CÁLCULO I. Denir o trabalho realizado por uma força variável. Denir pressão e força exercidas por um uido.

Tamanho: px
Começar a partir da página:

Download "CÁLCULO I. Denir o trabalho realizado por uma força variável. Denir pressão e força exercidas por um uido."

Transcrição

1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 3: Aplicações da Integral: Comprimento de Arco. Trabalho. Pressão e Força Hidrostática. Objetivos da Aula Denir comprimento de arco. Denir o trabalho realizado por uma força variável. Denir pressão e força exercidas por um uido. 1 Comprimento de Arco Suponha que tenhamos uma curva C denida pela equação y = f(x), onde f é contínua em [a, b], como ilustrado abaixo: Se a curva fosse uma poligonal poderíamos calcular seu comprimento somando os comprimentos dos segmentos que a formam, mas no caso acima, não podemos proceder dessa forma. Como sabemos calcular o comprimento de poligonais, então podemos aproximar a curva por uma poligonal e assim, teríamos uma aproximação para o comprimento da curva. Sendo assim, subdividimos o intervalo [a, b] em n subintervalos de comprimento x com extremidades a = x, x 1,..., x n = b e tomamos os pontos P i = (x i, y i ), i = 1,,..., n. Ao ligar os pontos P 1, P,..., P n obtemos uma poligonal como abaixo: Sabendo que a distância entre os pontos P i 1 = (x i 1, y i 1 ) e P i = (x i, y i ) é dada por então o comprimento da poligonal é dado por P i 1 P i = (x i x i 1 ) + (y i y i 1 ) L i = n P i 1 P i 1

2 Cálculo I Aula n o 3 que é uma aproximação para o comprimento L da curva. Aumentando a quantidade de pontos que compõem a poligonal temos uma aproximação cada vez melhor para o valor de L. Desse modo, podemos denir lim n + n P i 1 P i Agora, sabemos que x = x i x i 1 e tomando y = y i y i 1, temos que P i 1 P i = (x i x i 1 ) + (y i y i 1 ) = ( x) + ( y) Pelo Teorema do Valor Médio para a função f no subintervalo [x i 1, x i ], descobrimos que existe um número c i (x i 1, x i ) tal que Logo, f(x i ) f(x i 1 ) = f (c i )(x i x i 1 ) y i y i 1 = f (c i )(x i x i 1 ) y = f (c i ) x P i 1 P i = ( x) + ( y) = ( x) + [f (c i )] ( x) = x 1 + [f (c i )] Logo, o comprimento da curva y = f(x) pode ser denido por lim n + n b 1 + [f (c i )] x = 1 + [f (x)] dx Esta integral existe desde que f seja contínua em [a, b]. Denição 1 (Comprimento de Arco). Se f for contínua em [a, b], então o comprimento da curva y = f(x), a x b é: b 1 + [f (x)] dx. a Se usarmos a notação de Leibniz para as derivadas, podemos escrever a fórmula do comprimento de arco da seguinte forma: b ( ) dy 1 + dx. a dx Exemplo 1. Encontre o comprimento de arco da curva y = x + 1, com 1 x 4. a Temos que: 1 + dx = 5 dx = Exemplo. Encontre o comprimento de arco da curva, y = x, com x 4. Temos que: 1 + 4x dx = 1 + (x) dx Fazendo x = tg(u), temos que dx = sec (u) du. Assim: x dx = + (tg(u)) dx = sec 3 (u) du = 1 (sec(u)tg(u) + ln sec(u) + tg(u) ). 4 Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

3 Cálculo I Aula n o 3 Segue que: 1 + 4x dx = 1 4 (sec(u)tg(u) + ln sec(u) + tg(u) ) = 1 4 (x 1 + 4x + ln( 1 + 4x ) + x) + C Portanto: 1 + 4x dx = [ 1 4 (x 1 + 4x + ln( ] x ) + x) 16, 81. Exemplo 3. Encontre o comprimento de arco da curva, y = ln(sec(x)), com x π 4. Temos que: π tg (x) dx = sec(x) dx = [ln sec(x) + tg(x) ] π 4 = ln( + 1). Trabalho Considere uma partícula sobre a qual atua uma força constante F, sendo o movimento da partícula retilíneo e no sentido da força. Denição (Trabalho). O trabalho W realizado pela força W = F d, F sobre a partícula é medido por onde d é a distância percorrida pela partícula. Se F é medida em Newtons (N ) e a distância em metros (m), então a unidade de trabalho é newtonmetro (N m), que é chamada de Joule (J). Pela a Lei de Newton, temos que: onde a é a aceleração da partícula. F = m a, Exemplo 4. Aplica-se uma força horizontal constante de 4 N para empurrar uma caixa pesada por uma distância de 5 m. Qual o trabalho realizado? Usando a denição de Trabalho, temos que: W = F d = 4 5 = J. Exemplo 5. Quanto trabalho é exercido ao se levantar uma barra de kg por uma distância vertical de 15 m? Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 3

4 Cálculo I Aula n o 3 Para levantar a barra deve-se exercer uma força igual e de sentido contrário à força exercida pela gravidade, que pela a Lei de Newton é F = m g, onde g é a aceleração da gravidade. Assim, W = F d = m g d = 9, 8 15 = 94 J. Considere agora uma partícula que se move ao longo de uma reta sob a ação da força variável e contínua F (x). Queremos determinar o trabalho realizado por esta força para deslocar a partícula de um ponto x = a ao ponto x = b. Como a força é variável, não podemos aplicar a denição de trabalho dada acima. Vamos dividir o intervalo [a, b] em n subintervalos com extremidades x, x 1, x,..., x n e com larguras iguais a x = b a n. Se W i é o trabalho realizado pela força para deslocar a partícula no intervalo [x i 1, x i ], então W = n W i E o problema recai em calcular uma aproximação para W i. Para tal, escolhe-se em cada subintervalo um ponto arbitrário: x 1 [x, x i ], x [x 1, x ], x 3 [x, x 3 ],..., x n [x n 1, x n ] e assumimos que para deslocar a partícula ao londo do intervalo [x i 1, x i ] a força é constante e igual a F (x i ). Assim, W i F (x i ). x e W n F (x i ). x. tornando-se esta aproximação tão melhor, quanto menor for x. Assim, deni-se: ( n ) b W = lim F (x x i ). x = F (x) dx. a Exemplo 6. Uma partícula é movida ao longo do eixo x por uma força que mede F (x) = 1 (1 + x) N em um ponto a x metros da origem. Calcule o trabalho realizado para mover a partícula da origem até 9 metros. Como a força que atua sobre a partícula a x metros da origem é dada por F (x) = 1 (1 + x), para deslocá-la do ponto x = ao ponto x = 9, realiza-se o trabalho dado por: W = 9 [ 1 (1 + x) dx = 1 ] 9 = 9 J. (x + 1) Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 4

5 Cálculo I Aula n o 3 Exemplo 7. A Lei de Hooke arma que a forçaa necessária para manter uma mola esticada x unidades além de seu comprimento natural é proporcional a x, isto é, F (x) = kx, onde k > é a constante da mola. Suponha que J de trabalho sejam necessários para esticar uma mola de seu comprimento natural de 3 cm para 4 cm. Quanto trabalho é necessário para esticar a mola de 35 cm para 4 cm? Pela lei de Hooke, a força que atua sobre a mola é dada por F (x) = kx, onde x é o comprimento da mola além de,3 m, que é seu comprimento natural. Como esta força é variável, então o trabalho necessário para esticar a mola de,35 m a,4 m (x =, 5 m a x =, 1 m) é dado por: W =,1,5 kx dx = [ ] k,1 x = 375k 1 5 J,5 Resta então determinar o valor da constante k da mola. Como =,1 kx dx = [ k x ],1 k = Assim: W = , 4 J. Exemplo 8. Um corda pesada, com 5 pés de comprimento e densidade de peso, 5 lb/pé está pendurada sobre a borda de um edifício alto. Qual o trabalho necessário para puxar a corda até o topo do edifício? Consideraremos a origem dos eixos cartesianos como sendo no topo do edifício e o eixo x apontando para baixo. A partir disso, dividimos a corda em pequenos pedaços de comprimento x, o que resulta em uma divisão do intervalo [, 1] em subintervalos de comprimento x e escolhemos um pedaço genérico, na posição x i, e queremos determinar o trabalho necessário para elevar tal pedaço até o topo do edifício. Sendo assim, notemos que a força que atua sobre o cabo é o próprio peso. Logo, no pedaço em questão o elemento representativo da força é F i = Peso = Densidade de peso Comprimento =, 5. x Observamos também que no i-ésimo subintervalo todo os pedaços são içados por aproximadamente a mesma distância, a saber x i. Logo, o trabalho necessário para içar o i-ésimo pedaço de corda em questão até o topo é de W i, 5 x.x i Dessa forma, o trabalho necessário para içar o cabo todo até o topo é de W = 5 [ x =, 5, 5x dx ] 5 =, 5 5 = 65 lb-pé Exemplo 9. Um tanque esférico de raio 8 pés está cheio até a metade de óleo que possui peso especíco 5lb/pé 3. Determine o trabalho requerido para passar o líquido por um orifício que está no topo do tanque. Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 5

6 Cálculo I Aula n o 3 Consideraremos o tanque disposto da seguinte forma nos eixos: com centro no ponto (, 8), logo, possui equação: x +(y 8) = 8. Subdividindo o tanque em discos, tomamos um deles na posição y com altura y e raio x como mostrado acima. No líquido, a força atuante é o peso e como temos a informação do peso especíco, então: Como o volume do disco é π.r.h, temos que Da equação da esfera, temos que Logo, F i = Peso = Peso Volume Volume = Peso especíco Volume = 5 Volume F i 5.π.x y x + (y 8) = 8 x = 8 (y 8) x = 16y y F i 5π(16y y ) y O deslocamento necessário para que o disco de óleo na posição y passe pelo orifício é 16 y, logo, o trabalho para realizar tal tarefa é: W i 5π(16y y )(16 y) y Como o tanque está cheio pela metade então o trabalho requerido para passar o disco de óleo pelo orifício é dado por 8 W = 5π(16y y )(16 y) dy 8 = 5π (56y 3y + y 3 ) dy = 5π [18y 3y3 3 = 5π [ = 563π lb/pé 3 ] 8 + y4 4 ] 8 Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 6

7 Cálculo I Aula n o 3 3 Pressão e Força Hidrostática Dentre as muitas aplicações do cálculo integral à física e à engenharia, consideramos uma aqui: a força em função da pressão da água. Nossa estratégia é fragmentar a quantidade física em um grande número de pequenas partes, aproximar cada pequena parte, somar os resultados, tomar o limite e, então, calcular a integral resultante. Denição 3 (Pressão). Se uma força de magnitude F for aplicada a uma superfície de área A, então denimos a pressão P exercida pela força sobre a superfície como sendo P = F A. Suponha que uma placa horizontal na com área de A metros quadrados seja submersa em um uído de densidade ρ quilogramas por metro cúbico a uma profundidade d metros abaixo da superfície do uído. O uido diretamente acima da placa tem volume V = Ad, assim, sua massa é m = ρv = ρad. A força exercida pelo uído na placa é, portanto: F = mg = ρgad em que g é a aceleração da gravidade. Sendo assim: P = F A = ρgd. Um princípio importante da pressão de uídos é o fato vericado experimentalmente de que em qualquer ponto no líquido a pressão é a mesma em todas as direções. Assim, a pressão em qualquer direção em uma profundidade d em um uido com densidade de massa ρ é dada por: P = ρgd Isso nos ajuda a determinar a força hidrostática contra uma placa vertical, parede ou barragem em um uido. Este não é um problema simples, porque a pressão não é constante, mas aumenta de acordo com a profundidade. Suponha que uma superfície plana esteja imersa verticalmente em um uido de densidade ρ, e que a parte submersa sa superfície se estenda de x = a até x = b, ao longo da parte positiva do eixo x. Para a x b, seja w(x) a extensão da superfície e h(x) a profundidade do ponto x. A ideia básica para resolver este problema é dividir a superfície em faixas horizontais, cujas áreas possam ser aproximadas por áreas de retângulos. Essas aproximações de áreas, nos permitirão criar uma soma de Riemann que aproxime a pressão total na superfície. Tomando um limite das somas de Riemann, obteremos uma integral para F. Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 7

8 Cálculo I Aula n o 3 Denição 4. Suponha que uma superfície plana esteja imersa verticalmente em um uido com densidade ρ, e que a parte submersa sa superfície se estenda de x = a até x = b ao longo do eixo x cujo sentido positivo seja para baixo. Para a x b, suponha que w(x) seja a extensão da superfície e que h(x) seja a profundidade do ponto x. Denimos, então, a força do uido sobre a superfície por F = b a ρgh(x)w(x) dx. Exemplo 1. A face de um dique é um retângulo vertical com altura de 1 pés e extensão de pés. Encontre a força total que o uido exerce sobre a face, quando a superfície da água está no nível do topo do dique. Considere o peso especíco do uido igual a 6, 4 lb/pé 3. Introduzimos um eixo x com origem na superfície da água, conforme mostra a gura abaixo: Em um ponto x sobre esse eixo, a extensão do dique é de w(x) = pés e a profundidade h(x) = x pés. Assim: F = 1 = 148.6, 4.x dx 1 [ x = 148 = 6.4.lb. Exemplo 11. Uma placa com o formato de triângulo isósceles, com base de 1 pés e altura 4 pés, é imersa x dx ] 1 verticalmente em óleo de máquina, conforme mostra a gura a seguir. Encontre a força F que o uido exerce sobre a superfície da placa se a densidade de peso (peso especíco) do óleo for 3 lb/pé 3. Vamos introduzir um eixo x, conforme mostra a gura abaixo. Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 8

9 Cálculo I Aula n o 3 Por semelhança de triângulos, a extensão da placa, em pés, a uma profundidade h(x) = x + 3 pés, satisfaz w(x) 1 = x 4 w(x) = 5 x. Assim: F = = 75 ( 5 3.(3 + x). (3x + x ) dx [ 3x = 75 + x3 3 = 34 lb. ] 4 ) x dx Resumo Faça um resumo dos principais resultados vistos nesta aula. Aprofundando o conteúdo Leia mais sobre o conteúdo desta aula nas seções 6.4, 8.1 e 8. do livro texto. Sugestão de exercícios Resolva os exercícios das seções 6.4, 8.1 e 8. do livro texto. Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior 9

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva

Leia mais

Trabalho. 1.Introdução 2.Resolução de Exemplos

Trabalho. 1.Introdução 2.Resolução de Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular

Leia mais

Integrais - Aplicações I. Daniel 26 de novembro de 2016

Integrais - Aplicações I. Daniel 26 de novembro de 2016 Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por

Leia mais

Integrais - Aplicações I

Integrais - Aplicações I Integrais - Aplicações I Daniel 17 de novembro de 2015 Daniel Integrais - Aplicações I 17 de novembro de 2015 1 / 45 Áreas entre duas Curvas Sumário 1 Áreas entre duas Curvas 2 Volume por Seções Transversais

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Integrais - Aplicações I

Integrais - Aplicações I Integrais - Aplicações I Daniel 13 de novembro de 2015 Daniel Integrais - Aplicações I 13 de novembro de 2015 1 / 33 Áreas entre duas Curvas Área entre duas curvas Se f e g são funções integráveis em [a,b]

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Integrais - Aplicações I

Integrais - Aplicações I Integrais - Aplicações I Daniel 13 de novembro de 2015 Daniel Integrais - Aplicações I 13 de novembro de 2015 1 / 37 Áreas entre duas Curvas Área entre duas curvas Se f e g são funções integráveis em [a,b]

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

1 PLANO DE AULA III - INTEGRAL 1.1 AULA SOBRE INTEGRAL DEFINIDA

1 PLANO DE AULA III - INTEGRAL 1.1 AULA SOBRE INTEGRAL DEFINIDA 1 PLANO DE AULA III - INTEGRAL Para concluir as aulas sobre ideia intuitiva e conceitos iniciais do Cálculo, abordamos nesse plano de aula a integral definida. 1.1 AULA SOBRE INTEGRAL DEFINIDA Propomos

Leia mais

6.3. Cálculo de Volumes por Cascas Cilíndricas

6.3. Cálculo de Volumes por Cascas Cilíndricas APLICAÇÕES DE INTEGRAÇÃO 6.3 Cálculo de Volumes por Cascas Cilíndricas Nesta seção aprenderemos como aplicar o método das cascas cilíndricas para encontrar o volume de um sólido. VOLUMES POR CASCAS CILÍNDRICAS

Leia mais

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec x) y = cosx), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x a reta tangente

Leia mais

Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de Volumes

Leia mais

8.1. Comprimento de Arco. Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. MAIS APLICAÇÕES DE INTEGRAÇÃO

8.1. Comprimento de Arco. Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. MAIS APLICAÇÕES DE INTEGRAÇÃO MAIS APLICAÇÕES DE INTEGRAÇÃO 8.1 Comprimento de Arco Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. COMPRIMENTO DE ARCO Podemos pensar em colocar um pedaço de barbante sobre

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado.

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. Objetivos da

Leia mais

CÁLCULO I. Se a diferença entre eles é igual a 100, escrevemos

CÁLCULO I. Se a diferença entre eles é igual a 100, escrevemos CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 21: Problemas de Otimização Objetivos da Aula Utilizar o Cálculo Diferencial para resolução

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

Física - 1. Dados numéricos

Física - 1. Dados numéricos Física - 1 Dados numéricos celeração da gravidade: 1 m/s Densidade da água: 1, g/cm 3 Velocidade da luz no vácuo: 3, x 1 8 m/s 1 atm = 1, x 1 5 N/m = 1 4 π o = 9, x 1 9 N.m C 1. O gráfico da velocidade

Leia mais

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado.

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 16: Extremos Relativos e Absolutos. Método do Intervalo Fechado. Objetivos da

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco

Leia mais

CÁLCULO I. Apresentar os problemas clássicos da tangente e da área;

CÁLCULO I. Apresentar os problemas clássicos da tangente e da área; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Uma Breve Introdução aos Problemas do Cálculo. Objetivos da Aula Apresentar os problemas clássicos da tangente e da área; Comentar intuitivamente

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por: Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

DIFERENCIAIS E O CÁLCULO APROXIMADO

DIFERENCIAIS E O CÁLCULO APROXIMADO BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 12: Extremos relativos e absolutos. Método do Intervalo Fechado Objetivos da Aula Definir e determinar Extremos Absolutos e Relativos de

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 047 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 3 ROTEIRO Tópicos da aula 3:

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA

ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA Prof. Bruno Farias Introdução Neste módulo vamos

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Problemas de Otimização Objetivos da Aula Utilizar o Cálculo Diferencial para resolução de problemas. 1 Problemas de Otimização Nessa

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas de CÁLCULO I Aula n o 10: de, Velocidade, e Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará de 1 de 2 3 4 de de Suponha que y seja uma quantidade que depende de outra quantidade

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico. s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida

Leia mais

Integral definida. Prof Luis Carlos Fabricação 2º sem

Integral definida. Prof Luis Carlos Fabricação 2º sem Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2).

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 1. Use o gráfico de y = f(x) na figura em anexo para estimar o valor de f ( 2), f (1) e f (2). UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3 a Lista de Exercícios de Cálculo Diferencial e Integral I: Derivada Prof. Wellington D. Previero 1. Use o gráfico de y = f(x) na figura em anexo para estimar

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;

Leia mais

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h = UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA CINÉTICA E TRABALHO Prof. Bruno Farias Introdução Neste módulo concentraremos nossa

Leia mais

RESPOSTAS ESPERADAS MATEMÁTICA

RESPOSTAS ESPERADAS MATEMÁTICA RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais