1. Operações Numéricas e suas Hierarquias
|
|
|
- Kléber Figueiroa Sabala
- 8 Há anos
- Visualizações:
Transcrição
1 Operações Matemáticas e Frações Reforço de Matemática Básica - Professor: Marcio Sabino - Semestre 20. Operações Numéricas e suas Hierarquias As quatro operações básicas conhecidas são: soma, subtração, divisão e multiplicação. Quando se quer calcular uma expressão numérica que possui estas operações, a seguinte ordem deve ser seguida: Primeiramente a multiplicação ou divisão e por último soma ou subtração. Os parênteses, colchetes e chaves são sinais de agrupamento sendo esta a sequência a ser seguida na resolução de um problema. Ex.: Qual o valor correto da solução da expressão : 2? Solução: Seguindo a sequência da teoria temos: ; 8 : 2 4; Assim, : Ex.: Qual o valor correto da solução da expressão x { + (2 ) + [0 ( + 4)]} +? Solução: Seguindo a sequência da teoria temos: x { + (2 ) + [0 ( + 4)]} + { + ( ) + [0 ()]} + { + [0 ]} + { + } + { } + 0 OBS.: O ideal é sempre separar as operações que serão realizadas com algum sinal de agrupamento para evitar confusões. Assim, evitamos deixar duas operações juntas. Ex.: A expressão 2 é muito confusa. Devemos separar como (2) ( ). Ex.: Se a 2, b e c, então monte a equação b 2 4.a.c. Solução: ( ) 2 4 ( 2) () 9 4 ( 2) Note que foi necessária a utilização de uma regra sinais regra de sinais, a qual veremos a seguir... Regra de Sinais. Quando somamos duas quantidades positivas o resultado final terá o sinal positivo. Ex.: Quando somamos duas quantidades negativas o resultado final terá o sinal negativo. Ex.: + ( 4) Quando subtraimos uma quantidade positiva com uma outra negativa teremos duas situações: (a) Se a quantidade positiva for maior que a negativa, então o resultado final terá o sinal positivo. Ex.: 7 4 (b) Se a quantidade positiva for menor que a negativa, então o resultado final terá o sinal negativo. Ex.: Quando multiplicamos ou dividimos duas quantidades de mesmo sinal, o resultado final terá o sinal positivo. Ex.: 2 0; Ex.: ( ) ( ) ; Ex.: 0 0 Ex.:. Quando multiplicamos ou dividimos duas quantidades de sinais contrários, ou seja, uma quantidade positiva e outra negativa, o resultado final terá o sinal negativo.
2 Ex.: 7 ( 4) 28 Ex.: ( 0) 0 Ex.: Ex.: ( ) 0 ATENÇÃO: 2 ( ) 9 enquanto ( ) 2 ( ) ( ) 9 2. Frações A fração é a representação das partes iguais de um todo. A origem da palavra Fração vem do latim fractus que significa partido. 2.. Propriedades. Primeiro Mandamento da Matemática: Nunca dividirás por zero; 2. Frações Equivalentes: São aquelas que mantêm a mesma proporção da outra fração. Ex: Frações irredutíveis: São aquelas cujo o numerador e o denominador são primos entre si, não permitindo simplificação cujo resultado venha a ser um número inteiro. Ex: Soma e Subtração com denominadores iguais O valor do denominador deve ser mantido e os numeradores devem ser somados ou subtraídos de acordo com os sinais das operações. onde a, c R e b R. Ex: Ex: a b ± c b a ± c, b 2.. Soma e Subtração com denominadores diferentes Devemos transformar as frações em outras equivalentes que possuam os denominadores iguais. Para isso, pode ser utilizado o cálculo do mínimo múltiplo comum (MMC) dos denominadores fornecidos. O novo denominador deverá ser dividido pelos denominadores antigos e multiplicado pelo numerador correspondente. Assim, as novas frações serão proporcionais as anteriores possuindo agora denominadores iguais. Agora, basta proceder como no caso anterior. onde a e c R, b e d R e m mmc(b, d). Ex: Qual o valor da soma 20 +? a b + c d ( m ) ( m ) a + c b d, m Assim, mmc(20, ) ( ) + 20 ( ) () + (20) resultado final
3 Ex: Qual o valor da expressão 2 2? Temos que Segue que mmc(2, ) 2, assim, ( ) ( ) 2 2 Assim, Técnica Alternativa para Soma e Subtração de Frações Uma outra técnica muito eficiente para calcular a soma (subtração) de frações com denominadores distintos é multiplicar e dividir por um número x (diferente de zero) um dos termos da expressão de forma que os denominadores dos termos se tornem iguais. Isto não irá alterar a sua expressão inicial pois terá x, ou seja, estará x multiplicando os termos da sua expressão por. Ex: Qual o valor da expressão 7 4? Temos que ( ) resultado final Ex: Qual o valor da expressão 2 + 7? Temos que Multiplicação ( ) + 7 ( ) resultado final Basta multiplicar respectivamente numerador por numerador e denominador por denominador, respeitando suas posições. onde a e c R, b e d R. a b c d a c b d, Ex: Divisão A regra prática para a divisão de frações é: repetir a primeira fração e multiplicar pelo inverso da segunda. onde a R, b, c e d R. ( ) ( a b ) ( c d ) a b d c, Ex: Ex: ( ) ( ) 8 (8) ( ) ( ) ( ) ( ) 4 4 Ex: (7) ( )
4 2.6. Dicas para Simplificação de Expressões Para evitar cálculos com valores muito altos, é muito comum simplificarmos as expressões antes de realizar uma outra operação. Devemos tomar muito cuidado ao fazer uma simplificação, pois esta só é possível quando estão envolvidas duas parcelas multiplicadas (ou divididas). Ex: 4 /(: ) 4 /(: ) Outra forma: / / Ex: 7 //(: ) 6 7 6/(: ) Outra forma: // 7 (: ) 6/ (: ) Ex: //(: ) 9/(: ) /(: ) /(: ) Outra forma: / / CUIDADO: Quando temos uma soma (ou subtração), não podemos simplificar como procedemos acima. Correto: Errado: , Note que de fato, + 4, , 8 2, mmc + 4 /(: ) + 4 /(: ) + 4 mmc + 2 4,, o qual não é o resultado correto.
5 EXERCÍCIOS - Operações Matemáticas e Frações Reforço de Matemática Básica - Professor: Marcio Sabino - Semestre 20 Nome : Ra : P rojetos Manhã P rojetos Noite. Determine o valor das incógnitas: (a) Se p ( ), então determine p. (b) Se a ( 2) ( ) ( ), então determine a. (c) Se x (2 ) + 2( ) + ( 4) ( 7) + 2 (d) Se z ( 7 ) ( : 4), então determine z. ( 0 (e) Se m 2 { + (2 ) + [2 ( 4)]}, então determine m. 2. Dada a expressão :, determine: ), então determine x. (a) A expressão separando as operações com sinais de agrupamento. (b) O resultado desta expressão.. Se x e y 2, então x y y x. 4. Se k 2, então calcule x x (x x ). Determine o valor de b 2 4 a c, se: (a) a 2, b e c. (b) a, b e c 2. (c) a, b e c. 6. Diga se as frações abaixo são irredutíveis. Se não for, mostre a sua fração equivalente irredutível: (a) 2 (b) 8 9 (c) 0 (d) 00 (e) Resolver: (a) 2 2 (b) + (c) (d) (e) 0 0 (f) π + e (g) Resolver: (a) (b) 4 (c) (d) (e) (f) (g) (h) π 2 e 9. Resolver: (a) 2 0 (b) Resolver: (c) 2 (d) (e) 7 ( 7 2 ) (f)
6 (a) ( ) 2 7 ( ) 4 (b) 7 ( ) 9 (c) ( ) 9 (d) 8 : 4. Desafios: (a) (b) ( a + ) b, onde a 2 e b. a b 2. (VUNESP 2006 Modificada) Seja T C a temperatura em graus Celsius e T F a mesma temperatura em graus Fahrenheit. Estas duas escalas de temperatura estão relacionadas pela equação T F 9T C +. Considere agora T K a mesma temperatura na escala Kelvin. As escalas Kelvin e Celsius estão relacionadas pela equação T K T C Se T K 7 Kelvin, qual o valor desta temperatura em graus Fahrenheit? 2. Considere os resistores R 2 [kω] e R 2 [kω]. Sabendo que dado dois resistores em paralelo a resistência 8 equivalente é dada por +, determine R eq. R eq R R 2 (a) p (b) a 0 (c) x 84 (d) 0 (e) ções (2a) + (4 2) (2 : ) (2b) 9 () (4) 6 (a) 2 (b) 6 (c) 9 (6a) irredutível (6b) 9 (6c) 2 (6d) irredutível (6e) 7 (7a) (7b) 4 (8a) 7 2 (8b) 20 (9a) 20 9 (9b) 22 0 (0a) 4 (a) 06 (2) 49 0 [ F ] () 6 2 [kω] ou 240 [Ω] (7c) (7d) 2 (8c) 9 8 (0b) 9 (8d) 6 7 (b) (9c) 2 (9d) 2 (0c) 27 (7e) (7f) π + e (8e) 9 27 (8f) 9 4 (0d) 6 (9e) 2 (9f) 4 (7g) (8g) 4 42 (8h) π 2e 6 (0e) 9
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES MATEMÁTICAS Observe que cada operação tem nomes especiais: Adição: + 4 = 7, em que os números e 4 são as
REVISÃO DE MATEMÁTICA BÁSICA
REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
Matemática. Frações. Professor Dudan.
Matemática Frações Professor Dudan www.acasadoconcurseiro.com.br Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem
Matéria: Matemática Assunto: Frações Prof. Dudan
Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.
FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.
COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
Deixando de odiar Matemática Parte 5
Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,
Fundamentos Tecnológicos - FNT Plano de Ensino Aritmética. Prof.: Joni Fusinato 1
Fundamentos Tecnológicos - FNT Plano de Ensino Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Conhecer operações com números reais, com sistemas
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02
1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Matemática FRAÇÕES. Professor Dudan
Matemática FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que
RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,
OPERAÇÕES COM NÚMEROS RACIONAIS
Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição
SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS
1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE ENSINO SUPERIOR DO SERIDÓ CERES DEPARTAMENTO DE CIÊNCIAS EXATAS E APLICADAS DCEA PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO Á DOCÊNCIA (PIBID)
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
Apostila de Revisão dos Fundamentos Básicos da Álgebra. (versão 1: 12/03/2012)
Apostila de Revisão dos Fundamentos Básicos da Álgebra (versão 1: 12/03/2012) 1. Operações com frações 1.1. Fração A representação de uma fração é dada dois valores separados por uma barra horizontal.
Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.
FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos
Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos)
MATEMÁTICA FRAÇÕES E NÚMEROS DECIMAIS Fração quer dizer pedaços do mesmo tamanho. Você tem um chocolate dividido em 5 partes iguais. Dessas 5 partes você comeu 2. A fração que representa essa situação
MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.
MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras
MATEMÁTICA. Produtos Notáveis, Fatoração e. Expressões Algébricas. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Produtos Notáveis, Fatoração e Expressões Algébricas Professor : Dêner Rocha Monster Concursos 1 PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS QUADRADO DA DIFERENÇA DE DOIS TERMOS Monster
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.
ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:
Matemática FRAÇÕES. Professor Dudan
Matemática FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
Matemática. Professor Dudan.
Matemática Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos. Números
Frações. Números Racionais. Conceito de Fração:
Frações Números Racionais Consideremos a operação 4 : 5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números naturais porque
Resolver uma equação do 1º grau é determinar o valor da incógnita [letra] que satisfaz a equação.
EQUAÇÃO DO º GRAU Definição: Uma equação do grau [com uma incógnita] é toda equação que pode ser reduzida à forma ax = b, onde a e b são números reais, com a 0. Veja alguns exemplos e suas formas reduzidas
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
IGUALDADES EM IR IDENTIDADES NOTÁVEIS
IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre
Raciocínio Lógico. Professor Dudan.
Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos.
Racionalização de denominadores
Racionalização de denominadores Para racionalizar o denominador de uma fração, devemos multiplicar os termos desta fração por uma expressão com radical, denominado fator racionalizante, de modo a obter
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Matemática Básica Introdução / Operações matemáticas básicas
Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org
Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações
Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática
Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF
Universidade Federal do Rio Grande - FURG Instituto de Matemática Estatística e Física - IMEF Apostila de Pré-Cálculo- Parte 1 Alessandro da Silva Saadi Felipe Morais da Silva 2017 2 3 Sobre os autores:
NIVELAMENTO 2012/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase
NIVELAMENTO 0/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica. Adição e Subtração Regra:. REGRAS DOS SINAIS Sinais iguais: Adicionamos os algarismos
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] PARTE 1: INTEGRAÇÃO DE FUNÇÕES RACIONAIS FRACIONÁRIAS A integração das funções racionais fracionárias poderá recair
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
Fundamentos da Matemática
Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos
MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari [email protected] www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS
FRAÇÕES. Professor Dudan
FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou "quebrado
MATEMÁTICA APLICADA. APOSTILA de Revisão 02 FUNDAMENTAL
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO LOPES
Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11
Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,
AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.
I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador
Aula Teórica: Potenciação e Potência de dez
Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades
Resolvendo expressões Vejam a expressão numérica 15 x x primeiro resolveremos a multiplicação e a divisão, em qualquer ordem.
EXPRESSÃO NUMÉRICA As expressões numéricas são altamente necessárias para solucionarmos problemas cotidianos. Através do conhecimento das operações básicas da matemática, bem como da interpretação dos
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história
Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.
DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
Aulas particulares. Conteúdo
Revisão Conteúdo Operações com frações... Adição e subtração... Frações com denominadores iguais... Frações com denominadores diferentes... Passo :... Passo :... Passo :... Passo :... Exemplo:... Exercícos...
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
Equações. João Marcos Ferreira
Equações Não existe apenas um processo para resolver uma equação mas, normalmente, segue-se um determinado número de passos que têm uma sequência pela qual são realizados. Não existe apenas um processo
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS
1.1. Potenciação com expoentes Inteiros
Potenciação, Radiciação e Notação Científica Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1. Potenciação Quando fazemos uma multiplicação os números envolvidos nesta operação
3º Ano e Curso Matemática Básica 02 Página 1
º Modo: O MMC é o produto de todos os fatores primos dos números, considerados uma única vez e de maior expoente. = MMC {;} = = =. NÚMEROS PRIMOS Um número natural maior que é chamado de número primo,
Técnico Judiciário TJ / RS
CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las
Equações do 1º grau. A importância do estudo das equações está no fato de que elas facilitam a resolução de certos problemas.
A UUL AL A Equações do 1º grau Durante nossas aulas, você aprendeu a resolver algumas equações bem simples. Na aula de hoje, aprofundaremos o estudo dessas equações. Portanto, é preciso que você saiba
Roteiro de Recuperação do 3º Bimestre - Matemática
Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Matemática Régis Cortes EQUAÇÕES DE GRAUS
EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
MATEMÁTICA BÁSICA SUMÁRIO
MATEMÁTICA BÁSICA SUMÁRIO 1 Operações com frações 2 Divisão de frações 3 Operações com números relativos 4 Resolução de equações do 1º grau (1º tipo) 5 Resolução de equações do 1º grau (2º tipo) 6 Resolução
Agrupamento de Escolas Diogo Cão. Nome : N.º Turma : Ficha Informativa - Matemática - 7º Ano
Agrupamento de Escolas Diogo Cão Nome : N.º Turma : Equações Ficha Informativa - Matemática - 7º Ano Data: / / O que são equações? A sala de estar da Joana é retangular e tem 18 m 2 de área e m de comprimento.
RAZÃO E PROPORÇÃO PROPRIEDADES
RAZÃO E PROPORÇÃO O conceito de razão é a forma mais comum e prática de fazer a comparação relativa entre duas grandezas. Ao dividir uma grandeza por outra, se está comparando a primeira com a segunda,
Fundamentos da Matemática e Estatística
Fundamentos da Matemática e Estatística Operações matemáticas básicas Prof. Dr. Marcos Aurélio Basso IFSULDEMINAS Campus Incondentes MG Introdução As operações matemáticas básicas são adição, subtração,
Matrizes e Sistemas Lineares
Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em
MATERIAL DE PROJETOS I
UNIVERSIDADE NOVE DE JULHO UNINOVE MATERIAL DE PROJETOS I PROF RENATA RIVAS 0. - TECNOLOGIAS ) Conjuntos Numéricos.Conjunto dos números Naturais (N) IN = { 0,,,,4,5,... } Um subconjunto importante de IN
Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara
ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,
LIGA DE ENSINO DO RIO GRANDE DO NORTE CENTRO UNIVERSITÁRIO DO RIO GRANDE DO NORTE
Matemática Básica Módulo 01 Introdução. Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram sempre
Expoentes fracionários
A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes
Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos
Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e
