Mínimo múltiplo comum e Máximo divisor comum
|
|
|
- Marcos Teixeira Gorjão
- 10 Há anos
- Visualizações:
Transcrição
1 Tema: Mínimo múltiplo comum e Máximo divisor comum INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA Mato Grosso / Campus São Vicente Prof. Msc. Jeferson G. Moriel Jr. [email protected]
2 O que é múltiplo? O que é divisor?
3
4
5 Exemplo 1. O número n = 7,5 pode ser escrito como o produto 3.2,5. Então, 7,5 = 3.2,5. Da Definição 1, temos que 7,5 é múltiplo de 2,5 e que, também, 2,5 é divisor de 7,5. Exemplo 2. O número n = 120 pode ser escrito, por exemplo, como o produto 100.1,2. Então, 120 = 100.1,2. Da Definição 1, temos que 120 é múltiplo de 1,2 e que, também, 1,2 é divisor de 120.
6 Auto-avaliação 1. Escolha dois números a e b e mostre que a é múltiplo de b e que b é divisor de a. Observação. Um número p é primo se for divisível apenas por 1 e por ele mesmo.
7 * Estamos considerando somente os valores positivos. Compreendendo Mínimo Múltiplo Comum A pergunta Qual é o mínimo múltiplo comum entre 10 e 6? pode ser transformada em outra mais familiar (talvez): Qual é o menor múltiplo que os números 10 e 6 tem em comum? Vejamos como respondê-la. Múltiplos de 10 * : Múltiplos de 6 * : 10, 20, 30, 40, 50, 60, 70,... 6, 12, 18, 24, 30, 36, 42, 48, 54, 60,...
8 Compreendendo Mínimo Múltiplo Comum Múltiplos de 10 * : 10, 20, 30, 40, 50, 60, 70,... Múltiplos de 6 * : 6, 12, 18, 24, 30, 36, 42, 48, 54, 60,... Percebe-se que os números 30 e 60 (além de outros) são múltiplos de 10 e 6 simultaneamente. Logo 30 e 60 são múltiplos em comum de 10 e 6. No entanto precisamos apenas do menor: 30. Assim, o número 30 é o menor múltiplo comum entre 10 e 6, também conhecido como mínimo múltiplo comum. Isto pode ser resumido da seguinte forma: M.M.C. (10, 6) = 30.
9 Compreendendo Máximo Divisor Comum A pergunta Qual é o máximo divisor comum entre 10 e 6? pode ser transformada em outra mais familiar (talvez): Qual é o maior divisor que os números 10 e 6 tem em comum? Vejamos como respondê-la. Divisores de 10 * : Divisores de 6 * : 10, 5, 2, 1 6, 3, 2, 1.
10 Compreendendo Máximo Divisor Comum Divisores de 10 * : 10, 5, 2, 1 Divisores de 6 * : 6, 3, 2, 1. Percebe-se que os números 2 e 1 são divisores de 10 e 6 simultaneamente. Logo, 2 e 1 são múltiplos em comum de 10 e 6. No entanto, precisamos apenas do maior: 2. Portanto, o número 2 é o maior divisor comum entre 10 e 6, também conhecido como máximo divisor comum (MDC). Isto pode ser resumido da seguinte forma: M.D.C. (10, 6) = 2.
11 Método prático para obter MMC e MDC: decomposição simultânea
12 Qual é o MDC e o MMC entre 360 e 84? 360, , 42 90, 21 45, 21 15, 7 5, 7 1, 7 1, MDC (360, 84) = = 12 (é o produto dos divisores comuns ) MMC (360, 84) = = 2520 (é o produto de todos os divisores)
13 Auto-avaliação 2. Usando o método prático da decomposição simultânea verifique que MMC (10, 6) = 30 e que MDC (10, 6) = 2.
14 Exercícios 1. Calcule o MDC e o MMC de: a) 3 e 6 b) 11 e 7 c) 24 e 60 d) 24, 36 e 48 e) 72 e Escolha dois números diferentes cujo MMC é 24. Mostre que sua escolha é correta. 3. Escolha dois números diferentes cujo MDC é 10. Mostre que sua escolha é correta. Respostas. A) B) C) D) E)
15 Problemas de aplicação dos conceitos de MDC e MMC P1. Em certa cidade existe três festas que acontecem periodicamente, quais sejam, a festa do milho, a festa da uva e a festa da soja. A festa do milho ocorre a cada quatro anos, a festa da uva ocorre a cada três anos e a festa da soja ocorre a cada seis anos. Se em 2010 estas festas ocorreram simultaneamente, qual será o próximo ano elas voltarão a ocorrer simultaneamente outra vez?
16 Solução. Calculando o MMC (4, 3, 6) = 12 encontramos o número de anos necessários para que as festas ocorram simultaneamente. Como as festas ocorreram juntas em 2010, então = 2022 é o próximo ano em que as festas ocorrerão outra vez simultaneamente.
17 P2. O cometa X passa perto da Terra a cada 100 anos, o cometa Y a cada 45 anos e o cometa K a cada 300 anos. Sabe-se que no ano foi a última vez que esses três cometas estiveram próximos da Terra ao mesmo tempo. Faça uma previsão da próxima vez que eles estarão, simultaneamente, próximos à Terra. Respostas. 2015
18 P3. Em uma casa há quatro lâmpadas, a primeira acende a cada 27 horas, a segunda acende a cada 45 horas, a terceira acende a cada 60 horas e a quarta só acende quando as outras três estão acesas ao mesmo tempo. De quantas em quantas horas a quarta lâmpada vai acender? Respostas. 540 horas
19 P4. Uma bibliotecária recebe 130 livros de Matemática e 195 livros de Português. Ela quer arrumá-los em estantes, colocando igual quantidade de livros em cada estante, sem misturar livros de Matemática e de Português na mesma estante. Quantos livros ela deve colocar em cada estante para que o número de estantes utilizadas seja o menor possível?
20 Solução. Chamemos de n o número de livros que a bibliotecária vai colocar em cada estante. Então temos: 130/n = número de estantes para os livros de Matemática e 195/n = número de estantes para os livros de Português. Isso mostra que n deve ser divisor comum de 130 e 195, pois o número de estantes utilizadas é inteiro. Sabemos que quando aumentamos o denominador de uma fração, esta fração diminui (por exemplo, 27/10 é menor do que 27/8). Logo, quanto maior for o denominador n, menores serão as frações 130/n e 195/n, o que significa que menor será o número de estantes utilizadas. Vemos assim que n deve ser o maior divisor comum de 130 e 195. Fazendo os cálculos temos quem MDC(130, 195) = 65. Logo, a bibliotecária vai colocar 65 livros em cada estante. Portanto, o número de estantes para os livros de Matemática é de 130/65 = 2 e o número de estantes para os de Português é 195/65 = 3, o que dá um total de 2+3 = 5 estantes.
21 P5. Uma locadora adquiriu 220 DVDs de filme e 275 DVDs de show. Deve-se armazená-los em prateleiras, colocando igual quantidade de DVDs em cada prateleira, sem misturar os de filme com os de show na mesma prateleira. Quantos DVDs devem ser colocados em cada prateleira para que o número de prateleiras utilizadas seja o menor possível? Quantas prateleiras serão utilizadas neste caso? Respostas. 55 livros. 4+5=9 prateleiras
Matéria: Matemática Assunto: Mínimo Múltiplo Comum Prof. Dudan
Matéria: Matemática Assunto: Mínimo Múltiplo Comum Prof. Dudan Matemática Mínimo Múltiplo Comum O mínimo múltiplo comum entre dois números é representado pelo menor valor comum pertencente aos múltiplos
É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.
6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.
Múltiplos e Divisores- MMC e MDC
Múltiplos e Divisores- MMC e MDC Múltiplo de um número inteiro é o resultado desse número multiplicado por qualquer número inteiro. Definição: Para qualquer número a є Z, b є Z*, e c є Z, c é múltiplo
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de
Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan
Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan Matemática Máximo Divisor Comum (MDC) O máximo divisor comum entre dois números é representado pelo maior valor comum pertencente aos divisores
b) Divisíveis por 10 - e responda: R.: R.: 03- Encontre a) 2 - c) 6 - R.: R.: R.: Esse número é primo? R.: 08- O número R.:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ========== =========== ============ =========== =========== =========== =========== =========== ===========
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 2ª Etapa 2013. Ano: 6 Turma: 61
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 203 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6 Caro aluno, você está recebendo o conteúdo de recuperação.
Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,
Lista de Exercícios 4: Soluções Sequências e Indução Matemática
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,
Revisão de combinatória
A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por
Matemática Financeira Módulo 2
Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente
INE5403 - Fundamentos de Matemática Discreta para a Computação
INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão
5 Equacionando os problemas
A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar
RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS
Aluno(a) Turma N o Série 5 a Ensino Fundamental Data / / 06 Matéria Matemática Professora Ynez RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS 01. Observe o quadro ao lado e responda: 75 67 83 105
Aprendemos que a relação fundamental da divisão é determinada pela seguinte relação matemática:
CONCEITO DE MÚLTIPLOS E DIVISORES NOS NÚMEROS NATURAIS 1) Conceitos Iniciais Aprendemos que a relação fundamental da divisão é determinada pela seguinte relação matemática: DIVIDENDO (D) = QUOCIENTE (Q)
APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.
CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota ([email protected]) Curitiba
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica
Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.
8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou
Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.
Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,
A Matemática e o dinheiro
A Matemática e o dinheiro A UUL AL A Muita gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular o total a pagar no caixa. Não é bem assim. Sem a Matemática, não
LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.
1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que
Construção de tabelas verdades
Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região
2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados
2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas
Matemática Financeira II
Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades
ENGENHARIA DA COMPUTAÇÃO
ENGENHARIA DA COMPUTAÇÃO BANCO DE DADOS I CONTEÚDO 2 Prof. Msc. Ricardo Antonello ABORDAGEM ER A primeira etapa do projeto de um banco de dados é a construção de um modelo conceitual ou modelagem conceitual.
COLÉGIO XIX DE MARÇO excelência em educação
COLÉGIO XIX DE MARÇO excelência em educação 2ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 6º Turma: Data: 18/06/2011 Nota: Professora: Claudia Valor da Prova: 40 pontos Assinatura do responsável: Orientações
Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.
Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
REVISÃO E AVALIAÇÃO DA MATEMÁTICA
2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o
Equações do primeiro grau
Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais
Corrente elétrica corrente elétrica.
Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ
Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa
Setor 3210 ÓPTICA GEOMÉTRICA Prof. Calil A Óptica estuda a energia denominada luz. 1- Quando nos preocupamos em estudar os defeitos da visão e como curá-los, estamos estudando a Óptica Fisiológica. Estudar
INTRODUÇÃO À MATEMÁTICA FINANCEIRA
INTRODUÇÃO À MATEMÁTICA FINANCEIRA SISTEMA MONETÁRIO É o conjunto de moedas que circulam num país e cuja aceitação no pagamento de mercadorias, débitos ou serviços é obrigatória por lei. Ele é constituído
Análise Combinatória. Prof. Thiago Figueiredo
Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as
Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro
Nome do aluno: nº série/turma 9 Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro Data: De 17 a 21/08/2009 Bimestre: 3º Tipo de atividade: Lista de Exercícios A REFLEXÃO DA
Nível II 5º e 6º anos
Nível II 5º e 6º anos 1. Augusto está estudando para fazer a prova de Matemática de um concurso. Ele vai resolver um total de 216 exercícios e se organizou para fazer 18 exercícios por dia. Em quantos
Matemática Financeira RECORDANDO CONCEITOS
1 Matemática Financeira RECORDANDO CONCEITOS Propriedades da matemática Prioridades: É importante relembrar e entender alguns conceitos da matemática, que serão muito úteis quando trabalharmos com taxas.
Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?
cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos
Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.
Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio
Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional Ciências Exatas & Engenharias 2 o Semestre de 2015 1. Construa a tabela da verdade para
Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.
Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu
NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?
NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos
QUESTÕES DE MATEMÁTICA RESOLVIDAS NA AULA. DO DIA 18 DE SETEMBRO NÍVEL MÉDIO CURSO LFG. Professor Joselias
DO 37) Se a b 1.792 e MDC (a, b) 8, então o valor do MMC (a, b) é? a x b 1792 MDC(a,b) 8 2 3 MMC(ab)? 2. 7 MMC(ab) x MDC(a,b) axb x. 8 1792 8x 1792 x 1792 8 x 224 Resp. d 38) A raiz quadrada do produto
Tutorial 5 Questionários
Tutorial 5 Questionários A atividade Questionário no Moodle pode ter várias aplicações, tais como: atividades de autoavaliação, lista de exercícios para verificação de aprendizagem, teste rápido ou ainda
MA14 - Aritmética Unidade 4. Representação dos Números Inteiros (Sistemas de Numeração)
MA14 - Aritmética Unidade 4 Representação dos Números Inteiros (Sistemas de Numeração) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)
1ª Parte Questões de Múltipla Escolha
MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo
Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante
Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos
Estudo de funções parte 2
Módulo 2 Unidade 13 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%
XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)
Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Para divulgar a venda de um galpão retangular
OBI2013 Caderno de Tarefas
OBI2013 Caderno de Tarefas Modalidade Programação Nível Júnior, Fase 2 31 de agosto de 2013 A PROVA TEM DURAÇÃO DE 3 HORAS Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2013 1 Instruções
E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO
E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou
Missão 2: Agentes a seus postos!!!! 1
MATEMÁTICA [11-12 anos] Missão 2: Agentes a seus postos! INTRODUÇÃO A contaminação dos robôs foi controlada, mas os dominatoriuns agora estão enviando mensagens codificadas às suas bases já instaladas
CADERNO DE ATIVIDADES
COLÉGIO ARNALDO 2014 CADERNO DE ATIVIDADES CIÊNCIAS Aluno (a): 5º ano Turma: Professor (a): Valor: 20 pontos CONTEÚDOS ORIENTAÇÕES Releia os registros do seu caderno, os conteúdos dos livros e realize
Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan
Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.
Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio
A LIBERDADE COMO POSSÍVEL CAMINHO PARA A FELICIDADE
Aline Trindade A LIBERDADE COMO POSSÍVEL CAMINHO PARA A FELICIDADE Introdução Existem várias maneiras e formas de se dizer sobre a felicidade. De quando você nasce até cerca dos dois anos de idade, essa
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 006 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da COC Dir Ens CPOR / CMBH 006 PÁGINA:
a 1 x 1 +... + a n x n = b,
Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição
Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15
Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.
CAPÍTULO 6 - ESTRUTURA DE SELEÇÃO
6.1 - INTRODUÇÃO CAPÍTULO 6 - ESTRUTURA DE SELEÇÃO Existem problemas que podem ter mais de um caminho a ser seguido para seleção correta, ou existem restrições em suas soluções. O sujeito que irá executar
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA
Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES
FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça
MATERIAL MATEMÁTICA I
MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
IME, UFF Julho de 2013
IME, UFF Julho de 2013 Sumário. Problemas n, ω, 2ω, Z, ω 2, Q, R. David (1862-1943) Longe, muito longe, em um ponto infinitamente distante no universo, existe um lugar onde as pessoas convivem com o infinito.
Métodos Matemáticos para Gestão da Informação
Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins [email protected] Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação
Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO
CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br
MÓDULO VI. Mas que tal estudar o módulo VI contemplando uma vista dessas...
1 MÓDULO VI Como podemos observar, já estamos no MÓDULO VI que traz temas sobre matemática financeira (porcentagem, juros simples e montante), bem como, alguma noção sobre juros compostos e inflação. Mas
DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR. Palavras-chave: Multiplicação; Egípcio; Russo; Chinês; Gelosia.
DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR Micheli Cristina Starosky Roloff Instituto Federal Catarinense Campus Camboriú [email protected] Resumo: Ao longo dos tempos, diferentes
Aula 04: Leis de Newton e Gravitação Tópico 05: Gravitação
Aula 04: Leis de Newton e Gravitação Tópico 05: Gravitação Lei da Gravitação http://www.geocities.com/capecanaveral/hangar/6777/newton.html Era um tarde quente, no final do verão de 1666. Um homem jovem,
Resoluções das Atividades
LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus Sombrio Curso Técnico em Agropecuária Integrado ao Ensino Médio
1 Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus Sombrio Curso Técnico em Agropecuária Integrado ao Ensino Médio DISCIPLINA: Educação Física CARGA HORÁRIA: 40hs PROFESSOR(A):
08 Capital de giro e fluxo de caixa
08 Capital de giro e fluxo de caixa Qual o capital que sua empresa precisa para funcionar antes de receber o pagamento dos clientes? Como calcular os gastos, as entradas de dinheiro, e as variações de
Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu lado concreto
Universidade Severino Sombra Fundamentos Teóricos e Metodologia de Matemática 1 1 Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
Comentário da Prova da Caixa Econômica feito pelo Prof. Sérgio Altenfelder. www.cursoaprovacao.com.br
COMETÀRIO GERAL: Prova mediana para difícil. Nível de dificuldade 7. Em média quem estudou deve ter acertado 4 questões. Se a questão 2 for anulada, a nota média deverá ser 5. 1. Em uma urna há 5 bolas
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE
Você sabe a regra de três?
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?
A Tecnologia e Seus Benefícios Para a Educação Infantil
A Tecnologia e Seus Benefícios Para a Educação Infantil A Tecnologia e Seus Benefícios Para a Educação Infantil As crianças das novas gerações desde pequenas estão inseridas nesta realidade da tecnologia,
Implantação de 1/3 de planejamento na rede Estadual de Mato Grosso do Sul. Em fase de discussão
Implantação de 1/3 de planejamento na rede Estadual de Mato Grosso do Sul. Em fase de discussão Carga horária - Lei 87/2000 - Estatuto Art. 23. Os Profissionais da Educação Básica no exercício das funções
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA
ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -
A EXPLORAÇÃO DE SITUAÇÕES -PROBLEMA NA INTRODUÇÃO DO ESTUDO DE FRAÇÕES. GT 01 - Educação Matemática nos Anos Iniciais e Ensino Fundamental
A EXPLORAÇÃO DE SITUAÇÕES -PROBLEMA NA INTRODUÇÃO DO ESTUDO DE FRAÇÕES GT 01 - Educação Matemática nos Anos Iniciais e Ensino Fundamental Adriele Monteiro Ravalha, URI/Santiago-RS, [email protected]
QUESTÃO 16 A figura abaixo exibe um retângulo ABCD decomposto em quatro quadrados.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A figura abaixo exibe um retângulo ABCD
