AGENTE ADMINISTRATIVO FEDERAL
|
|
|
- Ana Beatriz Laranjeira Costa
- 9 Há anos
- Visualizações:
Transcrição
1 FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro partes iguais, cada parte representará uma fração da pizza. Uma pizza inteira Quatro pedaços de pizza 1 4 x 1/4 Qual o significado de uma fração? Uma fração significa dividir algo em partes iguais. Assim: indica a : b, sendo a e b números naturais e b diferente de 0. a representa o numerador e b, o denominador. Leitura de frações: Metade Um terço Dois quartos Três quintos Um sexto Quatro sétimos Sete oitavos Dois nonos Um décimo Dois onze avos Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 1
2 Cinco doze avos Um centésimo Um milésimo Frações equivalentes: são frações que representam a mesma parte de um todo, como o próprio nome já diz, são equivalentes. Simplificação de frações: Para simplificarmos uma fração, devemos dividir o numerador e o denominador por um mesmo número inteiro. Observem comparando com os quadradinhos acima. Outros exemplos: Não é possível a simplificação, por isso, é uma fração irredutível. Tipos de fração: - Fração própria: é aquela que o numerador é menor que o denominador. Ex: ( 7<9 ) - Fração imprópria: é aquela que o numerador é maior ou igual ao denominador. Exs:, Numa fração imprópria temos o seguinte: 2 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores
3 Ao dividirmos 12 por 7, temos 1 inteiro, e sobram 5 sétimos. Vejam que 7x1+5=12 Outros exemplos: M.M.C (Mínimo múltiplo comum) Não há a necessidade de explicar o que é mmc, pois o próprio nome já diz que é o mínimo múltiplo comum. Mas o que isso significa? Vejamos: Qual o mmc de 4 e 6? Ou seja, qual é o menor divisor de 4 e 6 simultaneamente? Vejam que 12:3=4, assim como 12:2=6. Portanto, o mmc é 12. Vamos treinar? m.m.c 3 e e e e 6 24 Adição e subtração de frações: 1) Verificar se os denominadores são iguais. Se forem iguais, basta somar ou subtrair o numerador. Vejam os exemplos: c) 2) Caso os denominadores sejam diferentes, devemos encontrar o mmc e transformar em frações de mesmo denominador para depois efetuarmos as operações. O mmc de 6 e 3 é igual a 6. Transformemos numa fração equivalente de denominador 6. Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 3
4 Podemos agora somar, pois as frações possuem o mesmo denominador. Após a soma, se possível, simplifiquem. O mmc de 6 e 4 é igual a 12. Vamos transformar e em frações equivalentes de mesmo denominador 12. Assim: Multiplicação de frações: Multiplicar numerador com numerador e denominador com denominador. Se necessário, simplifique o produto. c) Divisão de frações: Na divisão de frações, vamos multiplicar a primeira fração pelo inverso da segunda. Se necessário, simplifique. c) d) e) 4 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores
5 - Nota : os dados teóricos apresentados podem ser consultados no site NÚMEROS DECIMAIS Frações e Números Decimais Dentre todas as frações, existe um tipo especial cujo denominador é uma potência de 10. Este tipo é denominado fração decimal. Exemplos de frações decimais, são: 1/10, 3/100, 23/100, 1/1000, 1/10 3 Toda fração decimal pode ser representada por um número decimal, isto é, um número que tem uma parte inteira e uma parte decimal, separados por uma vírgula. A fração 127/100 pode ser escrita na forma mais simples, como: 127 =1, onde 1 representa a parte inteira e 27 representa a parte decimal. Esta notação subentende que a fração 127/100 pode ser decomposta na seguinte forma: = = + = 1+0,27 = 1, A fração 8/10 pode ser escrita na forma 0,8, onde 0 é a parte inteira e 8 é a parte decimal. Aqui observamos que este número decimal é menor do que 1 porque o numerador é menor do que o denominador da fração. Leitura de números decimais Para ler números decimais é necessário primeiramente, observar a localização da vírgula que separa a parte inteira da parte decimal. Um número decimal pode ser colocado na forma genérica: Centenas Dezenas Unidades, Décimos Centésimos Milésimos Por exemplo, o número 130,824, pode ser escrito na forma: 1 Centena 3 dezenas 0 unidades, 8 décimos 2 centésimos 4 milésimos Exemplos: 0,6 Seis décimos 0,37 Trinta e sete centésimos 0,189 Cento e oitenta e nove milésimos 3,7 Três inteiros e sete décimos 13,45 Treze inteiros e quarenta e cinco centésimos 130,824 Cento e trinta inteiros e oitocentos e vinte e quatro milésimos Transformando frações decimais em números decimais Podemos escrever a fração decimal 1/10 como: 0,1. Esta fração é lida "um décimo". Notamos que a vírgula separa a parte inteira da parte fracionária: parte inteira parte fracionária 0, 1 Uma outra situação nos mostra que a fração decimal 231/100 pode ser escrita como 2,31, que se lê da seguinte maneira: "dois inteiros e trinta e um centésimos". Novamente observamos que a vírgula separa a parte inteira da parte fracionária: parte inteira parte fracionária 2, 31 Em geral, transforma-se uma fração decimal em um número decimal fazendo com que o numerador da fração tenha o mesmo número de casas decimais que o número de zeros do denominador. Na verdade, realiza-se a divisão do numerador pelo denominador. Por exemplo: Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 5
6 ( 130/100 = 1,30 ( 987/1000 = 0,987 (c) 5/1000 = 0,005 Transformando números decimais em frações decimais Também é possível transformar um número decimal em uma fração decimal. Para isto, toma-se como numerador o número decimal sem a vírgula e como denominador a unidade (1) seguida de tantos zeros quantas forem as casas decimais do número dado. Como exemplo, temos: ( 0,5 = 5/10 ( 0,05 = 5/100 (c) 2,41 = 241/100 (d) 7,345 = 7345/1000 Propriedades dos números decimais Zeros após o último algarismo significativo: Um número decimal não se altera quando se acrescenta ou se retira um ou mais zeros à direita do último algarismo não nulo de sua parte decimal. Por exemplo: ( 0,5 = 0,50 = 0,500 = 0,5000 ( 1,0002 = 1,00020 = 1, (c) 3, = 3, Multiplicação por uma potência de 10: Para multiplicar um número decimal por 10, por 100, por 1000, basta deslocar a vírgula para a direita uma, duas, ou três casas decimais. Por exemplo: ( 7,4 x 10 = 74 ( 7,4 x 100 = 740 (c) 7,4 x 1000 = 7400 Divisão por uma potência de 10: Para dividir um número decimal por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda uma, duas, três,... casas decimais. Por exemplo: ( 247,5 10 = 24,75 ( 247,5 100 = 2,475 (c) 247, = 0,2475 Operações com números decimais Adição e Subtração Para efetuar a adição ou a subtração de números decimais temos que seguir alguns passos: ( Igualar a quantidade de casas decimais dos números decimais a serem somados ou subtraídos acrescentando zeros à direita de suas partes decimais. Por exemplo: ( 2,4 + 1,723 = 2, ,723 6 ( 2,4-1,723 = 2,400-1,723 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores
7 ( Escrever os numerais observando as colunas da parte inteira (unidades, dezenas, centenas, etc), de forma que: i. o algarismo das unidades de um número deverá estar embaixo do algarismo das unidades do outro número, ii. o algarismo das dezenas de um número deverá estar em baixo do algarismo das dezenas do outro número, iii. o algarismo das centenas deverá estar em baixo do algarismo das centenas do outro número, etc), iv. a vírgula deverá estar debaixo da outra vírgula, e v. a parte decimal (décimos, centésimos, milésimos, etc) de forma que décimos sob décimos, centésimos sob centésimos, milésimos sob milésimos, etc. Dois exemplos: 2,400 2, ,723-1,723 (c) Realizar a adição ou a subtração. Multiplicação de números decimais Podemos multiplicar dois números decimais transformando cada um dos números decimais em frações decimais e realizar a multiplicação de numerador por numerador e denominador por denominador. Por exemplo: ,25 3,5 = = = = 7, Podemos também multiplicar os números decimais como se fossem inteiros e dar ao produto tantas casas quantas forem as casas do multiplicando somadas às do multiplicador. Por exemplo: Divisão de números decimais 2,25 2 casas decimais multiplicando x 3,5 1 casa decimal multiplicador ,875 3 casas decimais Produto Como visto anteriormente, se multiplicarmos tanto o dividendo como o divisor de uma divisão por 10, 100 ou 1000, o quociente não se alterará. Utilizando essas informações poderemos efetuar divisões entre números decimais como se fossem divisões de números inteiros. Por exemplo: 3,6 0,4=? Aqui, dividendo e divisor têm apenas uma casa decimal, logo multiplicamos ambos por 10 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão números inteiros. Na prática, dizemos que "cortamos" a vírgula. 3, ,6 0,4 = = = = 9 0, Um outro exemplo: 0,35 0, ,35 7= = = = = = 0, Neste caso, o dividendo tem duas casas decimais e o divisor é um inteiro, logo multiplicamos ambos por 100 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão inteiros. Divisão com o dividendo menor do que o divisor Vamos considerar a divisão de 35 (dividendo) por 700 (divisor). Transforma-se o dividendo, multiplicando-se por 10, 100,..., para obter 350 décimos, 3500 centésimos,... até que o novo dividendo fique maior do que o divisor, para que a divisão se torne possível. Neste caso, há a necessidade de multiplicar por 100. Assim a divisão de 35 por 700 será transformada numa divisão de 3500 por 700. Como acrescentamos dois zeros ao dividendo, iniciamos o quociente com dois zeros, colocando-se uma vírgula após o primeiro zero. Isto pode ser justificado pelo fato que se multiplicarmos o dividendo por 100, o quociente ficará dividido por 100. Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 7
8 dividendo divisor resto 0 0,05 quociente Realiza-se a divisão de 3500 por 700 para obter 5, concluindo que 0,35/7=35/700=0,05. Divisão de números naturais com quociente decimal A divisão de 10 por 16 não fornecerá um inteiro no quociente. Como 10 < 16, o quociente da divisão não será um inteiro, assim para dividir o número 10 por 16, montamos uma tabela semelhante à divisão de dois números inteiros ? (1) Multiplicando o dividendo por 10, o quociente ficará dividido por 10. Isto justifica a presença do algarismo 0 seguido de uma vírgula no quociente , (2) Realizamos a divisão de 100 por 16. O resultado será 6 e o resto será ,6 4 (3) O resto 4 corresponde a 4 décimos = 40 centésimos, razão pela qual colocamos um zero (0) à direita do número ,6 40 (4) Dividimos 40 por 16 para obter o quociente 2 e o novo resto será , (5) O resto 8 corresponde a 8 centésimos = 80 milésimos, razão pela qual inserimos um 0 à direita do número 8. Dividimos 80 por 16 para obter o quociente 5 e o resto igual a , A divisão 10/16 é igual a 0,625. O quociente é um número decimal exato, embora não seja um inteiro. Comparação de números decimais A comparação de números decimais pode ser feita analisando-se as partes inteiras e decimais desses números. Para isso, faremos uso dos sinais: > (que se lê: maior); < (que se lê: menor) ou = (que se lê: igual). Números com partes inteiras diferentes: O maior número é aquele que tem a parte inteira maior. Por exemplo: ( 4,1 > 2,76, pois 4 é maior do que 2. ( 3,7 < 5,4, pois 3 é menor do que 5. Números com partes inteiras iguais: Igualamos o número de casas decimais acrescentando zeros tantos quantos forem necessários. Após esta operação, teremos dois números com a mesma parte inteira mas com partes decimais diferentes. Basta comparar estas partes decimais para constatar qual é o maior deles. Alguns exemplos, são: ( 12,4 > 12,31 pois 12,4=12,40 e 40 > 31. ( 8,032 < 8,47 pois 8,47=8,470 e 032 < 470. (c) 4,3 = 4,3 pois 4=4 e 3=3. 8 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores
9 QUESTÃO 01 - CESGRANRIO / MPE / 2005 QUESTÕES ASSOCIADAS AOS TEMAS Quantos quilos pesa um saco de cimento, se 4/5 dele correspondem a 40 quilos? (A) 30 (B) 35 (C) 42 (D) 45 (E) 50 QUESTÃO 02 - CESGRANRIO / MPE / 2005 No primeiro dia de trabalho, João construiu 1/3 de um muro e, no segundo dia, 1/5 do mesmo muro, totalizando 24m 2. Quantos metros quadrados terá esse muro? (A) 21 (B) 36 (C) 42 (D) 45 (E) 48 QUESTÃO 03 - VUNESP Numa prova com x questões, sabe-se que, do total, Mário acertou 2/3, Pedro acertou 4/9 e Sérgio errou 5/12. Daí, concluise que (A) Pedro acertou mais questões que Sérgio. (B) Pedro acertou mais questões que Mário. (C) Pedro acertou menos questões que Mário. (D) Sérgio acertou mais questões que Mário. (E) Mário acertou o mesmo número de questões que Sérgio. QUESTÃO 04 - ESAF X Y Se Y é diferente de zero, e se = 4, então a razão de 2X Y para X, em termos percentuais, é igual a 75% 25% c) 57% d) 175% e) 200% QUESTÃO 05 - VUNESP R$ 180,00 c) R$ 205,00 d) R$ 210,00 e) R$ 420,00 No shopping, Pedro tinha uma determinada quantia em dinheiro. Dessa quantia, usou 1/2 para comprar uma calça e 1/3 para comprar uma camisa. Depois, resolveu comprar um sapato. Para tanto, usou toda a quantia restante para pagar 1/4 do valor, e deu um cheque de R$ 105,00 para completar o pagamento do preço total do sapato. Portanto, a quantia que Pedro tinha inicialmente era R$ 175,00 QUESTÃO 06 - COVEST No orçamento de um bancário, 1/5 do salário é gasto com moradia, e 1/10 com transporte e 3/5 com alimentação. Sabendo que sobram R$ 200,00 para outras despesas, qual o seu salário? R$ 1500,00 R$ 1800,00 c) R$ 1300,00 d) R$ 2000,00 e) R$ 1700,00 QUESTÃO 07 - CESPE / GOV. EST. PA ANO FRAÇÃO 3/25 4/25 9/50 1/5 ¼ 23/50 9/20 A tabela acima, relativa ao estado do Pará, mostra, para alguns anos do período entre 1992 e 2002, a fração de domicílios particulares com telefone em relação ao total de domicílios. Com base nessas informações, julgue os itens a seguir. I- Para todos os anos mostrados na tabela, a fração correspondente a determinado ano é maior que a correspondente a cada um dos anos anteriores. Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 9
10 II- A fração correspondente ao ano de 2002 é maior que o triplo da correspondente ao ano de QUESTÃO 08 Em uma copa, estão armazenados copos de plástico pequenos para café e médios para água. Julgue os itens que se seguem, a respeito desses copos. (I) Considere que, em determinado dia, o número de copos médios usados foi igual a do número de copos pequenos usados. Se, nesse dia, foram usados 66 copos, então o número de copos médios usados foi superior a 20. (II) Suponha que, em determinado dia, o número de copos pequenos usados na parte da tarde foi igual a do número de copos pequenos usados na parte da manhã, e que o total de copos médios usados nesse dia foi igual a do total de copos pequenos usados. Se, nesse dia, foram usados 156 copos, então a diferença entre o número de copos pequenos usados e o de copos médios usados é igual a 60. QUESTÃO 09 O quadrado de 0,00015 é igual a: QUESTÃO 10 Qual o valor de 1 ( 0,5 + 0,05 + 0,005 )? 0,555 0,554 c) 0,545 d) 0,455 e) 0,445 QUESTÃO 11 Dividir um número por 0,0125 equivale a multiplicá-lo por: 1/125 1/8 c) 8 d) 12,5 e) 80 QUESTÃO 12 O valor de x = é 10 1,5 1,8 c) 0,5 d) 12 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores
11 e) 0,6 QUESTÃO 13 Em uma caixa havia chocolates e balas. João abriu a caixa e comeu um terço das balas e um terço dos chocolates que encontrou. Pedro chegou em seguida e comeu metade das balas que encontrou e cinco chocolates. Em seguida, Cristina chegou, e verificou que havia na caixa cinco balas e um terço do número inicial de chocolates. Podemos concluir que a quantidade de guloseimas (balas + chocolates) que João comeu foi: c) 24 d) 54 e) 10 QUESTÃO 14 - FCC Um comerciante distribuiu ¼ das balinhas que possuía e, em seguida, recebeu 3 balinhas de presente. Na segunda vez, ele distribuiu 1/3 das balinhas que possuía e então, em seguida, ganhou de presente duas balinhas. Finalmente, o comerciante distribuiu 1/7 das balinhas que possuía e ficou com 36 balinhas. Quantas balinhas o comerciante possuía no início? c) 72 d) 76 e) 80 QUESTÃO 15 - FCC Para um grupo de funcionários, uma empresa oferece cursos para somente dois idiomas : inglês e espanhol. Há 105 funcionários que pretendem estudar inglês, 118 que preferem espanhol e 37 que pretendem estudar simultaneamente os dois idiomas. Se 1/7 do total de funcionários desse grupo não pretende estudar qualquer idioma estrangeiro, então, o número de elementos do grupo é: c) 231 d) 224 e) 217 Atualizada 20/08/2008 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 11
Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo
Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor
Frações Decimais. Matemática - UEL Compilada em 26 de Março de 2010.
Matemática Essencial Frações Decimais Conteúdo Matemática - UEL - 2010 - Compilada em 26 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 O papel das frações
FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.
FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro
NÚMEROS RACIONAIS. operações
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2018.2 NÚMEROS RACIONAIS operações Prof. Adriano Vargas Freitas Noção de número
MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS
NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
NÚMEROS RACIONAIS OPERAÇÕES
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
DECIMAIS. Definições e operações
DECIMAIS Definições e operações A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso
Prepara a Prova Final Matemática 4.º ano
Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
4. Números Racionais (continuação)
4. Números Racionais (continuação) Quando falamos em números, com as pessoas comuns, estamos nos referindo a uma classe bem especial de números racionais (Q) os chamados números decimais. Números Decimais
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS Multiplicação com números decimais Há duas maneiras de efetuarmos a multiplicação envolvendo números decimais: multiplicação de número natural por decimal e multiplicação
Fração. Parte ou pedaço de um inteiro.
Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia
NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo
NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número
Frações. Números Racionais. Conceito de Fração:
Frações Números Racionais Consideremos a operação 4 : 5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números naturais porque
REVISÃO DE MATEMÁTICA BÁSICA
REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
Colégio Motiva Jardim Ambiental. Professor: Rivaildo Alves da Silva. Turmas de 9º Anos ETAPA II
Colégio Motiva Jardim Ambiental Professor: Rivaildo Alves da Silva Turmas de 9º Anos ETAPA II 2019 CONJUNTO DOS NÚMEROS REAIS (Operações com números Reais) Adição Considere a seguinte adição: 1,28 + 2,6
invés de dizermos, por exemplo, um seis, para a fração, dizemos um sexto. Os
FRAÇÕES Os números naturais {0,,, 3,...} são uteis para realizar contagens de objetos, por exemplo. No entanto, eles não dão conta de algumas situações do cotidiano, como quantificar partes de um todo.
Revisão de Frações. 7º ano Professor: André
Revisão de Frações 7º ano Professor: André FRAÇÃO COMO PARTE DE UMA FIGURA OU OBJETO. O CÍRCULO ACIMA QUE ESTAVA INTEIRO FOI DIVIDIDO EM QUATRO PARTES IGUAIS. CADA UMA DESTAS PARTES REPRESENTA UM PEDAÇO
Números Decimais. Esse método, modernizado, é utilizado até hoje.
Números Decimais O francês Viète (1540-1603) desenvolveu um método para escrever as frações decimais; no lugar de frações,viète escreveria números com vírgula. Esse método, modernizado, é utilizado até
AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.
I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,
Frações racionais. Matemática - UEL Compilada em 26 de Março de 2010.
Matemática Essencial Frações racionais Conteúdo Matemática - UEL - 2010 - Compilada em 26 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Elementos Históricos
FRAÇÕES. Professor Dudan
FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou "quebrado
unidade de milhar Centena dezena unidade ordem
1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso
TUTORIAL DE OPERAÇÕES BÁSICAS
TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a
OPERAÇÕES COM FRAÇÕES
OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
Centro Educacional Sesc Cidadania. Goiânia, Novembro/ º ano Turma: Nome do(a) Aluno(a): Professores: Décio Falcão e Fabrício Peres
Centro Educacional Sesc Cidadania Ensino Fundamental Anos Finais Goiânia, Novembro/07. 6º ano Turma: Nome do( Aluno(: Professores: Décio Falcão e Fabrício Peres Lista de Recuperação N do 3º Trimestre Disciplina:
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos)
MATEMÁTICA FRAÇÕES E NÚMEROS DECIMAIS Fração quer dizer pedaços do mesmo tamanho. Você tem um chocolate dividido em 5 partes iguais. Dessas 5 partes você comeu 2. A fração que representa essa situação
MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração
MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
Matéria: Matemática Assunto: Frações Prof. Dudan
Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus
Matemática. Frações. Professor Dudan.
Matemática Frações Professor Dudan www.acasadoconcurseiro.com.br Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
a) Em quantas partes iguais o retângulo foi dividido? R.: b) Cada uma dessas partes representa que fração do retângulo? R.:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - º ANO - ENSINO FUNDAMENTAL ====================================================================== 0- Observe a figura: Em quantas partes
MATEMÁTICA TEORIA 41 EXERCÍCIOS POR ASSUNTOS RESOLVIDOS E QUESTÕES DE PROVAS DA FAPEC-MS. Edição Agosto 2017
MATEMÁTICA TEORIA EXERCÍCIOS POR ASSUNTOS RESOLVIDOS E QUESTÕES DE PROVAS DA FAPEC-MS Edição Agosto 0 TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO PROFESSOR:Ardelino R Puhl Ano 2015 MÓDULO- 3 ( QUINTA SÉRIE ) PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram
Matemática lógica. 7,5 2=15 x 8 +5,4=13,4
Central de Treinamento e Aperfeiçoamento em Eletrônica 9 Apostila 7,5 2=5 x 0 3 2 8 8 +5,=3, 5 7 6 Matemática lógica www.ctaeletronica.com.br Deus amou o mundo de tal maneira que Deu Seu Filho unigênito,
R.: b) Crie um título para o texto lido, usando o nome desse elemento.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL 0- Leia o texto a seguir. Nosso planeta tem muito mais água do que terra: apenas a fração de é terra. É nos
Frações. Veja um exemplo: A fração 8 é igual a 8 :2. Neste caso, 8 é o numerador e 2 é o denominador. Efetuando a divisão de 8 por 2, obtemos 2
Frações O símolo a significa a:, sendo a e números naturais e diferente de zero Chamamos: a a de fração; de numerador: Frações de denominador: Se a é múltiplo de, então a é um número natural ( números
MATEMÁTICA / RACIOCÍNIO LÓGICO
MATEMÁTICA / RACIOCÍNIO LÓGICO TEORIA 0 QUESTÕES DE PROVAS IBFC COM GABARITOS EXERCÍCIOS RESOLVIDOS QUESTÕES DE PROVAS DE CONCURSOS COMENTADAS Edição Maio 0 TODOS OS DIREITOS RESERVADOS É vedada a reprodução
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES MATEMÁTICAS Observe que cada operação tem nomes especiais: Adição: + 4 = 7, em que os números e 4 são as
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.
= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02
1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais
Concurso Público 2017
Concurso Público 017 Conteúdo I Frações frações equivalentes, simplificação de frações, comparação de frações, números fracionários, operações com frações (adição, subtração, multiplicação, divisão e potenciação).
Frações e porcentagens. Prof. Marcelo Freitas
Frações e porcentagens Prof. Marcelo Freitas FRAÇÃO A fração representa a idéia da divisão de um inteiro (objeto, figura, número, etc) em partes iguais e destas partes pegamos uma ou mais, conforme o nosso
01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens
Provão. Matemática 4 o ano
Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte
Resposta: b) Se você adicionar o mesmo número 6 vezes, obterá Qual é esse número? Cálculo. Resposta:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Problemas para você resolver Leia
MATEMÁTICA APLICADA. APOSTILA de Revisão 02 FUNDAMENTAL
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO LOPES
PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
Matemática Básica para ENEM
Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:
Trigonometria Técnica. Módulo I. Matemática Básica
Trigonometria Técnica Módulo I Matemática Básica 1 INTRODUÇÃO AO CONCEITO DE FRAÇÃO Às vezes, ao tentar partir algo em pedaços, como por exemplo, uma pizza, nós a cortamos em partes que não são do mesmo
MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6
1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc
PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA
PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,
PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
=...= 1,0 = 1,00 = 1,000...
OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira
TEMPO DE CÁLCULO. 3º Ano. Maria José Porto Louza Silva Ferreira. Escola EB1 António Nobre (Lisboa)
TEMPO DE CÁLCULO 3º Ano Maria José Porto Louza Silva Ferreira Escola EB1 António Nobre (Lisboa) Este ficheiro pode ser usado de 2 maneiras distintas: 1.Pode constituir uma rotina semanal. Neste caso, o
PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS
SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar
ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo
ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem
Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos
Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do
MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.
MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa
Deixando de odiar Matemática Parte 5
Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental
Números decimais Aula 5 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Metas Apresentar o conceito de números decimais e demonstrar como realizar as operações elementares, envolvendo esse
LISTA DE EXERCÍCIOS III 2 O BIMESTRE. NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação)
NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS III 2 O BIMESTRE NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação) PARTE
01- TEXTO 1 EMÍLIA E AS FRAÇÕES
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 4º ANO - ENSINO FUNDAMENTAL ================================================================= 0- TEXTO EMÍLIA E AS FRAÇÕES Dona Benta levantou-se
AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes.
AULA 8 Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. 8.1 Tarefa 1: Problema Gerador Na terça-feira, a turma dividiu um bolo pequeno
Planejamento de Curso de Matemática para a 5º serie.
Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:
Técnico Judiciário TJ / RS
CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las
Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula
Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila
Roteiro de trabalho para o 4o ano
Roteiro de trabalho para o 4o ano No volume do 4º ano estão assim organizados os conteúdos e as habilidades a serem desenvolvidos no decorrer do ano. LIÇÃO CONTEÚDO OBJETOS 1. Vamos recordar 2. Sistema
CADERNO DE EXERCÍCIOS 1C
CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
19 MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 0 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS. Item 01. No diagrama estão
MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS
MATEMÁTICA MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS Todos os dias, você usa dos recursos da Matemática para resolver pequenos e grandes problemas que aparecem na sua vida. Nesse módulo você
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.
ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:
FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5
Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar
OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.
OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)
DILMAR RICARDO ANDRÉ REIS MATEMÁTICA. 1ª Edição MAR 2015
DILMAR RICARDO ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Profs. Dilmar Ricardo e André Reis Organização e Diagramação:
O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}
07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z
Conselho de Docentes do 4.º Ano PLANIFICAÇÃO Anual de Matemática Ano letivo de 2014/2015
Conselho de Docentes do 4.º Ano PLANIFICAÇÃO Anual de Matemática Ano letivo de 2014/2015 Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Números e Operações Números Naturais Extensão
ÍNDICE RACIOCÍNIO LÓGICO-MATEMÁTICO
ÍNDICE Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais; problemas. Frações e operações
