Deixando de odiar Matemática Parte 5
|
|
|
- Luiza Festas Farias
- 9 Há anos
- Visualizações:
Transcrição
1 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1
2 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador, devemos repetir os denominadores e operar com os numeradores. Exemplos: = = = 6 + = = = 9 9 = 1 Observe que eu simplifiquei o resultado no último exemplo. Ainda em relação ao último exemplo, é importante notar que o resultado pode ser escrito de três maneiras. 1 = 1 = 1 Sendo as duas primeiras formas mais comuns. Em outras palavras, quando uma fração for negativa, você pode colocar o sinal no numerador, no denominador, ou à esquerda da fração. Se os denominadores forem diferentes, vamos seguir os seguintes passos: i) Calcular o MMC dos denominadores. Vamos substituir todos os denominadores por este MMC. ii) Vamos substituir os numeradores também. Para tanto, devemos dividir o MMC pelo denominador e multiplicar o resultado pelo numerador. Observe: O primeiro passo é calcular o MMC entre 6,9 e 1. 6,9,1,9, 6,9, 1,, 1 1,1,1
3 Desta maneira, MMC(6,9,1) = xxx = 6. Vamos substituir todos os denominadores por = Em cada fração, vamos dividir o MMC, que é 6, pelo denominador e multiplicar o resultado pelo numerador. Primeira fração: dividimos 6 por 6 e multiplicamos o resultado por. 6/6 = 6 e 6x = 0. Este será o novo denominador da primeira fração. Segunda fração: dividimos 6 por 9 e multiplicamos o resultado por. 6/9 = 4 e 4x = 8. Este será o novo denominador da segunda fração. Terceira fração: dividimos 6 por 1 e multiplicamos o resultado por 7. 6/1 = e x7=1. Este será o novo denominador da terceira fração = Agora estamos naquela mesma situação inicial: adição e subtração de frações com mesmo denominador. Repetiremos os denominadores e operaremos com os numeradores = = = Fácil, não? Vamos fazer outro exemplo O primeiro passo é calcular o MMC(8,1,16). 8,1,16 4, 6, 8,, 4 1,, 1,, 1 1, 1, 1 Portanto, MMC(8,1,16)=xxxx = 48.
4 Este será o novo denominador. Vamos agora dividir 48 pelos denominadores e multiplicar pelos respectivos numeradores. Para ganhar tempo, já vamos colocar uma fração única = Primeira fração: 48/8 = 6 e 6x = 18. Segunda fração: 48/1 = 4 e 4x = 0. Terceira fração: 48/16 = e x7 = = =
5 Multiplicação de frações Para multiplicar frações, não precisamos ter denominadores iguais. Aqui é bem mais fácil: basta multiplicar os numeradores e multiplicar os denominadores. 4 7 = 8 1 Se a multiplicação for entre um número inteiro e uma fração, o número inteiro multiplicará o numerador da fração. 7 = 10 7 Por que neste caso multiplicamos o numerador e não o denominador? Ora, lembre-se que = /1, portanto: 7 = 1 7 = 10 7 Agora um detalhe. Sempre que for possível, simplifique as frações antes de multiplicar, pois assim você terá um trabalho bem menor. O detalhe é que qualquer numerador pode simplificar com qualquer denominador, se possível Observe que 14 e 1 podem ser simplificados por 7. Ademais, 9 e 6 podem ser simplificados por = 8 = 4
6 (Analista Judiciário TRF ª Região 016/FCC) Seja A o quociente da divisão de 8 por. Seja B o quociente da divisão de 1 por 7. Seja C o quociente da divisão de 14 por. O produto A. B. C é igual a (A), (B), (C), (D),... (E), Resolução A = 8/ B = 1/7 C = 14/ Queremos o produto ABC. Vamos simplificar. 1 e podem ser simplificados por. 14 e 7 podem ser simplificados por 7 8 e podem ser simplificados por. Agora é só dividir 40 por /11 =, Letra B =
7 Divisão de Frações Para dividir frações, devemos repetir a primeira fração e multiplicar pelo recíproco (fração invertida) da segunda. Exemplo: 9 = 9 Observe que agora podemos simplificar 9 e por. 9 = 9 = 1 = 6 Exemplo: 8 16 = 8 16 = 18 Exemplo: 16 8 = Observe que 16 e 8 podem ser simplificados por = = 1 1 = 7
REVISÃO DE MATEMÁTICA BÁSICA
REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
TUTORIAL DE OPERAÇÕES BÁSICAS
TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a
Matemática. Frações. Professor Dudan.
Matemática Frações Professor Dudan www.acasadoconcurseiro.com.br Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem
Matéria: Matemática Assunto: Frações Prof. Dudan
Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus
FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.
FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES MATEMÁTICAS Observe que cada operação tem nomes especiais: Adição: + 4 = 7, em que os números e 4 são as
ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo
ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
26. (Analista Judiciário TRF 3ª Região 2016/FCC) Considere verdadeiras as afirmações abaixo.
26. (Analista Judiciário TRF 3ª Região 2016/FCC) Considere verdadeiras as afirmações abaixo. Ou Bruno é médico, ou Carlos não é engenheiro. Se Durval é administrador, então Eliane não é secretária. Se
Deixando de odiar Matemática Parte 4
Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea
OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.
ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:
MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS
NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras
Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.
FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02
1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais
MATEMÁTICA. Produtos Notáveis, Fatoração e. Expressões Algébricas. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Produtos Notáveis, Fatoração e Expressões Algébricas Professor : Dêner Rocha Monster Concursos 1 PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS QUADRADO DA DIFERENÇA DE DOIS TERMOS Monster
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
Técnico Judiciário TJ / RS
CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.
DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.
COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina
NÚMEROS RACIONAIS. operações
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2018.2 NÚMEROS RACIONAIS operações Prof. Adriano Vargas Freitas Noção de número
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
Racionalização de denominadores
Racionalização de denominadores Para racionalizar o denominador de uma fração, devemos multiplicar os termos desta fração por uma expressão com radical, denominado fator racionalizante, de modo a obter
1. Operações Numéricas e suas Hierarquias
Operações Matemáticas e Frações Reforço de Matemática Básica - Professor: Marcio Sabino - Semestre 20. Operações Numéricas e suas Hierarquias As quatro operações básicas conhecidas são: soma, subtração,
Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos
Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos
LIGA DE ENSINO DO RIO GRANDE DO NORTE CENTRO UNIVERSITÁRIO DO RIO GRANDE DO NORTE
Matemática Básica Módulo 01 Introdução. Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram sempre
NÚMEROS RACIONAIS OPERAÇÕES
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Fração. Parte ou pedaço de um inteiro.
Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia
Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos)
MATEMÁTICA FRAÇÕES E NÚMEROS DECIMAIS Fração quer dizer pedaços do mesmo tamanho. Você tem um chocolate dividido em 5 partes iguais. Dessas 5 partes você comeu 2. A fração que representa essa situação
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
Colégio Motiva Jardim Ambiental. Professor: Rivaildo Alves da Silva. Turmas de 9º Anos ETAPA II
Colégio Motiva Jardim Ambiental Professor: Rivaildo Alves da Silva Turmas de 9º Anos ETAPA II 2019 CONJUNTO DOS NÚMEROS REAIS (Operações com números Reais) Adição Considere a seguinte adição: 1,28 + 2,6
4. Números Racionais (continuação)
4. Números Racionais (continuação) Quando falamos em números, com as pessoas comuns, estamos nos referindo a uma classe bem especial de números racionais (Q) os chamados números decimais. Números Decimais
Frações. Números Racionais. Conceito de Fração:
Frações Números Racionais Consideremos a operação 4 : 5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números naturais porque
25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que
RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,
NIVELAMENTO DE MATEMÁTICA
NIVELAMENTO DE MATEMÁTICA 1 Sumário Aula 1... 5 Números primos... 5 Fatoração de um número... 5 Método da tabela... 6 Mínimo múltiplo comum... 6 Máximo divisor comum... 7 Lista de exercícios... 8 Aula
MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Fundamentos Tecnológicos - FNT Plano de Ensino Aritmética. Prof.: Joni Fusinato 1
Fundamentos Tecnológicos - FNT Plano de Ensino Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Conhecer operações com números reais, com sistemas
Aulas particulares. Conteúdo
Revisão Conteúdo Operações com frações... Adição e subtração... Frações com denominadores iguais... Frações com denominadores diferentes... Passo :... Passo :... Passo :... Passo :... Exemplo:... Exercícos...
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3
1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO
Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.
Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }
A divisão também é usada para se saber quantas vezes uma quantidade cabe em outra.
DIVISÃO É o contrário da multiplicação. Ou seja, tem o sentido de dividir, repartir ou distribuir. Quando dividimos um número pelo outro, estamos diminuindo seu tamanho, distribuindo de maneira igual à
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos
Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo
Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS Multiplicação com números decimais Há duas maneiras de efetuarmos a multiplicação envolvendo números decimais: multiplicação de número natural por decimal e multiplicação
Primeira aplicação: Capital no valor de R$ ,00, durante 3 meses, sob o regime de capitalização simples a uma taxa de 10% ao ano.
95. (Analista Judiciário Contadoria TRF 3ª Região 2016/FCC) Em um contrato é estabelecido que uma pessoa deverá pagar o valor de R$ 5.000,00 daqui a 3 meses e o valor de R$ 10.665,50 daqui a 6 meses. Esta
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
Operações Fundamentais com Números
Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números
DECIMAIS. Definições e operações
DECIMAIS Definições e operações A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso
Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.
Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.
Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações
Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática
Matemática Básica Introdução / Operações matemáticas básicas
Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org
MATEMÁTICA APLICADA. APOSTILA de Revisão 02 FUNDAMENTAL
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO LOPES
Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO
Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de
AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.
I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador
FRAÇÕES. Professor Dudan
FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou "quebrado
Resolver uma equação do 1º grau é determinar o valor da incógnita [letra] que satisfaz a equação.
EQUAÇÃO DO º GRAU Definição: Uma equação do grau [com uma incógnita] é toda equação que pode ser reduzida à forma ax = b, onde a e b são números reais, com a 0. Veja alguns exemplos e suas formas reduzidas
Física Mecânica Roteiros de Experiências 69. Estudo Teórico Sobre Potências De Dez. Potenciação
Física Mecânica Roteiros de Experiências 69 UNIMONTE, Engenharia Laboratório de Física Mecânica Estudo Teórico Sobre Potências De Dez Turma: Data: : Nota: Nome: RA: Potenciação É uma operação matemática
OPERAÇÕES COM NÚMEROS RACIONAIS
Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição
Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações
5. Frações Há 5000 anos, os geômetras dos faraós do Egito realizavam a marcação das terras que ficavam às margens do rio Nilo, para a sua população. No período de junho a setembro, o rio inundava essas
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
Disciplina: Nivelamento - Matemática. Aula: 08. Prof.: Wilson Francisco Julio. Duração: 20:11
Disciplina: Nivelamento - Matemática Aula: 08 Prof.: Wilson Francisco Julio Duração: 20:11 Olá! Seja bem-vindo a mais uma aula de Nivelamento em Matemática! Hoje, vamos falar de multiplicação e divisão
Aula 4. Frações. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental
Frações Aula Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar os conceitos sobre os números fracionários e as operações com frações. Objetivos Ao concluir esta aula, você deverá
Deixando de odiar Matemática Parte 6
Deixando de odiar Matemática Parte 6 Restante 2 Produção x Tempo 4 Exercícios Propostos 0 Gabaritos dos exercícios propostos 2 Restante O conceito de fração restante é muito importante em vários tópicos
Hoje vamos começar a falar em um conceito matemático importantíssimo: fração.
Oi, pessoal. Hoje vamos começar a falar em um conceito matemático importantíssimo: fração. Não tem como aprender qualquer assunto de Matemática se você não domina este conceito. Além do conceito em si,
No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos.
No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos. Dados do problema Resistores R 1 = Ω; R = Ω R = Ω; R 4 = Ω R = Ω; R 6 = Ω; R 7 = Ω; R 8 = Ω. f.e.m. das pilhas E 1 = V;
Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11
Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa
Expoentes fracionários
A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes
MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari [email protected] www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS
AGENTE ADMINISTRATIVO FEDERAL
FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a
Matemática FRAÇÕES. Professor Dudan
Matemática FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou
Conhecendo as Frações!!! 2013
ANEXO HQ Vamos cortar uma pizza em fatias da seguinte maneira: Se comermos as três fatias menores, que fração indica o que sobrou da pizza? Matemática em quadrinhos Conhecendo as Frações!!! or S io do
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
Matemática FRAÇÕES. Professor Dudan
Matemática FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte
Aritmética Binária e Complemento a Base. Introdução ao Computador 2010/1 Renan Manola
Aritmética Binária e Complemento a Base Introdução ao Computador 2010/1 Renan Manola Sumário Soma e multiplicação binária; Subtração e divisão binária; Representação com sinal; Complemento a base. Adição
Aula Teórica: Potenciação e Potência de dez
Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades
Roteiro de Recuperação do 3º Bimestre - Matemática
Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
MATEMÁTICA PARA CEF PROFESSOR: GUILHERME NEVES
Aula 4 Parte 2 1 Análise de Investimentos... 2 1.1 Conceito... 2 1.2 Valor Presente Líquido (VPL)... 3 1.3 Taxa Interna de Retorno (TIR)... 3 1.4 Payback Descontado... 3 1.5 Exercícios Resolvidos... 4
números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo
A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos
