aula I Introdução Roteiro Introdução Computação Evolutiva Algoritmos
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo]
Inteligência Artificial Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Aprendizagem de Máquina Área da Inteligência Artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre
Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce
Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados
Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos
Informática Parte 19 Prof. Márcio Hunecke
Escriturário Informática Parte 19 Prof. Márcio Hunecke Informática NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês: "machine learning") ou aprendizagem
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP 1 Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 2 Introdução http://www.formula-um.com/ Como
Computação Evolutiva. Computação Evolutiva. Principais Tópicos. Evolução natural. Introdução. Evolução natural
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 1 2 Introdução Evolução natural http://www.formula-um.com/
Aprendizado de Máquina
Aprendizado de Máquina Introdução ao WEKA Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://web.inf.ufpr.br/luizoliveira Luiz S. Oliveira (UFPR) Aprendizado de
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.2. Perceptron 2.2.1. Introdução 2.2.2. Funcionamento do perceptron
Testes de software - Teste funcional
Testes de software - Teste funcional Vitor Alcântara de Almeida Universidade Federal do Rio Grande do Norte Natal, Brasil 30 de outubro de 2014 Alcântara (UFRN) Testes de software - Testes funcionais 30
Codificação de Huffman
Codificação de Huffman Bruna Gregory Palm 11 de setembro de 2017 A codificação de Huffman é um método de compressão que considera as probabilidades de ocorrência de cada símbolo no conjunto de dados a
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções
