Lógica Matemática Computacional
|
|
|
- Cássio Bento de Abreu
- 8 Há anos
- Visualizações:
Transcrição
1 Introdução a Lógica Lista de Exercícios - 01 Lógica Matemática Computacional Professor: Edwar Saliba Júnior 1. Determine o valor lógico (V ou F) de cada uma das seguintes proposições: a) O número 17 é primo. b) Fortaleza é a capital do Maranhão. c) Tiradentes morreu afogado. d) (3 + 5) 2 = e) -1 < -7 f) 0, é uma dízima periódica simples. g) As diagonais de um paralelogramo são iguais. h) Todo polígono regular convexo é inscritível. i) O hexaedro regular tem 8 arestas. j) A expressão n 2 n + 41, onde n N, só produz números primos. k) Tudo número divisível por 5 termina em 5. l) O produto de dois números ímpares é um número ímpar. m) (2n 1) 2 = n 2 n) tg(π/4) < tg(π/6) 2. Sejam as seguintes proposições simples: p: Tiradentes morreu afogado e q: Jaime é gaúcho. Traduzir para linguagem natural, as seguintes proposições compostas: a) p q b) p q c) ~p q d) q p 3. Sejam as proposições p: Jorge é rico e q: Carlos é feliz. Traduzir para linguagem corrente as seguintes proposições: a) p ~q b) ~p q c) q ~p 1
2 4. Sejam as proposições p: O livro é interessante e q: O livro é de lógica. Traduzir para linguagem corrente as seguintes proposições: a) ~p b) p q c) p ~q d) ~(p q) e) q ~p 5. Traduzir para a linguagem simbólica, considerando: p = Josefa é rica, q = Josefa é feliz, r = Josefa é estudante. a) Josefa é rica ou infeliz. b) Se Josefa é estudante e rica então é estudante e feliz. c) Josefa é pobre, mas feliz. d) Josefa é pobre e infeliz. e) Josefa é pobre ou rica, mas é infeliz. f) Se Josefa é pobre então é feliz. g) Josefa é rica se e somente se não for pobre. h) Se Josefa é estudante então é rica se e somente se é feliz. i) Josefa é pobre, infeliz, estudante ou rica. j) Josefa estuda, mas é feliz se e somente não for pobre. 6. Indicar as proposições simples abaixo por letras minúsculas e traduzir as sentenças para notação simbólica: a) Se Janet vencer ou perder, ela estará cansada; Exemplo: p: Janet vence, q: Janet perde, t: Janet está cansada; Notação simbólica: (p ν q) t; b) Ou vai chover ou vai nevar, mas não ambos; c) Se os preços subirem, as construções ficarão mais caras, mas se as construções não forem caras, elas serão muitas; d) Ou Janet irá vencer ou, se perder, ficará cansada; e) Se a quantidade de água é suficiente então o crescimento das plantas é sadio; 2
3 7. Escreva fórmulas para as sentenças abaixo utilizando as seguintes proposições: p: Paula vai à festa. q: Quincas vai à festa. r: Ricardo vai à festa. s: Sara vai à festa. a) Paula não vai. b) Paula vai, mas Quincas não vai. c) Se Paula for, então Quincas também irá. d) Paula irá, se Quincas for. e) Paula irá se e somente se Quincas for. f) Nem Paula nem Quincas irão. g) Paula e Quincas não irão. h) Paula não irá, se Quincas for. i) Se Ricardo for, então se Paula não for, Quincas irá. j) Se nem Ricardo nem Quincas forem, então Paula irá. k) Se Ricardo ou Quincas forem, então Paula irá e Sara não irá. l) Se Sara for, então Ricardo ou Paula irão, e se Sara não for, então Paula e Quincas irão. 8. Sejam as proposições p e q, traduzir para a linguagem corrente as seguintes proposições: p: Está frio e q: Está Chovendo. a) ~p b) p q c) p q d) q p e) p ~q f) p ~q g) ~p ~q h) p ~q i) p ~q p 3
4 p: Jorge é rico e q: Carlos é feliz. a) q p b) p v ~q c) q ~p d) ~p q e) ~~p f) ~p q p p: Claudio fala inglês e q: Claudio fala alemão. a) q v p b) p q c) p ~q d) ~p ~q e) ~~p f) ~(~p ~q) p: João é gaúcho e q: Jaime é paulista. a) ~(~p ~q) b) ~~p c) ~(~p v ~q) d) p ~q e) ~p ~q f) ~(~q p) 9. Sejam as proposições p e q, traduzir para a linguagem simbólica as seguintes proposições: p: Marcos é alto e q: Marcos é elegante. a) Marcos é alto e elegante b) Não é verdade que Marcos é baixo ou elegante c) Marcos não é nem alto e nem elegante d) Marcos é alto ou é baixo e elegante 4
5 e) É falso que Marcos é baixo ou que não é elegante p: Suely é rica e q: Suely é feliz. a) Suely é pobre, mas feliz b) Suely é rica ou infeliz c) Suely é pobre e infeliz d) Suely é pobre ou rica, mas infeliz p: Carlos fala francês q: Carlos fala inglês r: Carlos fala alemão. a) Carlos fala francês ou inglês, mas não fala alemão b) Carlos fala francês e inglês, ou não fala francês e alemão c) É falso que Carlos fala francês mas que não fala alemão d) É falso que Carlos fala inglês ou alemão mas que não fala francês a) x = 0 ou x > 0 b) x ¹ 0 e y ¹ 0 c) x > 1 ou x + y > 0 d) x 2 = x. x ou x 0 = 1 e) (x + y = 0 e z > 0) ou z = 0 f) x = 0 e (y + z > x ou z = 0) g) x ¹ 0 ou (x = 0 e y < 0 e z = 0) h) x + y = 0 e z > 0) ou z = 0 i) Se x > 0 então y = 2 j) Se x + y = 2 então z > 0 k) x = 1 ou z = 2 então y > 1 l) Se x + y > z e z = 1 então x + y > 1 m) Se x < 2 então x = 1 ou x = 0 n) Se y = 4 e se x < y então x < 5 5
Lógica Matemática e Computacional. Proposições Simples e Compostas Exercícios
Lógica Matemática e Computacional Proposições Simples e Compostas Exercícios Sejam as proposições p e q, traduzir para a linguagem corrente as seguintes proposições: 1. p: Está frio e q: Está Chovendo.
Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley
Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley 1 a Lista de Exercícios 1. Determinar o valor lógico (V ou F) de cada uma
Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES
Lógica Matemática e Computacional Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES 2. Conceitos Preliminares 2.1. Sentença, Verdade e Proposição Cálculo Proposicional Como primeira
INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE
1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.
Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições
OFICINA DA PESQUISA APOSTILA 3 MATEMÁTICA COMPUTACIONAL. Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 3 MATEMÁTICA COMPUTACIONAL Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva [email protected] Alterações eventuais
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista
Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto
Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Considere as afirmações: I. A camisa é azul ou a gravata é branca. II. Ou o sapato é marrom ou a camisa
Unidade 1 Sentenças, Representação Simbólica, Tautologia, Contradição e Contingência.
Unidade 1 Sentenças e Representação simbólica Unidade 1 Sentenças, Representação Simbólica, Tautologia, Contradição e Contingência. 1 Introdução e Conceitos Iniciais: Geralmente nos expressamos, em português,
18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está
Iniciação a Lógica Matemática
Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa
Usando as regras de Morgan, de a negação das proposições:
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com EXERCÍCIOS Usando as regras de Morgan, de a negação das proposições: a) É falso que não está frio
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO Prova Parcial 1 Matemática Discreta para Computação
Prova Parcial 1 Aluno(a): Data: 10/03/2015 1. (1p) As linhas críticas permitem avaliar a validade de um argumento usando tabelas verdade. Explique o que são as linhas críticas e como é feita a avaliação,
Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno
Fundamentos de Lógica e Algoritmos Aula 1.3 Proposições e Conectivos Prof. Dr. Bruno Moreno [email protected] Argumentos Lógicos As premissas do argumento são chamadas de proposições; A conclusão
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de
PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA
PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA EQUIPE DE MATEMÁTICA 1) Sejam as proposições: p : Marcos é alto. q : Marcos é elegante. r : Marcos é inteligente.
Fundamentos da Lógica I
Fundamentos da Lógica I O conceito mais elementar no estudo da lógica primeiro a ser visto é o de Proposição. Trata-se, tão somente, de uma sentença algo que será declarado por meio de palavras ou de símbolos
Prof. João Giardulli. Unidade I LÓGICA
Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur QUESTÕES DE RACIOCÍNIO LÓGICO PARTE I 1. A negação da afirmação: Vai fazer frio
Matemática Régis Cortes. Lógica matemática
Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos
Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos
Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio
LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E Autora: Prof. Dra. Denise Candal
LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E COMPOSTAS Rafael D. Ribeiro, M.Sc. [email protected] htt://www.rafaeldiasribeiro.com.br Autora: Prof. Dra. Denise Candal 1 Definição: Chama-se roosição
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
01/02/2016 LÓGICA MATEMÁTICA. Conectivos lógicos e tabela verdade. Os conectivos lógicos são utilizados para formar novas preposições.
LÓGICA MATEMÁTICA Prof Esp Fabiano Taguchi fabianotaguchi@gmailcom http://fabianotaguchiwordpresscom Conectivos lógicos e tabela verdade CONECTIVOS LÓGICOS Os conectivos lógicos são utilizados para formar
FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE
FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Sejam p e q duas proposições
( ) Leonardo joga futebol e Fernanda joga golfe. ( ) Leonardo joga futebol e Fernanda não joga golfe.
1 a Vericação de Aprendizagem Questão 1. (1,0)(FGV/2008) Leonardo disse a Fernanda: -Eu jogo futebol ou você não joga golfe. Fernanda retrucou: -Isso não é verdade. Sabendo que Fernanda falou a verdade,
Campos Sales (CE),
UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:
MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP
1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS Quantificadores Professora Dr. a Donizete Ritter 26 de julho de 2017 Ritter, D. (UNEMAT/DEAD/SI) LÓGICA 26 de julho de 2017 1 / 18 Sumário 1 INTRODUÇÃO 2 TIPOS
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]
LÓGICA PROPOSICIONAL
FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG
Respostas da lista 1
Respostas da lista 1 1- a) i e iii 1- b) ii 1-c) iv 2-a) V 2-b) F 2-c) V 2-d) V 3- a) antecedente: água suficiente consequente: crescimento saudável da planta 3- b) antecedente: maior desenvolvimento tecnológico
RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS
1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E
Lógica Matemática. Prof. Gerson Pastre de Oliveira
Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;
b) A Sara vai dar uma festa e precisa de 50 bolas de Berlim. Quantas caixas terá de comprar?
Múltiplos e divisores 1- Escreve os primeiros 10 múltiplos de: a) 6 c) 15 b) 10 d) 20 2- Uma caixa tem 8 bolas de Berlim. a) Quantas bolas de Berlim há em:. 3 caixas?. 5 caixas?. 20 caixas? b) A Sara vai
CAPÍTULO 4 Cálculo proposicional
CÁLCULO PROPOSICIONAL 1. PROPOSIÇÕES Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas não ambas. As proposições podem ser divididas em proposições simples e compostas. 1.1.
1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,
Curso de Engenharia - UNIVESP Disciplina Matemática - Bimestre 1. Exercícios da semana 1 - vídeo aulas 1 e 2
Curso de Engenharia - UNIVESP Disciplina Matemática - Bimestre 1 Exercícios da semana 1 - vídeo aulas 1 e 2 RECOMENDAÇÕES GERAIS SOBRE A AVALIAÇÃO (PORTFÓLIO) Caro aluno, Nesta semana, a sua avaliação
Coordenação Prof. Aurimenes Alves. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva
@ LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q: ~ p 3) Proposição contra positiva de p q: ~ p ex. Determinar:
TEMA 1 INTRODUÇÃO À LÓGICA BIVALENTE CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO 10.º ANO COMPILAÇÃO
FICHA DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 1 INTRODUÇÃO À LÓGICA BIVALENTE CONJUNTOS E CONDIÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 INTRODUÇÃO À LÓGICA
FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES
FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número
Ficha de trabalho n.º 1 (com resolução) Assunto: Lógica
Ficha de trabalho n.º 1 (com resolução) Assunto: Lógica 10.º ano Parte I - Escolha múltipla (Selecione a opção correta) 1. Considere a proposição: O quadrado de qualquer número real é um número real positivo.
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Bases Matemáticas. Aula 1 Elementos de Lógica e Linguagem Matemática. Prof. Rodrigo Hausen. 24 de junho de 2014
Aula 1 Elementos de Lógica e Linguagem Matemática Prof. Rodrigo Hausen 24 de junho de 2014 Definição Uma proposição é uma sentença declarativa que é verdadeira ou falsa, mas não simultaneamente ambas.
Introdução à Lógica Matemática
Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira
Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto
Álgebra das Proposições Prof. Guilherme Tomaschewski Netto [email protected] Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações
Matemática Computacional
Matemática Computacional SLIDE 1I Professor Júlio Cesar da Silva [email protected] site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium Google+:
Introdução à Lógica Proposicional Sintaxe e Semântica
Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe e Semântica SINTAXE E SEMÂNTICA Prof a Maria das Graças Marietto [email protected] 2 LINGUAGEM SIMBÓLICA: COMPONENTES
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 10º ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico Comercial
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico Comercial - Técnico de Electricidade PROFIJ Conteúdo Programáticos / Matemática e a Realidade 1º Ano Ano Lectivo de 2008/2009
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 1 a Lista de Exercícios Tópico: Argumentos 1. Julgue as premissas e a conclusão
Lógica Matemática e Computacional. 2.3 Equivalência Lógica
Lógica Matemática e Computacional 2.3 Equivalência Lógica Equivalência Lógica Definição: Dadas as proposições compostas P e Q, diz-se que ocorre uma equivalência lógica entre P e Q quando suas tabelas-verdade
Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009
Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2
Aprendendo. Raciocínio. Lógico
Aprendendo Raciocínio Lógico Sentenças Abertas Raciocínio Lógico Sentenças matemáticas abertas ou simplesmente sentenças abertas são expressões que não podemos identificar como verdadeiras ou falsas. Exemplos:
Aula 21 - Baiano GEOMETRIA PLANA
Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.
RECUPERAÇÃO SEMESTRAL
GOIÂNIA, / / 015 PROFESSOR: Vinícius Camargo DISCIPLINA: Matemática SÉRIE: 8º ano ALUNO(a): RECUPERAÇÃO SEMESTRAL No Anhanguera você é + Enem 1. Numa partida de Futebol, 1/4 torciam pelo time A, 1/6 para
CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação
CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para
LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :
LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:
Lógica Matemática e Computacional. 3.1 Relações lógicas de Euler
Lógica Matemática e Computacional 3.1 Relações lógicas de Euler Lógica Ciência dos argumentos; tem por objeto de estudo os argumentos, procurando elaborar procedimentos que permitam distinguir os argumentos
Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 2 13 de agosto de 2010 Aula 2 Pré-Cálculo 1 Problemas de organização e erros frequentes Problemas
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA Fundamentos de Matemática Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstração direta, demonstração por absurdo e
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Gestão Empresarial Prof. Ânderson Vieira
NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma
Operações Lógicas sobre Proposições
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Operações Lógicas sobre Proposições Lógica Computacional 1 Site: http://jeiks.net E-mail: [email protected]
Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)
Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1
PROPOSIÇÕES - VERDADEIRO
PROPOSIÇÕES Definição: Chama-se de proposição todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, declarativa (afirmativa) que admite um e somente um dos dois valores
Introdução. História. História 18/03/2012. Lógica para Ciência da Computação. O que é Lógica?
IFMG-Formiga Introdução Lógica para Ciência da Computação O que é Lógica? É a formalização de linguagem e raciocínio, além de meios para expressar (dar significado) a essas formalizações. Profª. Danielle
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.
MATEMÁTICA Questões comentadas Daniela Arboite
MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível
Lógica proposicional
Lógica proposicional Sintaxe Proposição: afirmação que pode ser verdadeira ou falsa Proposições podem ser expressas como fórmulas Fórmulas são construídas a partir de símbolos: De verdade: true (verdadeiro),
AULA 02 AULA 01 (D) 9. ITEM 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado?
AULA 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado? Em um conjunto de 50 cartões numerados de 1 a 50, retirando ao acaso um desses cartões,
Proposições e Conectivos
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Proposições e Conectivos Lógica Computacional 1 Site: http://jeiks.net E-mail: [email protected]
1ª Série do ensino médio _ TD 12
1ª Série do ensino médio _ TD 12 O.S. 01121240506 01. Realmente, a caixa do supermercado ficou devendo ao Sr. Almeida R$ 0,25, um fato "extremamente" relevante. Você sabia que a moeda de 25 centavos foi
LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março
OBS.1: As palavras Se e então podem estar ocultas na. Proposição
RACIOCÍNIO LÓGICO PRO. IGOR BRASIL 1) Proposição: Observação!!! Não são proposições 1. 2. 3. 4. 5. 6. 7. 2) Conectivos São utilizados em proposições.» O conectivo e é conhecido por, representado pelo símbolo
Elementos de Matemática
Elementos de Matemática Exercícios de Lógica para as atividades didáticas de 2007 Versão compilada no dia 27 de Abril de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: [email protected]
ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO FINAL DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162)
Marília, de de. NOME: Nº: TURMA: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO FINAL DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) FUNÇÕES DO NÚMERO Os números podem ser usados para quantificar,
Prova da segunda fase - Nível 2
Instruções: O tempo de duração da prova é de duas horas. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque as opções no
SuperPro copyright Colibri Informática Ltda.
1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15%
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Lista 1. 1 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira
ÁLLO I 1 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo x indicado.
Faculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Pós-Laboral 1 0 Teste de Fundamentos de Geometria. Variante Duração: 90 minutos 18.03.2013 1. (3 valores) Sabe-se
Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos
Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos e Construção de algoritmos: estruturas de controle Introdução
EMENTA ESCOLAR I Trimestre Ano 2016
EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 3 ano do Ensino Médio Datas 15/fevereiro 17/fevereiro 13/fevereiro 22/fevereiro 24/fevereiro Conteúdos
DRUIDAS DO SABER CENTRO DE EXPLICAÇÕES. Matemática - 9º Ano
DRUIDAS DO SABER CENTRO DE EXLICAÇÕES Matemática - 9º Ano Em todas as questões apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efectuar e todas as justificações que
Departamento de Engenharia Informática da Universidade de Coimbra
Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
