Capítulo 6 Decaimento Radioativo
|
|
|
- Manuel Aquino Barros
- 8 Há anos
- Visualizações:
Transcrição
1 Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia
2 Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai filha Rmoção d produos Radioaivação por inraçõs nuclars Consan d axa d xposição
3 Consan d Dcaimno () Grand quanidad d áomos úmro d ransformaçõs por sgundo x númro d áomos Probabilidad d dcaimno por áomo por sgundo dv sr consan. Consan d Dcaimno ()
4 Consan d Dcaimno () Caracrísica d cada radionuclído Indpndn da idad do áomo Todas condiçõs físicas químicas Unidad (s - )
5 Aividad (A) Obsrvmos a amosra duran um inrvalo d mpo d d s dsingram d d d ln d
6 Aividad (A) Obsrvmos a amosra duran um inrvalo d mpo d d s dsingram d d d ln d
7 Aividad (A) d A A( ) A
8 Consans d Dcaimno Parciais Unidad A aividad d uma fon é mdida m unidad d ransformaçõs por sgundo Bcqurl (Bq) = /s no SI Curi (Ci) = 3,7 Bq úmro d ransformaçõs por sgundo m um grama d 6 Ra
9 Consans d Dcaimno Parciais -d () d -d () d d d d ( d ( d d d...) (...) d () oal ()...)... oal.
10 Aividads Parciais d () oal O númro oal d áomos para dcair dpnd d odos os áomos A aividad parcial a i c aividad oal cam junas ( com o mpo)
11 Vida média () O valor sprado d mpo para uma população inicial d núclos radioaivos dcair d um faor / do númro original. ( ) ( ) Dfinição Consquência da dfinição
12 Vida média () Rprsna o mpo d vida médio d um núclo individual d um mpo arbirário aé dsingrar no mpo. d d d( d )
13 Vida média ()
14 Mia-Vida (T / ) Inrvalo d mpo, conado a parir d um cro insan, ncssário para qu a mad dos áomos radioaivos dcaiam:,5,693 T/ ln,5,693 T T / /,693
15 Mia-Vida (T / ) ( T T T/ / / ) ln ou T / ln
16 Rlaçõs nr núclo pai filha úmro d núclos pais qu rsam m um mpo : ( ) é composo d consan parciais: A, B,... o produo filha qu rsula d dsingraçõs ipo A consan d dcaimno A
17 Rlaçõs nr núclo pai filha A axa d produção dsss núclos no mpo é dada por: ( A A ) Simulanamn l dsingrará com a consan A A axa d rmoção da filha qu xis no mpo srá igual a:
18 A axa líquida d acumulação do núclo filho no mpo é: Rlaçõs nr núclo pai filha ) ( d d A A Solução: ) ( ) ( A x x
19 Assumindo qu m = o númro d núclos filhas é zro = Rlaçõs nr núclo pai filha ) ( ) ( A Rlmbrando qu: ) ( ) ( ) ( A
20 Rlaçõs nr núclo pai filha S somn uma filha é produzida: ( ( ) )
21 Ess mpo ocorr n o msmo mpo m qu: = Equilíbrio d aividads nr núclo pai filha m ) ( ) / ln( ) (
22 Equilíbrio d aividads nr núclo pai filha < ou > O núclo filha m vida maior qu o pai Porano mais sávl qu o pai ( ( ) )
23 Equilíbrio d aividads nr núclo pai filha
24 > ou < O núclo pai m vida maior qu a filha Porano mais sávl qu a filha Para >> m = = Equilíbrio d aividads nr núclo pai filha A Equilíbrio Transin
25 Equilíbrio Transin A filha dcai com a msma axa a qual é produzida plo pai A aividad da filha é maior qu a do pai
26 Equilíbrio Transin
27 Para o caso spcial m qu: Equilíbrio Scular A A Equilíbrio Scular
28 Equilíbrio Scular >> >> Equilíbrio Scular
29 Equilíbrio Scular
30 Radioaivação por Inraçõs uclars é o númro d áomos prsns na amosra a sr aivada A A m A é o númro d Avogrado A é o númro d massa M é a massa m gramas d áomos alvos na amosra
31 Radioaivação por Inraçõs uclars incidns ára a d I d a a d d d ac ac d d( d ac ) ac I d d I a
32 Radioaivação por Inraçõs uclars Taxa líquida a qual ls são acumulados: d d ac ac Dpois d um mpo d irradiação >>, a axa d dcaimno é igual a axa d produção A axa d aumno d população = ívl d quilíbrio d aividad ( ac )
33 Consan d Taxa d Exposição Unidad: R m Ci - h - ou R cm mci - h - l A dx d Subsiuiu a consan d axa d xposição só para gamas: Radiação d framno Raios X caracrísicos
34 Consan d Taxa d Exposição
35 Rlação nr Taxa d Exposição Aividad
36 Rlação nr Taxa d Exposição Aividad Esa rlação val para as sguins condiçõs: a) A fon é suficinmn pquna (puniform), d modo qu a fluência vari com o invrso do quadrado da disância; b) A anuação na camada d ar inrmdiária nr a fon o pono d mdição é dsprzívl ou corrigida plo faor d anuação; c) Somn fóons provnins da fon conribum para o pono d mdição, ou sja, qu não haja spalhamno no mariais circunvizinhos.
37 Luciana Tourinho Campos Profssora Adjuna
Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência
Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial
J, o termo de tendência é positivo, ( J - J
6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad
Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:
Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação
RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo
Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário
MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano
MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais
CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa
CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade
Corrente elétrica, Resistência e circuitos elétricos de corrente contínua. Cargas em movimento
9//17 Elricidad Magnismo IME Corrn lérica, sisência circuios léricos d corrn conínua Prof. Crisiano Olivira Ed. Basilio Jaf sala [email protected] Cargas m movimno Cargas m movimno Corrn lérica O caminho
2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)
Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas
ANO LECTIVO 2001/2002
ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas
FUNÇÕES DE UMA VARIÁVEL COMPLEXA
FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor
Funções de Várias Variáveis (FVV) UFABC, 2019-Q1
Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl
r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .
Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3
FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS
MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS 1 Qusão: Considr o modlo d crscimno d Solow com a sguin função d 1 3 2 produção, Y K AL3. Os mrcados d faors são prfiamn compiivos
ESZO Fenômenos de Transporte
Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No [email protected] Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da
dr = ( t ) k. Portanto,
Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de
O modelo Von Bertalanffy adaptado para suínos de corte
O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: [email protected]
CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA
CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
3. Análise de Circuitos Elétricos Simples
REDES CIRCUITOS: 3. Anális d Circuios Eléricos Simpls A inrconxão d dois ou mais lmnos d circuios simpls forma uma rd lérica. S a rd ivr plo mnos um caminho fchado, la é ambém um circuio lérico. ELEMENTO
EQUAÇÕES DIFERENCIAIS NOTAS DE AULA
Minisério da Educação Univrsidad Tcnológica Fdral do Paraná Campus Curiiba Grência d Ensino Psquisa Dparamno Acadêmico d Mamáica EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Francis Bnvids Equaçõs
Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético
Dparano d Maáia Ciênias Exprinais Curso d Eduação oração Tipo 6 Nívl Aividad Laboraorial TL 0 Assuno: orça d ario sáio inéio Objivo: Esudar as forças d ario sáio inéio drinando os faors d qu dpnd. Inrodução
Estrutura etária. Módulo 6
Esruura ária Móduo 6 Projcçõs Prvisõs... 2 1 N N N Esruura Eária? Prvr Prvr o fuuro. Projcar Prvr o fuuro sob prssuposos spcificados... 2 1 m m m... 2 1 Os prssuposos dizm dirca ou indircamn rspio a: Empos
Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação
Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)
Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016
Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =
Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =
Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,
Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2
Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional
Interbits SuperPro Web
Inerbis SuperPro Web 1. O lucro de uma empresa é dado pela expressão maemáica L R C, onde L é o lucro, o cuso da produção e R a receia do produo. Uma fábrica de raores produziu n unidades e verificou que
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m
1) Verifique quais das sentenças dadas correspondem à lei de uma função exponencial. x
9ª LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMÁCIA PROFESSOR: LUIZ CELONI ASSUNTO: FUNÇÃO EXPONENCIAL, LOGARÍTMICA E APLICAÇÕES ) Verifique quais das senenças dadas correspondem à lei
Teoria de Bragg-Gray. Paulo Roberto Costa
Toria d Bra-Gray Paulo Robrto Costa Grandzas físicas Grandzas físicas Font: Okuno;Yoshiura Física das radiaçõs. 00 Toria d Bra-Gray dt dx c, Podr d franto colisional dos ios T dt dx c, T Hipóts: fluência
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Capítulo 2.1: Equações Lineares; Método dos Fatores Integrantes
Capíulo.: Equaçõs Linars; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d d f ond f é linar m. Emplos inclum quaçõs com coficins consans a ou quaçõs com coficins variavis: d d b p g Capíulo.:
MACROECONOMIA. Capítulo 1 - Introdução aos Modelos Macroeconômicos 1. Ciclo e Crescimento Econômico 2. Inflação e Nível de Atividade Econômica
MACROECONOMIA Capíulo 1 - Inrodução aos Modlos Macroconômicos 1. Ciclo Crscimno Econômico 2. Inflação Nívl d Aividad Econômica Frnando d Holanda Barbosa Capíulo 2 - As Curvas IS LM: A Dmanda Agrgada 1.
Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1
Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo
Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2
Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além
Matemática C Extensivo V. 7
Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0
Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.
Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar
QFL1541 / QFL5620 CINÉTICA E DINÂMICA QUÍMICA 2019
QFL1541 / QFL560 CINÉTICA DINÂMICA QUÍMICA 019 a lista d xrcícios 1. Para as raçõs rprsntadas por 35 Cl + 1 H 1 H 35 Cl + 1 H (1) 35 Cl + 17 I 35 Cl 35 Cl + 17 I () valm os sguints dados: fator pré-xponncial
Ligação Química nos Complexos - Prof. J. D. Ayala - 1 -
Liação Química nos Complxos - Prof. J. D. Ayala - 1 - ASPECTOS GERAIS Tal como odos os dmais composos, os complxos dos mais d ransição dvm sua sabilidad à diminuição d nria qu ocorr quando lérons s movm
UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia
UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: 2ª TURMA: UNIDADE: VV JC JP PC DATA: / /2017 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de recuperação. Valor:
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.
1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra
MATRIZES E DETERMINANTES LISTA 5
RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo
Campo elétrico. Antes de estudar o capítulo PARTE I
PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa
