Aprendizado de Máquina
|
|
|
- Pietra Borba Godoi
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site:
2 O que é Aprendizado? Memorizar/Abrigar/Armazenar informações; Aprender fatos por meio de observação e exploração; Melhorar habilidades motoras/cognitivas por meio de prática; Organizar novo conhecimento em representações efetivas e gerais; 2
3 Aprendizado de Máquina Um sistema deve conseguir aprender sobre um determinado conjunto de informações. Para isso, é realizado: O Treinamento: Trabalho realizado sobre um conjunto inicial de entrada (e geralmente, das saídas desejadas), com intuito de produzir resultados corretos. Aplicação do conhecimento aprendido: Capacidade de produzir a saída esperada sobre os dados treinados; e Capacidade de generalizar os dados do treinamento, tornandose capaz de produzir uma resposta esperada para valores ainda não observados. 3
4 Treinamento Para maioria dos problemas de aprendizado: A tarefa é aprender a classificar entradas de acordo com um conjunto finito (às vezes, infinito) de dados. Tipicamente, o sistema possui inicialmente um conjunto de dados classificados manualmente. O sistema tenta então aprender a partir desses dados de treinamento: Fornecendo o resultado certo para estes dados; e também Fornecendo resultados à novos dados ainda não observados (através de generalização). 4
5 Treinamento Espera-se que haja relação entre os dados de entrada e suas classificações. Assim, existirá uma função que poderá ser gerada dos dados (x) para pertencer a classificação (y): f(x) = y 400 Preço (em 1000) Tamanho (em pés²) 5
6 Regressão A regressão consiste no resultado da função f(x), que forneça valores próximos aos resultados já conhecidos. 400 Preço (em 1000) f(x) Tamanho (em pés²) 6
7 Aprendizado de Máquina Um programa aprende a partir da experiência E, em relação a uma classe de tarefas T, com medida de desempenho P. Se seu desempenho em T, medido por P, melhora com E. Podemos dizer que o sistema está aprendendo. Esse tipo de aprendizado é chamado de aprendizado indutivo 7
8 Tipos de Aprendizado de Máquina O aprendizado de máquina pode ser classificado de diferentes maneiras. Porém, o mais comum é classificá-lo em: Supervisionado: Apresenta-se um conjunto de entradas, onde cada padrão de entrada possui sua saída. A saída corresponde às classes desejadas. Exemplos de técnicas utilizadas: Redes Neurais Artificiais supervisionadas; Algoritmos Genéticos; Árvores de Decisão. Não Supervisionado: Apenas as entradas são fornecidas. O padrão de saída deve ser deduzido pelo próprio sistema de aprendizado. Exemplos de técnicas utilizadas: Redes Neurais Artificiais não supervisionadas; Algoritmos de Agrupamento; Regras de Associação. 8
9 Aprendizado Supervisionado O algoritmo de aprendizado recebe um conjunto de exemplos de treinamento. Cada exemplo é descrito por um padrão, composto por um vetor de valores e pelo rótulo da classe associada. Ex.: Entradas: [0,5 ; 0,7 ; 1,0 ] Rótulo (Saída): 1 (classe A) O objetivo é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados. Para rótulos de classe discretos: Ocorre uma classificação; e Para valores contínuos, Ocorre uma regressão. 9
10 Aprendizado Não Supervisionado O algoritmo de aprendizado também recebe um conjunto de exemplos de treinamento. Cada exemplo é composto por um vetor de valores de entrada, porém sem o rótulo da classe associada. Ex.: Entradas: [0,5 ; 0,7 ; 1,0 ] [0,5 ; 0,4 ; 1,2] [0,6 ; -1,0 ; 0,7] O objetivo é construir um classificador que possa criar agrupamentos, ou seja, rotular as entradas baseando-se nas similaridades de seus valores. O classificador analisa os exemplos fornecidos e tenta determinar se alguns deles podem ser agrupados de alguma maneira, formando agrupamentos ou clusters. Geralmente, após a determinação dos agrupamentos é necessário uma análise para determinar o que cada agrupamento significa no contexto problema sendo analisado. 10
11 Aprendizados x 2 x 2 x 1 Supervisionado x 1 Não Supervisionado 11
12 Aprendizados x 2 x 2 x 1 Supervisionado x 1 Não Supervisionado Esboce o resultado da função de classificação nos gráficos acima. 12
13 Tipos de Aprendizado de Máquina AM Supervisionado Não Supervisionado Classificação k-nn Árvores de Decisão Naive Bayes Perceptron/Adaline Multi-Layer Perceptron Regressão k-nn Adaline Multi-Layer Perceptron k-means Metódos Hierárquicos SOM 13
14 Grau de compreensibilidade Sistemas tipo caixa-preta Sua representação interna não pode ser facilmente interpretada por humanos; Não fornecem esclarecimento ou explicação do processo de reconhecimento. Sistemas orientados a conhecimento Objetivam a criação de estruturas simbólicas que sejam compreensíveis por humanos. 14
15 Paradigmas de Aprendizado Simbólico; Estatístico; Baseado em Exemplos; Conexionista; Evolutivo. 15
16 Paradigmas de Aprendizado Simbólico Buscam aprender construindo representações simbólicas de um conceito Necessita de exemplos e contra-exemplos desse conceito para analisar Estão tipicamente na forma de alguma expressão lógica, como: Árvores de decisão; Regras; ou Rede semântica. 16
17 Paradigmas de Aprendizado Estatístico: Utilizar métodos estatísticos para encontrar uma boa aproximação do conceito induzido; Baseados em exemplos: Classificar exemplos nunca vistos por meio de exemplos similares conhecidos; Sistema denominado lazy (preguiçoso); Necessitam manter exemplos na memória para classificar novos exemplos. 17
18 Paradigmas de Aprendizado Conexionista: Diretamente ligado às Redes Neurais; Envolve unidades altamente interconectadas. Evolutivo: Derivado do modelo biológico de aprendizado; Consiste em: Uma população de elementos de classificação que competem para fazer a predição; Elementos com performance fraca são descartados; Os elementos mais fortes proliferam, produzindo variações de si mesmos. 18
19 Exercício Sabendo que: Temos os seguintes dados de entrada (Φ 1 = { x 1, x 2 }): Φ 1 = { 1 ; 0,8 }; Φ 3 = { 1 ; -0,5 }; Φ 2 = { 1 ; 1,4 }; Φ 4 = { 1 ; -1,0 }; Temos os grupos: Grupo 1 (Φ 1 e Φ 2 ): resultado da função (t) = -1; Grupo 2 (Φ 3 e Φ 4 ): resultado da função (t) = +1; Temos como função de classificação: x 1 ω 1 + x 2 ω 2, onde ω 1 = 0,5, e ω 2 = 1,0. Temos como correção: ω novo = ω velho + Φ errado * t desejado Faça os passos necessários para que os dados sejam corretamente classificados. 19
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Aprendizado de Máquina
Aprendizado de Máquina O que é Aprendizado? Memorizar alguma coisa Aprender fatos por meio de observação e exploração Melhorar habilidades motoras/cognitivas por meio de prática Organizar novo conhecimento
Aprendizado de Máquina
Aprendizado de Máquina A necessidade de inserir aprendizado nas máquinas surgiu após a construção dos Sistemas Especialistas (SEs). Os primeiros SEs não possuíam mecanismo de aprendizado e tornavam-se
Aprendizagem de Máquinas
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Aprendizagem de Máquinas DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Aprendizagem de Máquinas
Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo]
Inteligência Artificial Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Aprendizagem de Máquina Área da Inteligência Artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre
Inteligência vs. Aprendizado
Introdução Thiago A. S. Pardo Daniel Honorato Solange O. Rezende Ronaldo C. Prati 1 Inteligência vs. Aprendizado Aprendizado é a chave da superioridade da Inteligência Humana Para que uma máquina tenha
Mapas Auto-Organizáveis de Kohonen SOM
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Mapas Auto-Organizáveis de Kohonen SOM Redes Neurais Artificiais Site: http://jeiks.net E-mail: [email protected]
Mapas Auto-Organizáveis de Kohonen SOM
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Mapas Auto-Organizáveis de Kohonen SOM Redes Neurais Artificiais Site: http://jeiks.net E-mail: [email protected]
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCA UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Redes Neurais Artificiais Redes Neurais Artificiais
Redes Neurais Artificial. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Redes Neurais Artificial Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Histórico 3. Conceitos Básicos 4. Aprendizado em RNA 5. Exemplo de Aprendizado com
Inteligência Artificial
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem Outras Técnicas Prof. a Joseana Macêdo Fechine Régis
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Paradigmas de Aprendizagem
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: [email protected]
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCENS UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Redes Neurais Artificiais Redes Neurais Artificiais
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 01 Motivação, áreas de aplicação e fundamentos Max Pereira Nem todo conhecimento tem o mesmo valor. O que torna determinado conhecimento mais importante que
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
Introdução a Sistemas Inteligentes
Introdução a Sistemas Inteligentes Conceituação Prof. Ricardo J. G. B. Campello ICMC / USP Créditos Parte do material a seguir consiste de adaptações e extensões dos originais gentilmente cedidos pelo
Redes Neurais e Sistemas Fuzzy
1. Inteligência Computacional Redes Neurais e Sistemas Fuzzy Apresentação da disciplina Conceitos básicos A chamada Inteligência Computacional (IC) reúne uma série de abordagens e técnicas que tentam modelar
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular Tópicos André C. P. L. F. de Carvalho Monitor: Valéria Carvalho Mineração de Dados Introdução Mineração de Dados Aprendizado de Máquina Métodos Preditivos Métodos
Por que Redes Neurais?
Redes Neurais Profa. Jaqueline Brigladori Pugliesi Por que Redes Neurais? Utilizar máquinas efetivamente para resolver problemas simples (humanos) Exemplo: distinguir padrões visuais previsão do valor
Minicurso: Inteligência Artificial Aplicada a Sistemas Elétricos
Minicurso: Inteligência Artificial Aplicada a Sistemas Elétricos Introdução a Machine Learning: Teoria, Aplicações e IA na Arquitetura Intel Vitor Hugo Ferreira, DSc - UFF Flávio Mello, DSc UFRJ e Ai2Biz
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Fundamentação da disciplina Analise de dados Decisões
Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani
Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG Introdução Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani O que é Machine Learning? Estatística Machine Learning
Informática Parte 19 Prof. Márcio Hunecke
Escriturário Informática Parte 19 Prof. Márcio Hunecke Informática NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês: "machine learning") ou aprendizagem
Aprendizado em IA. Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação
Aprendizado em IA Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação Tópicos Agentes baseados em aprendizado Aprendizado indutivo Árvores de decisão Método ID3 Aprendizado em redes neurais
Aprendizado de Máquina Introdução às Redes Neurais Artificiais
Aprendizado de Máquina Introdução às Redes Neurais Artificiais Marcos Oliveira Prates (Agradecimento Marcelo Azevedo Costa) Departamento de Estatística Universidade Federal de Minas Gerais Inteligência
Informática. Aprendizado de Máquina. Professor Márcio Hunecke.
Informática Aprendizado de Máquina Professor Márcio Hunecke www.acasadoconcurseiro.com.br Informática Aula XX NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês:
4 Redes Neurais Artificiais
4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características
6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA
Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5004 - APRENDIZADO DE MÁQUINA
Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais
Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências
REDES NEURAIS ARTIFICIAIS
REDES NEURAIS ARTIFICIAIS REDES NEURAIS ARTIFICIAIS O QUE É UMA REDE NEURAL NEURÔNIOS BIOLÓGICOS CÉREBRO HUMANO E CAPACIDADE DE GENERALIZAÇÃO. Modelo McCulloch e Pitts FUNÇÕES DE ATIVAÇÃO APRENDIZADO APRENDIZADO
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular André C. P. L. F. de Carvalho Monitor: Valéria Carvalho Agrupamento de Dados Tópicos Agrupamento de dados Análise de cluster Dificuldades em agrupamento Algoritmos
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
3 Redes Neurais Artificiais
3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida
Inteligência Artificial. Conceitos Gerais
Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.
Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN
Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN Alan Caio Rodrigues MARQUES 1, Gelson da Cruz JUNIOR 2, Cassio Dener Noronha VINHAL 3 Escola de Engenharia Elétrica e de Computação 1
Perceptron de Múltiplas Camadas e Backpropagation
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Perceptron de Múltiplas Camadas e Backpropagation Redes Neurais Artificiais Site: http://jeiks.net
Aprendizagem de máquina
Aprendizagem de máquina Introdução Objetivos Fornecer o ferramental necessário ao entendimento e ao projeto de sistemas baseados em aprendizagem. A disciplina cobre os principais tópicos da aprendizagem
Sistemas Especialistas (SE)
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Sistemas Especialistas (SE) Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Aprendizado de Máquina
Aprendizado de Máquina Aula #8.1 EBS 564 IA Prof. Luiz Fernando S. Coletta [email protected] Campus de Tupã Conhecimento: abstração (modelo) das relações existentes entre as informações contidas nos
Aprendizado de Máquina
Aprendizado de Máquina André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP Agrupamento de dados Tópicos Agrupamento de dados Dificuldades em agrupamento Algoritmos de agrupamento
Redes Neurais e Sistemas Fuzzy
Redes Neurais e Sistemas Fuzzy O ADALINE e o algoritmo LMS O ADALINE No contexto de classificação, o ADALINE [B. Widrow 1960] pode ser visto como um perceptron com algoritmo de treinamento baseado em minimização
Resolução da Prova 1 SCC Redes Neurais 2o. Semestre de Prof. João Luís
Resolução da Prova 1 SCC-5809 - Redes Neurais 2o. Semestre de 2011 - Prof. João Luís RESOLUÇÃO (2) 1. A figura abaixo mostra uma rede neural com um único neurônio escondido. Mostre que essa rede resolve
3 Aprendizado por reforço
3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta ([email protected]) Sumário 1. Motivação 2. Bagging 3. Random Forest 4. Boosting
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções
Redes Neurais não Supervisionadas: SOM
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais não Supervisionadas: SOM DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos
Adriana da Costa F. Chaves. Máquina de Vetor Suporte (SVM) para Classificação Binária 2
Máquina de Vetor Suporte (SVM) para Classificação Binária Adriana da Costa F. Chaves Conteúdo da Apresentação Introdução Máquinas de Vetor Suporte para Classificação binária Exemplos Conclusão Máquina
Redes Neurais: RBF. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: RBF DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes de Funções de
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 16 Aprendizado Não-Supervisionado Edirlei Soares de Lima Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Redes Neurais Artificiais
Universidade Federal do Espírito Santo CCA UFES Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Redes Neurais Artificiais Inteligência Artificial
SCE 5809 REDES NEURAIS
Sistemas de SCE 5809 REDES NEURAIS Profa. Roseli Ap. Francelin Romero Os diversos sistemas de possuem características particulares e comuns que permitem sua classif.: linguagem de descrição modo paradigma
Classificação Linear. André Tavares da Silva.
Classificação Linear André Tavares da Silva [email protected] Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron
Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java
Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java Apresentação Graduada em Sistemas de Informação FAP/Parnaíba Mestranda do Programa de Pós-Graduação em Engenharia da Eletricidade -
Aprendizagem de Máquina. Prof. Júlio Cesar Nievola PPGIA - PUCPR
Aprendizagem de Máquina Prof. Júlio Cesar Nievola PPGIA - PUCPR Introdução Justificativa Recente progresso em algoritmos e teoria Disponibilidade crescente de dados online Poder computacional disponível
PROCESSO SELETIVO N 42/2019 PROVA 2 - CONHECIMENTOS ESPECÍFICOS
PROCESSO SELETIVO N 42/2019 PROVA 2 - CONHECIMENTOS ESPECÍFICOS LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO 1. Você recebeu do fiscal o seguinte material: (a) Este caderno, com o enunciado das 20 (vinte) questões
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais Escola de Verão do Laboratório Associado de Computação e Matemática Aplicada Rafael Santos Dia 2: 1 /59 Programa Dia 1: Apresentação
A evolução natural deu ao cérebro humano muitas características desejáveis que não estão presentes na máquina de von Neumann:
Faculdade de Engenharia de Computação Centro de Ciências Exatas, Ambientais e de Tecnologias PUC-Campinas João Luís Garcia Rosa 2004 2 A evolução natural deu ao cérebro humano muitas características desejáveis
Abordagem Semi-supervisionada para Rotulação de Dados
Abordagem Semi-supervisionada para Rotulação de Dados Bruno Vicente Alves de Lima Universidade Federal do Piaui Email: [email protected] Vinicius Ponte Machado Universidade Federal do Piauí Email:
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.1. Introdução às Redes Neurais Artificiais (RNAs) 2.1.1. Motivação
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 10 Modelos Preditivos - Árvore de Decisão 2 de 20 Aula 10 - Árvore de
Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial SISTEMAS INTELIGENTES PROFESSOR FLÁVIO MURILO
Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial 1 Redes Neurais - Definição O que é Rede Neural ou Rede Neuronal Artificial (RNA)? É um modelo computacional que objetiva
Inteligência Artificial Redes Neurais
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
EEL891 Aprendizado de Máquina Prof. Heraldo L. S. Almeida. Introdução
1 Introdução 1. Introdução 1.1. O que é Aprendizado de Máquina? 1.2. Por que Machine Learning é o Futuro? 1.3. Algumas Aplicações 1.4. Tipos de Aprendizado 1. Introdução 17 1. Introdução 1.1. O que é Aprendizado
