Classificação Linear. André Tavares da Silva.
|
|
|
- Stéphanie Figueira de Carvalho
- 8 Há anos
- Visualizações:
Transcrição
1 Classificação Linear André Tavares da Silva
2 Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron Introdução à RNA (Rede Neural Artificial)
3 Introdução Para utilizar uma função discriminante linear (Linear Discriminant Function) precisamos ter: Dados rotulados Conhecer a forma da fronteira Estimar os parâmetros desta fronteira a partir dos dados de treinamento. Nesse caso uma reta.
4 Introdução Ruim Boa Suponha duas classes Assuma que elas são linearmente separáveis por uma fronteira l(θ) Otimizar o parâmetro θ para encontrar a melhor fronteira. Como encontrar o parâmetro Minimizar o erro no treinamento O ideal é utilizar uma base de validação.
5 Introdução Funções discriminantes podem ser mais gerais do que lineares Vamos focar em problemas lineares Mais fácil de compreender Entender a base da classificação linear Não precisamos conhecer a distribuição dos dados
6 Reta ruim Reta boa Análise Discriminante Linear LDA (Linear Discriminant Analysis) LDA tenta encontrar uma transformação linear através da maximização da distância entre-classes e minimização da distância intra-classe. O método tenta encontrar a melhor direção de maneira que quando os dados são projetados em um plano, as classes possam ser separadas.
7 LDA
8 LDA Tutorial 1) Para um dado conjunto de dados, calcule os centróides (vetores médios) de cada classe μ 1,μ 2 e o vetor médio geral,μ. Centroide Classe +1 Centroide Classe -1 Centroide geral
9 LDA Tutorial Normalizar os dados, através da subtração dos centróides. x i 0 Desta maneira, contém os dados da classe i, normalizados. Ou seja x i - μ i
10 LDA Tutorial Calcular as matrizes de covariância para os dados normalizados (c i ) Calcular a matriz de covariância conjunta (C)
11 LDA Tutorial Calcular a inversa de C Finalmente, a função discriminante será f i = µ C i 1 x T k 1 µ ic 1 ( p ) Devemos atribuir o objeto k ao grupo i que maximize f i. 2 µ T i + ln i
12 LDA Tutorial Para visualizar a transformação, basta aplicar a função discriminante a todos os dados Taxa de Reconhecimento = 99%
13 Funções Discriminante Lineares Em geral, uma função discriminante linear pode ser escrita na forma T g( x) = w x + w w T é a componente angular e w 0 o linear w T também pode ser um vetor (características, por exemplo) 0
14 Funções Discriminante Lineares é um hiperplano Um hiperplano também é Um ponto em 1D Uma reta em 2D Um plano em 3D
15 Funções Discriminante Lineares Para duas dimensões, w determina a orientação do hiperplano enquanto w 0 representa o deslocamento com relação a origem
16 Perceptron Um classificador linear bastante simples, mas bastante importante no desenvolvimento das redes neurais é o Perceptron. O perceptron é considerado como sendo a primeira e mais primitiva estrutura de rede neural artificial. Concebido por McCulloch and Pits na década de 50. Ele tenta encontrar a melhor fronteira que separa os dados, ou seja, é uma Função Discriminante Linear.
17 Perceptron x 1 x 2 x n y w 1 w 2 w n w0 ϕ(.) ( w x w ) ϕ i i + = 0 y Uma função de ativação utilizada no perceptron é a hardlim (threshold) 1 f ( x) = 0 x x < 0 0 A função de ativação é responsável por determinar a forma e a intensidade de alteração dos valores transmitido de um neurônio a outro.
18 Perceptron: Algoritmo de Aprendizagem 1. Iniciar os pesos e bias com valores pequenos, geralmente no intervalo [ ] 2. Aplicar um padrão de entrada com seu respectivo valor desejado de saída (t i ) e verificar a saída y da rede. 3. Calcular o erro da saída 4. Se e=0, volta ao passo 2 5. Se e<>0, 1. Atualizar pesos 2. Atualizar o bias 6. Voltar ao passo 2 e = t w i < w i +e x i b< b+e Critério de parada: Todos os padrões classificados corretamente. j a
19 Redes Neurais Cérebro humano. Mais fascinante processador existente. Aprox. 10 bilhões de neurônios conectados através de sinapses. Sinapses transmitem estímulos e o resultado pode ser estendido por todo o corpo humano.
20 Neurônio Dendritos: Receber os estímulos transmitidos por outros neurônios. Corpo (somma). Coletar e combinar informações vindas de outros neurônios. Axônio. Transmite estímulos para outras células.
21 Rede Neural Artificial Técnica baseada no funcionamento do sistema nervoso dos seres vivos Uma rede neural é composta por diversos neurônios artificiais dispostos em camadas O conhecimento é mantido nas conexões entre os neurônios artificiais Inicialmente a rede neural não possui nenhum conhecimento sobre a tarefa Através de um processo de treinamento a rede neural aprende a responder corretamente a um determinado estímulo
22 Rede Neural Artificial Aprendem automaticamente a partir de um conjunto de dados de treinamento O conhecimento não precisa ser extraído e codificado manualmente Possuem duas fases distintas: aprendizado e utilização O aprendizado ocorre através da apresentação de diversos padrões de dados com as saídas desejadas informadas São necessárias diversas passadas sobre os dados para que o aprendizado ocorra
23 Histórico das RNAs 1943: Neurônio de McCulloch & Pitts 1959: Perceptron de Rosenblatt 1962: Adaline de Widrow regra delta 1969: Livro Perceptrons de Minsky e Papert Idade das trevas para as redes neurais Início dos anos 80: novos modelos neurais: SOM, ART e de Hopfield 1986: MLP com Backpropagation 1987 em diante: Aplicações de redes neurais nas mais variadas áreas
24 Principais Modelos MLP: Classificação e regressão ART: Clusterização e classificação (aprendizado instantâneo) SOM: Clusterização e visualização Redes Hebbianas: memórias associativas Hopfield: memórias associativas e solução de problemas combinatórios (NP-completos) RBF: Regressão e aprendizado por reforço SVM: Máquina de Vetor de Suporte
25 Vantagens Podem trabalhar com dados discretos e contínuos (não é necessário discretização) Podem ser utilizadas para clusterização, regressão e aproximação de funções São robustas em relação a dados faltantes e/ou informações incorretas Possuem elevado grau de generalização Lidam com dados incertos/imprecisos e/ou informações probabilísticas Possuem elevado grau de paralelismo
26 Desvantagens É necessário um arquivo de treinamento (base) com as saídas desejadas informadas A base de treinamento tem que estar disponível antes do processo de aprendizado O aprendizado requer diversas passadas sobre esta base (convergência lenta) Após o termino do aprendizado a rede para de aprender (primeiro aprende depois usa) Não consegue aprender continuamente
27 Desvantagens Caixa preta: a rede aprende, mas o conhecimento não é explícito É bastante suscetível a mínimos locais Muitos parâmetros críticos: Número de neurônios ocultos Passo, intervalo inicial dos pesos, etc. Dependente das condições de inicialização Diferentes execuções levarão a resultados diferentes
28 Aplicações de redes neurais Reconhecimento de padrões em geral: Assinaturas e textos manuscritos Reconhecimento de voz OCR (reconhecimento de caracteres impressos) Placas de veículos Sistemas de controle inteligente Predição de séries temporais Identificação de sistemas
29 Neurônio artificial Sinais são apresentados à entrada. Cada sinal é multiplicado por um peso. Soma ponderada produz um nível de ativação. Se esse nível excede um limite (threshold) a unidade produz uma saída. [PERCEPTRON]
30 Perceptron Resolve problemas linearmente separáveis somente. Problemas reais, entretanto, na maioria das vezes são mais complexos.
31 Exemplo Considere por exemplo, o problema XOR w 1 w 2 x 1 x 2 Em altas dimensões os problemas podem ser linearmente separáveis. Sendo assim, vamos mudar o problema de R 2 para R 3 adicionando uma terceira característica. Como?
32 Exemplo Considere por exemplo, o problema XOR w 1 w 2 x 1 x x 2 1 Λ x 2 Como: adicionando a característica X3, resultado da operação AND entre X1 e X2. O fato de adicionarmos essa característica faz com que o problema torne-se linearmente separável. Outra forma: múltiplas camadas.
33 3 Perceptron
34 4 Função de ativação Função sinal: se a soma das entradas multiplicadas pelos pesos for maior que um limiar, o neurônio dispara Função linear (identidade): não usa função de ativação (a saída é a soma das entradas multiplicadas pelos pesos) Sigmoid: no meio é mais ou menos linear, mas nos extremos ela satura: Máximo: 1, mínimo: 0 A sigmoid tem a vantagem de ser integrável
35 5 Perceptron - aprendizado Inicialmente os pesos são inicializados aleatoriamente dentro de um intervalo especificado (geralmente entre -1 e 1) Assim, a primeira vez que o Perceptron for ativado, o valor na saída provavelmente não corresponderá ao valor desejado A diferença entre o valor desejado e o obtido na saída é usada para ajustar os pesos sinápticos A rede aprende a responder corretamente
36 6 Perceptron exemplo Digamos que um perceptron seja usado para aprender a função AND. Os dados de treinamento seriam: O perceptron em questão teria duas entradas e uma saída
37 7 Perceptron - exemplo Digamos que os pesos tenham sido inicializados aleatoriamente e os seguintes valores foram obtidos: w1 = 0.1 w2 = 0.64 w0 = 0.19 As saídas correspondentes então seriam: x1 x2 obtida alvo erro Os erros são então usados para ajustar os pesos através da regra delta
38 8 Interpretação geométrica Um neurônio pode ser considerado como uma reta que divide os padrões em classes A equação desta reta é definida pelos pesos Para os pesos iniciais definidos anteriormente: w1 = 0.1 w2 = 0.64 w0 = 0.19 A equação da reta seria: 0.1 * x * x = 0 Esta equação pode ser plotada no plano 2D, onde x1 é o eixo das ordenadas e x2 o das abscissas
39 9 Reta dividindo as classes - início
40 0 Reta dividindo as classes - final
41 1 Problema não linearmente separáveis Usamos vários Perceptrons para separar as classes usando várias retas Função XOR
Aprendizado de Máquinas. Classificadores Lineares
Universidade Federal do Paraná (UFPR) Departamento de Informática Aprendizado de Máquinas Classificadores Lineares David Menotti, Ph.D. web.inf.ufpr.br/menotti Objetivos Introduzir o conceito de classificação
Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.
Multiple Layer Perceptron
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Multiple Layer Perceptron David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Multiple Layer Perceptron (MLP) Backpropagation
Redes Neurais Artificiais
Redes Neurais Artificiais Neurônio Natural Dendritos: recebe os estímulos transmitidos por outros neurônios Soma Sinapse Axônio Soma: coleta e combina informações vindas de outros neurônios Sinapse Dendrito
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 03 Aprendizado Supervisionado / : Modelo MCP e Perceptron Max Pereira Neurônio Booleano de McCulloch- Pitts (Modelo MCP) Proposto em
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.
CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado
Classificadores Lineares
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCA UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Redes Neurais Artificiais Inteligência Artificial
Redes Neurais Artificial. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Redes Neurais Artificial Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Histórico 3. Conceitos Básicos 4. Aprendizado em RNA 5. Exemplo de Aprendizado com
TÓPICOS EM INTELIGÊNCIA ARTIFICIAL Redes Neurais Artificiais
TÓPICOS EM INTELIGÊNCIA ARTIFICIAL Redes Neurais Artificiais [email protected] http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/ Introdução O Cérebro humano Mais fascinante processador
Redes Neurais Artificiais. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 9)
Redes Neurais Artificiais Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 9) Conceitos 2 Redes Neurais As Redes Neurais Artificias são modelos computacionais
Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana
Introdução à Redes Neurais Artificiais Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Introdução Redes Neurais Artificiais (RNAs)
Inteligência Artificial Redes Neurais
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
REDES NEURAIS ARTIFICIAIS
REDES NEURAIS ARTIFICIAIS REDES NEURAIS ARTIFICIAIS O QUE É UMA REDE NEURAL NEURÔNIOS BIOLÓGICOS CÉREBRO HUMANO E CAPACIDADE DE GENERALIZAÇÃO. Modelo McCulloch e Pitts FUNÇÕES DE ATIVAÇÃO APRENDIZADO APRENDIZADO
Redes Neurais Artificiais - Introdução. Visão Computacional
Redes Neurais Artificiais - Introdução Visão Computacional Inspiração 2 Inspiração 3 Inspiração Atividade seletivanas conexões Soma os impulsos e passa a diante 4 Inspiração As conexões entre os dendritos
Redes Neurais Artificial
Redes Neurais Artificial Tópicos: Introdução ao estudo de RNA sua origem e inspiração biológica Características gerais das RN e descrição do neurônio artificial Aprendizado de RN e tipos de Aprendizado
Redes Neurais. Prof. Aurora Pozo. Obs: slides baseados em Prof. Marcílio Souto e Prof. Marley Vellasco
Redes Neurais Prof. Aurora Pozo Obs: slides baseados em Prof. Marcílio Souto e Prof. Marley Vellasco CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos
Mineração de Dados em Biologia Molecular
Mineração Dados em Biologia Molecular Principais tópicos André C. P. L. F. Carvalho Monitor: Valéria Carvalho Res Neurais Artificiais Introdução Arquitetura Aprendizado Principais molos Perceptron MLP
serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina
Redes Neurais O modelo biológico O cérebro humano possui cerca 100 bilhões de neurônios O neurônio é composto por um corpo celular chamado soma, ramificações chamadas dendritos (que recebem as entradas)
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo
Redes Neurais. Motivação. Componentes do neurônio. Cérebro humano. Criar máquinas capazes de operar independentemente do homem:
Motivação M. Sc. Luiz Alberto [email protected] Redes Neurais Criar máquinas capazes de operar independentemente do homem: Aprenda sozinha; Interagir com ambientes desconhecidos; Possa ser chamada de
Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java
Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java Apresentação Graduada em Sistemas de Informação FAP/Parnaíba Mestranda do Programa de Pós-Graduação em Engenharia da Eletricidade -
Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas
Redes Neurais 1. Redes Neurais. cont.) Definição (cont( Definição. Histórico. Características básicas
Redes Neurais Dalma M. Falcão [email protected] http://www.nacad.ufr.br/~falcao/ Redes Neurais Definição Histórico Áreas de aplicação RNs biológicas Modelos de neurônios artificiais Arquiteturas de RNs
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.1. Introdução às Redes Neurais Artificiais (RNAs) 2.1.1. Motivação
Tópicos Especiais: Inteligência Artificial REDES NEURAIS
Tópicos Especiais: Inteligência Artificial REDES NEURAIS Material baseado e adaptado do Cap. 20 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial Russell & Norvig
SUPPORT VECTOR MACHINE - SVM
SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento
PERCEPTRON. Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado
PERCEPTRON Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado CARACTERISTICAS BASICAS - Regra de propagação net - Função de ativação: Degrau = x w + - Topologia: uma
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS PERCEPTRONS Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Forma mais simples de configuração das RNAs Rosenblatt (1958) retina área de projeção área de associação respostas
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento
Redes Neurais e Sistemas Fuzzy
Redes Neurais e Sistemas Fuzzy Redes de uma única camada O Perceptron elementar Classificação de padrões por um perceptron A tarefa de classificação consiste em aprender a atribuir rótulos a dados que
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem
3 Redes Neurais Artificiais
3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCA UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Redes Neurais Artificiais Redes Neurais Artificiais
REDES NEURAIS. Marley Maria B.R. Vellasco. ICA: Núcleo de Pesquisa em Inteligência Computacional Aplicada CONTEÚDO
REDES NEURAIS Marley Maria B.R. Vellasco ICA: Núcleo de Pesquisa em Inteligência Computacional Aplicada PUC-Rio Introdução CONTEÚDO Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCENS UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Redes Neurais Artificiais Redes Neurais Artificiais
Primeiras Redes Neurais Artificiais: Perceptron e Adaline
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Primeiras Redes Neurais Artificiais: Perceptron e Adaline DCA0121 Inteligência Artificial Aplicada Heitor
3 REDES CLÁSSICAS PERCEPTRON E ADALINE
w b Professor José Gomes de Carvalho Jr. 3 REDES CLÁSSICAS PERCEPTRON E ADALINE 3.-Redes com funções de ativação de limiar Uma rede simples de uma camada, consiste em um ou mais neurônios de saída j conectados
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento
3 REDES NEURAIS ARTIFICIAIS
47 3 REDES NEURAIS ARTIFICIAIS Neste capítulo será apresentado um breve histórico das redes neurais artificiais de modo a situar o leitor, descrevendo-se suas aplicações, teorias e finalmente detalhando-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS REDE ADALINE e REGRA DELTA Prof. Dr. André A. P. Biscaro 2º Semestre de 2017 Aspectos históricos O ADALINE foi idealizado por Widrow & Hoff em 1960. Sua principal aplicação estava
Redes Neurais Artificiais
Redes Neurais Artificiais Prof. Dr. Hugo Valadares Siqueira Semana de Eletrônica e Automação 2014 Redes Neurais Artificiais Uma rede neural artificial é um circuito composto por uma grande quantidade de
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais Escola de Verão do Laboratório Associado de Computação e Matemática Aplicada Rafael Santos Dia 2: 1 /59 Programa Dia 1: Apresentação
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.2. Perceptron 2.2.1. Introdução 2.2.2. Funcionamento do perceptron
Por que Redes Neurais?
Redes Neurais Profa. Jaqueline Brigladori Pugliesi Por que Redes Neurais? Utilizar máquinas efetivamente para resolver problemas simples (humanos) Exemplo: distinguir padrões visuais previsão do valor
REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio
REDES NEURAIS Sistema Nervoso 2 O que é? É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos Engloba o cérebro Sua unidade fundamental é o neurônio Se diferencia
Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial SISTEMAS INTELIGENTES PROFESSOR FLÁVIO MURILO
Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial 1 Redes Neurais - Definição O que é Rede Neural ou Rede Neuronal Artificial (RNA)? É um modelo computacional que objetiva
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções
Sistemas Inteligentes - Redes Neurais -
Sistemas Inteligentes - Redes Neurais - Marley Maria B.R. Vellasco ICA: Núcleo de Pesquisa em Inteligência Computacional Aplicada PUC-Rio Introdução CONTEÚDO Motivação, Objetivo, Definição, Características
HP UFCG Analytics Abril-Maio Um curso sobre Reconhecimento de Padrões e Redes Neurais. Por Herman Martins Gomes.
HP UFCG Analytics Abril-Maio 2012 Um curso sobre Reconhecimento de Padrões e Redes Neurais Por Herman Martins Gomes [email protected] Programa Visão Geral (2H) Reconhecimento Estatístico de Padrões (3H)
Rede Perceptron. Capítulo 3
Rede Perceptron Capítulo 3 Rede Perceptron É a forma mais simples de configuração de uma RNA (idealizada por Rosenblatt, 1958) Constituída de apenas uma camada, tendo-se ainda somente um neurônio nesta
Introdução às Redes Neurais Artificiais
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Introdução às Redes Neurais Artificiais DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos
Fundamentos das Redes Neurais: exemplos em Java
Fundamentos das Redes Neurais: exemplos em Java Recife 2008 Copyringt by 2007 Mêuser Valença Impresso no Brasil Printed in Brazil Editor Tarcísio Pereira Diagramação Maria do Carmo de Oliveira Capa Valeska
Resolução da Prova 1 SCC Redes Neurais 2o. Semestre de Prof. João Luís
Resolução da Prova 1 SCC-5809 - Redes Neurais 2o. Semestre de 2011 - Prof. João Luís RESOLUÇÃO (2) 1. A figura abaixo mostra uma rede neural com um único neurônio escondido. Mostre que essa rede resolve
Redes Neurais Artificiais na Engenharia Nuclear 1 Aula-2 Ano: 2005
Redes Neurais Artificiais na Engenharia Nuclear 1 Aula-2 Ano: 2005 1.3. Alguns aspectos históricos 1.4. Principais Conceitos 1.4.1. Definições 1.4.2. Alguns tipos de Arquitetura Revisão da Aula-1 x 1 1
Redes Neurais Artificiais. Capítulos 1 e 2
Redes Neurais Artificiais Introdução Capítulos 1 e 2 Redes Neurais Artificiais (RNA) São modelos computacionais inspirados nos mecanismos de aprendizagem do cérebro humano. São modelos computacionais que
INTELIGÊNCIA ARTIFICIAL
INTELIGÊNCIA ARTIFICIAL REDES NEURAIS Caracterização Intuitiva: Em termos intuitivos, Redes Neurais Artificiais (RNAs) são modelos matemáticos inspirados nos princípios de funcionamento dos neurônios biológicos
Redes Neurais: RBF. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: RBF DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes de Funções de
A evolução natural deu ao cérebro humano muitas características desejáveis que não estão presentes na máquina de von Neumann:
Faculdade de Engenharia de Computação Centro de Ciências Exatas, Ambientais e de Tecnologias PUC-Campinas João Luís Garcia Rosa 2004 2 A evolução natural deu ao cérebro humano muitas características desejáveis
Redes Neurais e Sistemas Fuzzy
Redes Neurais e Sistemas Fuzzy O ADALINE e o algoritmo LMS O ADALINE No contexto de classificação, o ADALINE [B. Widrow 1960] pode ser visto como um perceptron com algoritmo de treinamento baseado em minimização
Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida
Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida [email protected] Perceptron de Múltiplas Camadas
Redes Neurais Artificial. Prática. Inteligência Artificial
Redes Neurais Artificial Prática Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução a MLP 2. Base de dados e Pré-Processamento 3. Prática MLP - Introdução Redes
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 17 Support Vector Machines (SVM) Formas de Aprendizado Aprendizado Supervisionado Árvores de decisão. K-Nearest Neighbor
Redes Neurais Artificiais. Profa. Teresa Ludermir Sistemas Inteligentes
Redes Neurais Artificiais Profa. Teresa Ludermir Sistemas Inteligentes Por que Redes Neurais? Utilizar máquinas efetivamente para resolver problemas simples (humanos) Exemplo1: distinguir padrões visuais
Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons
Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Multi-Layer Perceptrons (Back Propagation) Radial Basis Functions (RBFs) Competitive Learning Hopfield Multi-Layer Perceptrons
GUIA DE AULAS PRÁTICAS DE REDES NEURAIS ARTIFICIAIS
Universidade Federal de Lavras Departamento de Ciência da Computação GUIA DE AULAS PRÁTICAS DE REDES NEURAIS ARTIFICIAIS v. 1.2 Prof. Wilian Soares Lacerda Lavras, agosto de 2018 Ficha catalográfica elaborada
Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO
Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Redes Neurais Artificiais ou simplesmente Redes Neurais (também conhecidas como modelos conexionistas) têm sido, ao longo dos últimos anos, uma área de
Redes Neurais Artificiais. Prof. João Alberto Fabro
Redes Neurais Artificiais Prof. João Alberto Fabro Redes Neurais Artificiais Conceitos Básicos Histórico Evolução O lugar das Redes Neurais dentro da IA Características Aplicações Redes Neurais Multicamadas
JAI 6 - Deep Learning Teoria e Prática
JAI 6 - Deep Learning Teoria e Prática Esteban Clua e Cristina Nader Vasconcelos Universidade Federal Fluminense Fundamentos Computação baseada em modelos [email protected] 2 Computação baseada em aprendizado
Aprendizagem de Máquina
Aprendizagem de Máquina Modelos de classificação por Redes Neurais Artificiais Prof. Paulo Martins Engel Motivação Classificadores baseados em representação simbólica (AD, RD,...) estão limitados a particionar
Neural Networks. Neurônios: Elementos aritméticos simples. Redes Neuronais: conj de neurônios interligados.
Neural Networks Neural Networks Do ponto de vista computacional: métodos para representar funções usando redes de elementos aritméticos simples, e aprender tais representações através de exemplos. Do ponto
