Cinemática de Robôs Móveis

Tamanho: px
Começar a partir da página:

Download "Cinemática de Robôs Móveis"

Transcrição

1 Cinemática de Robôs Móveis A cinemática é a área da Física que estuda o movimento dos corpos. Em robótica móvel a cinemática estabelece relações entre o deslocamento (locomoção) do robô e a atuação a ele imposta. A cinemática direta estabelece modelos que estimam o deslocamento do robô dada uma atuação, por exemplo, velocidades imposta às suas rodas. A cinemática reversa estabelece modelos que estimam a atuação necessária para que o robô realize um determinado deslocamento, por exemplo, percorrer uma trajetória. Comumente, os modelos cinemáticos são baseados em equações diferenciais de primeira ordem não lineares. Tais modelos são linearizados e discretizados no tempo quanto utilizados em aplicações robótica. IA368N/ Prof. Eleri Cardozo 1 Cinemática de Robôs Móveis O modelo cinemático não leva em conta a inércia do robô, deformações em sua estrutura, forças oriundas do deslocamento (atrito, escorregamento, etc.), e demais fatores internos e externos que possam afetar a locomoção. Os modelos dinâmicos são capazes de incorporar estas variáveis, mas são muito mais complexos que os modelos cinemáticos. Os modelos cinemáticos são suficientes quando a locamoção se dá a baixas velocidades e em piso plano e horizontal que propicie contato adequado para não haver escorregamento. Apesar do modelo cinemático ser inerentemente um modelo aproximado, podemos corrigir seus resultados a partir dos sensores do robô. Os algoritmos de localização robótica fazem exatamente isto. IA368N/ Prof. Eleri Cardozo 2

2 Referenciais O deslocamento de um robô deve ser expresso em relação a um sistema de coordenadas (referencial) inercial (global). No plano, utilizamos coordenadas cartesianas (eixos X e Y). Este é um referencial fixo no piso. Usualmente sua origem é posicionada em um ponto "notável" do ambiente, por exemplo, em um canto de parede, no centro geométrico do ambiente ou na posição que o robô se encontra quando é ligado. Y I y θ ξ I = p = [x, y, θ] T x X I IA368N/ Prof. Eleri Cardozo 3 Referenciais Em muitas situações é cômodo expressar posições em um referencial centrado no robô. Este referencial é denominado local e comumente posicionado no centro de rotação do robô. Exemplos de tais situações: determinar a posição dos sensores estão instalados no robô; obter as leituras de sensores instalados no robô (distâncias, imagens, etc.); determinar o movimento de atuadores instalados no robô (por exemplo, braço robótico). Y R OBS: O referencial local pode ser expresso por um sistema de coordenadas espacial. X R IA368N/ Prof. Eleri Cardozo 4

3 Mudança de Referencial Y I y I Y R y R X R y θ x R x x I X I IA368N/ Prof. Eleri Cardozo 5 O Robô Diferencial eixo transversal eixo longitudinal Um robô diferencial possui 2 rodas tracionadas independentemente e um ou mais pontos de contato usualmente propiciados por rodas castor sem tração. A única forma de atuação em um robô diferencial é pela imposição de velocidades independentes em cada roda. O robô diferencial possui estabilidade estática mas não é um robô omnidirecional dado que é incapaz de se deslocar sobre o seu eixo transversal. O centro de rotação do robô está localizado na intersecção dos eixos transversal e longitudinal. IA368N/ Prof. Eleri Cardozo 6

4 Restrições Cinemáticas Um modelo cinemático deve levar em conta as restrições que cada tipo de roda impõe à locomoção do robô (restrições cinemáticas). Por exemplo, podemos dizer que uma roda castor sem tração não impõe nenhuma restrição à movimentação do robô. Certamente trata-se de uma simplificação pois ao girar o atrito da roda com o piso faz com que seu movimento produza forças no chassi do robô que impactam na sua locomoção (lembre-se que o modelo cinemático não leva em conta estas forças). Vamos estabelecer as restrições cinemáticas apenas para uma roda fixa com tração. Estas restrições são suficientes para estabelecer o modelo cinemático de um robô diferencial. IA368N/ Prof. Eleri Cardozo 7 Restrições Cinemáticas Restrições impostas por uma roda fixa com tração: caso particular. Uma roda fixa com tração pode ser representada por seu raio (r), sua posição angular (φ) e sua posicionamento no referencial local (L). No caso particular do referencial local posicionado no centro de rotação do robô: Y I y Y R A r L v θ X R A contribuição da roda em questão para o movimento do robô é dada por: Considerando que: Podemos escrever a restrição da roda como: x X I IA368N/ Prof. Eleri Cardozo 8

5 Restrições Cinemáticas Restrições impostas por uma roda fixa com tração: caso geral. Y I β v X R R(θ) Y R α L θ X I IA368N/ Prof. Eleri Cardozo 9 Restrições Cinemáticas Uma segunda restrição estabelece que o movimento da roda no sentido perpendicular ao eixo deve ser nulo (ou seja, ausência de escorregamento). Y R Y I C X R y L θ B Para que não haja escorregamento lateral os vetores B e C devem ter a mesma norma, ou seja: x IA368N/ Prof. Eleri Cardozo 10

6 Restrições Cinemáticas Caso particular: Caso geral: IA368N/ Prof. Eleri Cardozo 11 Restrições Cinemáticas As restrições cinemáticas impostas por uma dada configuração de chassi é a combinação das restrições impostas por cada roda, ou seja, a locomoção do robô deve satisfazer as restrições impostas por cada roda individualmente. Restrições de Rolamento Restrições de Escorregamento 0 IA368N/ Prof. Eleri Cardozo 12

7 O Robô Diferencial Seja um robô diferencial com centro de rotação no ponto médio entre as rodas: Roda esquerda: α = π/2, β=0 Roda direita: α = -π/2, β=π OBS: Para um robô diferencial, a restrição de escorregamento da segunda roda é dependente da primeira, razão pela qual não foi incluida. IA368N/ Prof. Eleri Cardozo 13 O Robô Diferencial Modelo cinemático do robô diferencial: IA368N/ Prof. Eleri Cardozo 14

8 O Robô Diferencial Pelo modelo cinemático deduzido anteriormente temos: Onde V é a velocidade linear do robô (ao longo de seu eixo longitudinal) e ω é a velocidade rotacional do robô ao longo de seu eixo de rotação. IA368N/ Prof. Eleri Cardozo 15 O Robô Diferencial Variantes do modelo cinemático para o robô diferencial: IA368N/ Prof. Eleri Cardozo 16

9 Robô Diferencial com Centro de Rotação à Frente Neste robô o centro de rotação é deslocado para a frente do eixo. Isto ocorre quando o centro de massa do robô está localizado à frente do eixo do robô. Exemplo: cadeira de rodas motorizada. L L 2 L 1 CR IA368N/ Prof. Eleri Cardozo 17 Robô Diferencial com Centro de Rotação à Frente Y I Y R y L V y L 2 ω θ V x X R X I x IA368N/ Prof. Eleri Cardozo 18

10 Grau de Mobilidade Quanto maior o número de restrições impostas pelas rodas mais difícil é manobrar o robô posto que todas as restrições independentes devem ser satisfeitas simultaneamente. Uma métrica desta mobilidade é o número de restrições independentes das rodas que restringem a locomoção. Este número dita o grau de mobilidade e dado pelo rank da matriz de restrições à locomoção: Restrições de Rolamento Restrições de Escorregamento 0 IA368N/ Prof. Eleri Cardozo 19 Grau de Mobilidade Para o robô diferencial: Este rank significa que robô pode se locomover no máximo em linha reta ou em círculo, nunca sobre o eixo transversal. Um robô omnidirecional possui rank zero, ou seja, nenhuma restrição de locomoção. O rank máximo é 3. Quanto menor este rank maior a mobilidade do robô. Definimos grau de mobilidade como: IA368N/ Prof. Eleri Cardozo 20

11 Graus de Esterçabilidade e de Manobrabilidade O grau de esterçabilidade (steerability) é uma métrica dos graus de liberdade que o robô tem para mudar de orientação. O grau de esterçabilidade é dado pelo número de rodas direcionais que podem ser orientadas independentemente. O grau de esterçabilidade é representado por δ s. Note que 0 δ s 2 pois no plano temos no máximo 2 graus de liberdade de esterçamento. O grau de manobrabilidade δ M é dado pelos número de graus de liberdade que o robô tem para alterar sua pose ao longo do tempo, alterando a velocidade das rodas, a direção das rodas, ou ambas simultaneamente. IA368N/ Prof. Eleri Cardozo 21 Grau de Manobrabilidade = n : pode-se atuar simultaneamente em n das 3 variáveis da pose (x, y, θ). As (3-n) variáveis restantes serão dadas pelas restrições cinemáticas do robô. IA368N/ Prof. Eleri Cardozo 22

12 Modelo Cinemático: ICR Se aplicarmos um controle no robô diferencial (Vr e Vl) com Vr Vl o robô realizará um movimento circular. O centro deste círculo no referencial global é denominado centro de rotação instantâneo (ICR). O termo instantâneo é no sentido que varia instantaneamente com as velocidades Vr e Vl. ICR R Δl L Δr IA368N/ Prof. Eleri Cardozo 23 Modelo Cinemático Diferencial No modelo cinemático diferencial a pose do robô é computada em intervalos Δt. É um modelo mais adequado para o processamento em computador. YI ICR Δθ Δθ Δθ/2 R θ' y' Δl Δy θ Δs Δr y Δx x x' XI IA368N/ Prof. Eleri Cardozo 24

13 Relação Entre ICR e δ M ICR Em robôs com δ M igual a 2 o ICR deve variar em uma linha contínua, ou seja, é impossível variar o ICR abruptamente. Em robôs com δ M igual a 3 o ICR pode variar arbitrariamente no plano, ou seja, é possível variar o ICR abruptamente. IA368N/ Prof. Eleri Cardozo 25 Graus de Liberdade O número de graus de liberdade (DOF) de um robô define sua capacidade de operar no ambiente. Um robô com DOF = 3 pode atingir qualquer pose (x, y, θ) do ambiente (mesmo que seja necessário manobrar para a atingir a pose). Um robô com DOF = 2 pode se deslocar no plano com uma dada orientação ou se deslocar em uma única direção e se orientar nesta direção. Um robô com DOF = 1 pode se locomover em uma única direção ou girar em torno de si. Graus de liberdade diferenciais (DDOF) de um robô define sua capacidade de não só atingir determinada pose como também variar incrementalmente esta pose. DDOF é sempre igual a δ m. Temos sempre DDOF δ M DOF. DDOF = 1 DOF = 3 DDOF = 2 DOF = 3 DDOF = 3 DOF = 3 IA368N/ Prof. Eleri Cardozo 26

14 Holonomicidade Um robô é dito holonômico se e somente se DDOF = DOF. Isto é, o robô possui exatos graus de liberdade diferencial (DDOF) para manobrar no ponto/pose que deve atingir. Se DDOF = DOF = 3, o robô é holonômico e omnidirecional (estes termos são comumente usados como sinônimos). Um robô holonômico pode, por exemplo, percorrer uma trajetória arbitrária enquanto gira em torno de si. Atualmente os robôs holonômicos mais comuns são baseados em chassi com 4 rodas suecas tracionadas independentemente. Nestes robôs é possível variar incrementalmente e simultaneamente x, y, e θ variando-se as velocidades nas 4 rodas. IA368N/ Prof. Eleri Cardozo 27 Uso de Modelos Cinemáticos Modelos cinemáticos são utilizados tanto em localização quanto controle de locomoção. Neste ponto vamos ilustrar como um robô pode percorrer uma trajetória utilizando seu modelo cinemático. Uma trajetória é uma lista ordenada de poses (x, y, θ) ou posições (x, y): o primeiro elemento da lista é a pose/posição corrente do robô; o último elemento da lista é o alvo que o robô deseja atingir. Uma trajetória pode ser aproximada por segmentos de retas e de círculos. Ao percorrer uma trajetória o robô se locomove da pose/posição corrente para a próxima, ou percorre cada segmento em sequência. Isto pode ser feito em malha aberta ou malha fechada: Malha aberta: o erro (distanciamento da trajetória) não é levado em conta; Malha fechada: o erro é corrigido ao longo do deslocamento do robô. IA368N/ Prof. Eleri Cardozo 28

15 Uso de Modelos Cinemáticos Dead Reckoning P k+1 Inicialmente o robô se orienta em direção ao próximo ponto. Isto se dá pela aplicação de velocidades opostas nas rodas durante o tempo necessário para o robô se orientar. Δ θ P k D P k+1 Uma vez orientado o robô imprime uma dada velocidade nas rodas um tempo necessário para percorrer a distância D. A cada iteração (Δt) a pose do robô é corrigida de acordo com o modelo cinemático incremental até que a pose alvo seja atingida. P k OBS: Na prática controladores P/PI/PID são empregados na orientação e deslocamento do robô. IA368N/ Prof. Eleri Cardozo 29 Uso de Modelos Cinemáticos R1 R2 ICR 1 ICR 2 Nesta trajetória o robô pode manter uma velocidade linear constante. Nos segmentos circulares o robô varia as velocidades das rodas de modo a perfazer o raio desejado. O modelo cinemático diferencial é utilizado para determinar se o arco de circunferência ou o segmento de reta foram percorridos integralmente. IA368N/ Prof. Eleri Cardozo 30

16 Uso de Modelos Cinemáticos O problema de percorrer uma trajetória em malha aberta é que os erros produzidos pelo uso de um modelo cinemático vão se acumulando ao longo da trajetória. Trajetória real Trajetória pretendida IA368N/ Prof. Eleri Cardozo 31

Robótica Móvel Locomoção e Controle. Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT

Robótica Móvel Locomoção e Controle. Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT Robótica Móvel Locomoção e Controle Douglas Wildgrube Bertol DEE - Engenharia Elétrica CCT AS2ROB1 Fundamentos de Robótica Joinville 04/06/2018 Objetivos desta aula Conceitos básicos de controle de robôs

Leia mais

Aula 3 Introdução à Robótica Móvel Cinemática. Laboratório de Robótica Móvel LabRoM. Prof. Dr. Marcelo Becker - SEM EESC USP

Aula 3 Introdução à Robótica Móvel Cinemática. Laboratório de Robótica Móvel LabRoM. Prof. Dr. Marcelo Becker - SEM EESC USP Aula 3 Introdução à Robótica Móvel Cinemática Prof. Assoc. Marcelo Becker SEM - EESC - USP Laboratório de Robótica Móvel LabRoM Sumário da Aula Introdução Cinemática Manobrabilidade e Workspace Controle

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Controle de Trajetórias

Controle de Trajetórias Controle de Trajetórias Construção de Mapas Localização posição do robô features Extração de Informação ação Planejamento da Missão trajetória Percepção Controle de Trajetória velocidades dados brutos

Leia mais

Locomoção. Meios de Locomoção

Locomoção. Meios de Locomoção Locomoção Meios de Locomoção Propriedades da Locomoção Locomoção com Rodas 1 Meios de Locomoção Meios de locomoção terrestre: Rodas: o mais simples meio de locomoção; Esteiras: amplia a área de contato

Leia mais

Introdução. Introdução. Introdução. Locomoção. Introdução. Introdução à Robótica Robótica Móvel Locomoção

Introdução. Introdução. Introdução. Locomoção. Introdução. Introdução à Robótica Robótica Móvel Locomoção Introdução Introdução à Robótica Robótica Móvel Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br Um robô móvel necessita de mecanismos que o permitam navegar pelo ambiente Projetados de acordo com

Leia mais

Capítulo 9 - Rotação de Corpos Rígidos

Capítulo 9 - Rotação de Corpos Rígidos Aquino Lauri Espíndola 1 1 Departmento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense Volta Redonda, RJ 27.213-250 1 de dezembro de 2010 Conteúdo 1 e Aceleração Angular

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Robótica Competitiva Controle de Movimento Cinemático

Robótica Competitiva Controle de Movimento Cinemático Robótica Competitiva Controle de Movimento Cinemático 2017 Introdução Modelo Controlador Lei de Controle Resultados Estabilidade Sumário Introdução Modelo Controlador Lei de Controle Resultados Estabilidade

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um

Leia mais

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

ROBÓTICA PLANEJAMENTO DE TRAJETÓRIAS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA PLANEJAMENTO DE TRAJETÓRIAS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial PLANEJAMENTO DE TRAJETÓRIAS https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br

Leia mais

Movimento Circular I

Movimento Circular I Moimento Circular I Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eixo fixo. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação

Leia mais

São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas.

São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas. 4. Classificação dos robôs São apresentadas as seguintes configurações básicas para um manipulador de acordo com os movimentos realizados por suas juntas. 1 - Robô revoluto, antropomórfico ou articulado.

Leia mais

Física para Zootecnia

Física para Zootecnia Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

3 Relações. 4 Velocidade Escalar. 5 Velocidade Angular. 6 Período. 7 Frequência. 8 Função Horária. 9 Aceleração Centrípeta

3 Relações. 4 Velocidade Escalar. 5 Velocidade Angular. 6 Período. 7 Frequência. 8 Função Horária. 9 Aceleração Centrípeta 1 Movimento Circular Uniforme Introdução 2 Ângulos no Movimento Circular 3 Relações 4 Velocidade Escalar 5 Velocidade Angular 6 Período 7 Frequência 8 Função Horária 9 Aceleração Centrípeta 10 Polias e

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

Lista 8 : Cinemática das Rotações NOME:

Lista 8 : Cinemática das Rotações NOME: Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço gira o braço para baixo e em

Leia mais

Física aplicada à engenharia I

Física aplicada à engenharia I Física aplicada à engenharia I Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

5 Validação do Software

5 Validação do Software 8 5 Validação do Software Para garantir que os resultados deste trabalho sejam confiáveis, é preciso validar o simulador quanto às leis da física. Para tal, este capítulo apresenta dois casos onde há soluções

Leia mais

Geostrofia: Condições Barotrópicas e Baroclínicas

Geostrofia: Condições Barotrópicas e Baroclínicas Geostrofia: Condições Barotrópicas e Baroclínicas Em um fluido onde a densidade é função somente da pressão, as superfícies de igual densidade (isopicnais) são paralelas às superfícies de igual pressão

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com.

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com. MECÂNICA 1 - RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em. CENTRO INSTANTÂNEO DE ROTAÇÃO (CIR) 1 o ) Escolher

Leia mais

Parte 2 - P2 de Física I NOME: DRE Teste 1

Parte 2 - P2 de Física I NOME: DRE Teste 1 Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,

Leia mais

Movimento Circular. 1 Rotação. Aron Maciel

Movimento Circular. 1 Rotação. Aron Maciel Movimento Circular Aron Maciel 1 Rotação Já sabemos como as leis e definições da Física funcionam no movimento retilíneo, agora, vamos investigar situações em que temos objetos rotacionando em torno de

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 6 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/03

Leia mais

Física Teórica I. Prof. Dr. Raphael M. Albuquerque. Universidade do Estado do Rio de Janeiro. Capítulo 10. Apresentação Rotações

Física Teórica I. Prof. Dr. Raphael M. Albuquerque. Universidade do Estado do Rio de Janeiro. Capítulo 10. Apresentação Rotações Universidade do Estado do Rio de Janeiro Faculdade de Tecnologia - Câmpus Resende Física Teórica I Prof. Dr. Raphael M. Albuquerque Apresentação Rotações Apresentação do Curso Prof. Raphael raphael.albuquerque@uerj.br

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótica Prof. Reinaldo Bianchi Centro Universitário FEI 2016 5 a Aula Pós Graduação - IECAT Objetivos desta aula Velocidade e Aceleração de corpo rígido. Matrizes de inércia. Bibliografia Capítulos 5

Leia mais

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial CINEMÁTICA https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Física I. Cinemática de Rotações Lista de Exercícios

Física I. Cinemática de Rotações Lista de Exercícios Física I Cinemática de Rotações Lista de Exercícios 1. Velocidade Angular Média Elaboração própria Calcule a velocidade angular média das partículas de cada caso especificado: a. 6 voltas em 1 minuto.

Leia mais

Cinemática Inversa de Manipuladores

Cinemática Inversa de Manipuladores Cinemática Inversa de Manipuladores 1998Mario Campos 1 Introdução Cinemática Inversa Como calcular os valores das variáveis de junta que produzirão a posição e orientação desejadas do órgão terminal? 1998Mario

Leia mais

MOVIMENTO CIRCULAR PROFESSORA DANIELE SANTOS FÍSICA 2 ANO FÍSICA INSTITUTO GAY-LUSSAC

MOVIMENTO CIRCULAR PROFESSORA DANIELE SANTOS FÍSICA 2 ANO FÍSICA INSTITUTO GAY-LUSSAC MOVIMENTO CIRCULAR PROFESSORA DANIELE SANTOS FÍSICA 2 ANO FÍSICA INSTITUTO GAY-LUSSAC MOVIMENTO CIRCULAR CONCEITOS INICIAIS UM CORPO EXECUTA MOVIMENTO CIRCULAR QUANDO SUA TRAJETÓRIA É UMA CIRCUNFERÊNCIA

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

Física. Cinemática. Professor Alexei Muller.

Física. Cinemática. Professor Alexei Muller. Física Cinemática Professor Alexei Muller Física CINEMÁTICA Varia sucessivamente a sua posição (seu lugar) com o passar do tempo em relação a um sistema de referência. Os conceitos de repouso e de movimento

Leia mais

Espaço x Espaço inicial x o

Espaço x Espaço inicial x o MOVIMENTO CIRCULAR Prof. Patricia Caldana O movimento circular é o movimento no qual o corpo descreve trajetória circular, podendo ser uma circunferência ou um arco de circunferência. Grandezas Angulares

Leia mais

IA Robótica Móvel II - Locomoção e Localização

IA Robótica Móvel II - Locomoção e Localização Planejamento para IA Robótica Móvel II - e Professor Paulo Gurgel Pinheiro MC906A - Inteligência Articial Instituto de Computação Universidade Estadual de Campinas - UNICAMP 23 de Novembro de 2010 1 /

Leia mais

COMPONENTES DE UM SISTEMA ROBÓTICO

COMPONENTES DE UM SISTEMA ROBÓTICO COMPONENTES DE UM SISTEMA ROBÓTICO Introdução Um robô é um equipamento programável, multifuncional designado a mover partes, materiais, ferramentas utilizando movimentos programados. (Robotics Institute

Leia mais

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado betty.prado@kroton.com.br bettycarvalho@ig.com.br CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,

Leia mais

Força. Aceleração (sai ou volta para o repouso) Força. Vetor. Aumenta ou diminui a velocidade; Muda de direção. Acelerar 1kg de massa a 1m/s 2 (N)

Força. Aceleração (sai ou volta para o repouso) Força. Vetor. Aumenta ou diminui a velocidade; Muda de direção. Acelerar 1kg de massa a 1m/s 2 (N) Força Empurrão ou puxão; Força é algo que acelera ou deforma alguma coisa; A força exercida por um objeto sobre o outro é correspondida por outra igual em magnitude, mas no sentido oposto, que é exercida

Leia mais

Rotação de Corpos Rígidos

Rotação de Corpos Rígidos Fisica I IO Rotação de Corpos Rígidos Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Rotação de Corpos Rígidos Movimentos de corpos contínuos podiam em muitos casos ser descritos

Leia mais

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1 MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço comanda o giro do braço

Leia mais

Lista 10: Dinâmica das Rotações NOME:

Lista 10: Dinâmica das Rotações NOME: Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

MECÂNICA I Mecânica Gráfica para alunos do ensino médio utilizando o SAM 4. Movimento circular

MECÂNICA I Mecânica Gráfica para alunos do ensino médio utilizando o SAM 4. Movimento circular FÍSICA 1 MECÂNICA I Mecânica Gráfica para alunos do ensino médio utilizando o SAM 4. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador da figura abaixo (fig. 4.1), as

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

Odometria e equações de movimento de um robô

Odometria e equações de movimento de um robô Faculdade de Engenharia da Universidade do Porto Odometria e equações de movimento de um robô Sandro Augusto Costa Magalhães Tiago José Ferreira Mendonça UP0130493 UP01305394 Relatório realizado no âmbito

Leia mais

CINEMÁTICA VETORIAL. Prof. Paulo Lopes

CINEMÁTICA VETORIAL. Prof. Paulo Lopes CINEMÁTICA VETORIAL Prof. Paulo Lopes Vetor deslocamento ( d ) x deslocamento escalar (Δs) d 100 metros Δs = 100 m ІdІ = 100 m R = 100 metros d Δs = 2πr 2 ІdІ = 2r = 200 m = 3,14x100 = 314 m Escalar Vetorial

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma

Leia mais

Movimento Circular Uniforme. Prof. Marco Simões

Movimento Circular Uniforme. Prof. Marco Simões Movimento Circular Uniforme Prof. Marco Simões Radiano É a abertura angular correspondente a um arco igual ao raio da circunferência (gif animado; clique para iniciar) Radiano É a abertura angular correspondente

Leia mais

7 Definição da Trajetória via Controle Ótimo

7 Definição da Trajetória via Controle Ótimo 7 Definição da Trajetória via Controle Ótimo O objetivo desse trabalho é avaliar a metodologia de projeto e os controladores não só em percursos que representem o centro da pista, mas trajetórias ótimas

Leia mais

Manufatura assistida por computador

Manufatura assistida por computador Manufatura assistida por computador Cinemática Direta em Manipuladores Robóticos Professor: Mário Luiz Tronco Aluno Doutorado: Luciano Cássio Lulio Engenharia Mecânica Orientação e sistemas de referência

Leia mais

META 2 CINEMÁTICA VETORIAL

META 2 CINEMÁTICA VETORIAL META 2 CINEMÁTICA VETORIAL As grandezas da cinemática escalar (posição, deslocamento, velocidade e aceleração) ganham nova cara. Agora não importa mais somente o módulo da grandeza, mas também sua direção

Leia mais

RESUMO MECÂNICA II P2

RESUMO MECÂNICA II P2 RESUMO MECÂNICA II P Autoria: Yan Ichihara de Paula IMPULSO, TEOREMA DA RESULTANTE DOS IMPULSOS E TEOREMA DO MOMENTO DOS IMPULSOS Impulso possui grandeza vetorial, e é definido como: t I = F dt t 1 Assim,

Leia mais

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular Questão Prof FGuimarães Questões Cinemática 5 Movimento Circular (MCK) Os ponteiros dos relógios convencionais descrevem, em condições normais, movimentos circulares uniformes (MCU) relação entre a velocidade

Leia mais

2º Teste (Repescagem) de Mecânica Aplicada II

2º Teste (Repescagem) de Mecânica Aplicada II 2º Teste (Repescagem) de Mecânica Aplicada II Este teste é constituído por 3 problemas e tem a duração de uma hora e meia. Justifique convenientemente todas as respostas apresentando cálculos intermédios.

Leia mais

MECÂNICA - MAC010. Michèle Farage. Trabalho virtual. 22 de junho de 2009

MECÂNICA - MAC010. Michèle Farage. Trabalho virtual. 22 de junho de 2009 MECÂNICA - de junho de 009 7 Objetivo O Método dos trabalhos virtuais é um método alternativo para a resolução de certos problemas de equiĺıbrio - em alguns casos, mais eficaz do que o emprego das equações

Leia mais

XIX Congresso Nacional de Estudantes de Engenharia Mecânica - 13 a 17/08/2012 São Carlos-SP Artigo CREEM2012

XIX Congresso Nacional de Estudantes de Engenharia Mecânica - 13 a 17/08/2012 São Carlos-SP Artigo CREEM2012 PROJETO MECATRÔNICO DE UM ROBÔ MÓVEL COM RODAS (RMR) Alex Rodrigues Fricelli, Guilherme Barboni Paschoal, Júlio Rodrigues Goulart, Lucas Godoi de Oliveira, Rafael Valério Garcia e Roberto Santos Inoue

Leia mais

5/Mar/2018 Aula Movimento em referenciais Movimento circular uniforme acelerados Velocidade angular. 5.1 Movimento circular

5/Mar/2018 Aula Movimento em referenciais Movimento circular uniforme acelerados Velocidade angular. 5.1 Movimento circular 5/Mar/2018 Aula 5 5.1 Movimento circular 5.2 Movimento em referenciais 5.1.1 Movimento circular uniforme acelerados 5.1.2 Velocidade angular 5.2.1 Força de inércia 5.1.3 Força e aceleração centrípetas

Leia mais

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

Lista de Exercícios para a P1-2014

Lista de Exercícios para a P1-2014 Lista de Exercícios para a P1-2014 OBJETIVAS www.engenhariafacil.weebly.com 1)(Halliday-Adaptad Uma pessoa saltou do topo de um edifício de H m, caindo em cima da caixa de um ventilador metálico, que afundou

Leia mais

CINEMÁTICA VETORIAL. Vetor Deslocamento: Na cinemática vetorial determinamos a posição da partícula através do seu. vetor posição.

CINEMÁTICA VETORIAL. Vetor Deslocamento: Na cinemática vetorial determinamos a posição da partícula através do seu. vetor posição. CINEMÁTICA VETORIAL CINEMÁTICA VETORIAL Vetor Deslocamento: Na cinemática vetorial determinamos a posição da partícula através do seu vetor posição. CINEMÁTICA VETORIAL O vetor posição da partícula, em

Leia mais

CINEMÁTICA MOVIMENTO RETILÍNEO

CINEMÁTICA MOVIMENTO RETILÍNEO CINEMÁTICA MOVIMENTO RETILÍNEO 1 Duas partículas A e B estão do lado oposto de uma reta com 500 m de comprimento. A partícula A desloca-se na direção AB e no sentido de B, com uma velocidade constante

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Introdução à Engenharia da Motocicleta

Introdução à Engenharia da Motocicleta Depto de Engenharia Mecânica da UFPE Introdução à Engenharia da Motocicleta Fábio Magnani e Ramiro Willmersdorf 2010 Parte 2: Ciclística Aula 01 Programa Movimento em linha reta; Movimento em curva; Equilíbrio

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo Aula 3: cinemática Relembrando... Áreas de atuação da Biomecânica Métodos de análise : quantitativo e qualitativo Modelos Biomecânicos Aula 3: cinemática Cinemática Análise 2D/ 3D Vetor Operações vetoriais

Leia mais

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever Capítulo 5 - Cinemática da Velocidade e da Aceleração. O Jacobiano do Manipulador 54 CAPÍTULO 5 CINEMÁTICA DA VELOCIDADE E DA ACELERAÇÃO O JACOBIANO DO MANIPULADOR 5.1 INTRODUÇÃO Nos capítulos anteriores

Leia mais

Revisão II: Sistemas de Referência

Revisão II: Sistemas de Referência Revisão II: Sistemas de Referência sistema terrestre fixo (ex.: NED) origem: ponto fixo sobre a superfície da Terra zi : vertical, apontando para o centro da Terra xi e y I : repousam sobre o plano horizontal

Leia mais

Notação Científica. n é um expoente inteiro; N é tal que:

Notação Científica. n é um expoente inteiro; N é tal que: Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

Dinâmica das Máquinas

Dinâmica das Máquinas Dinâmica das Máquinas Restrições cinemáticas Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 07 Londrina,

Leia mais

Mecânica. Cinemática Dinâmica

Mecânica. Cinemática Dinâmica MOVIMENTO RETILÍNEO CAPÍTULO 2 MOVIMENTO RETILÍNEO 2.1 - INTRODUÇÃO 2.2 DESLOCAMENTO, TEMPO E VELOCIDADE MÉDIA 2.3 VELOCIDADE INSTANTÂNEA 2.4 ACELERAÇÃO INSTANTÂNEA E MÉDIA 2.5 MOVIMENTO COM ACELERAÇÃO

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs ROBÓTICA Equacionamento da Cinemática Direta de Robôs Prof. Dr. Carlo Pece Depto. de Eletrotécnica UTFPR Transparências adaptadas de material fornecido pelo prof. Winderson E. dos Santos UTFPR 1 Cinemática

Leia mais

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA

Leia mais

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro

Leia mais

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para

Leia mais

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO INTRODUÇÃO ESTUDO DE CASO Um motor de dois cilindros roda em vazio a 1000 rpm quando a válvula borboleta é aberta. Como a forma assimétrica da árvore de manivelas e

Leia mais

3 Veículos Terrestres

3 Veículos Terrestres 3 Veículos Terrestres Por se tratar de uma das primeiras dissertações do Programa de metrologia com aplicação à área veicular, optou-se pela inclusão neste capítulo de conceitos básicos que serão utilizados

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Equipe de Física. Física. Movimento Circular

Equipe de Física. Física. Movimento Circular Aluno (a): Série: 3ª Turma: TUTORIAL 3B Ensino Médio Equipe de Física Data: Física Movimento Circular Grandezas Angulares As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais