Resolução do Simulado
|
|
|
- Sabrina Furtado Tavares
- 8 Há anos
- Visualizações:
Transcrição
1 Resolução do Simulado 19. Gastei 2 3 do meu salário e em seguida 3 4 do restante e fiquei ainda com R$480, 00. O meu salário é: R: Primeiro, vamos representar o salário como uma quantidade x. Do enunciado, temos que foi gasto 2 3 do salário x, ou seja, a primeira despesa foi uma quantidade 2 3 x Assim, após essa primeira despesa, o que sobrou foi x 2 ( 3 x = x 1 2 ) ( ) 1 = x = x Do enunciado novamente, temos que foi gasto 3 4 segunda despesa foi 3 4 x 3 = x 4 do que sobrou, ou seja, a Montando a equação agora, temos que do salário x foi retirado 2 3 x e depois x 4, sobrando então R$480, 00, assim Portanto, o salário é R$5760, 00. x 2 3 x x 4 = x 4(2x) 3x = x 8x 3x = 5760 x = Uma máquina varredeira limpa uma área de 5100 m 2 em 3 horas de trabalho. Nas mesmas condições, em quanto tempo limpará uma área de m 2? R: Vamos utilizar regra de três, pensando nas grandezas Área Limpa e Horas de Trabalho. Então, montamos a tabela Área Limpa (m 2 ) Horas de Trabalho (h) x Analisando a relação entre as grandezas, vemos que se a área aumenta, então as horas de trabalho aumentam, ou seja, as grandezas são diretamente proporcionais. Área Limpa Horas de Trabalho
2 Assim, multiplicamos cruzado 5100x = x = = x = 7 = Portanto, a máquina levará 7 horas para limpar m Uma piscina possui duas bombas ligadas a ela. A primeira bomba, funcionando sozinha, esvazia a piscina em duas horas. A segunda sozinha esvazia a piscina em 3 horas. Caso as duas bombas sejam ligadas juntas a piscina estará vazia em: R: Primeiro, para descobrir quanto da piscina cada bomba esvazia em uma hora. Obs.: Vamos utilizar 100% = 1 para facilitar as contas. Montamos a regra de três considerando as grandezas Porcentagem da Piscina e Horas para Esvaziar. E como as grandezas são diretamente proporcionais, em mais horas esvazia-se uma maior porcentagem da piscina, vamos multiplicar cruzado. Bomba 1 Porcentagem da Piscina Horas para Esvaziar (h) 1 3 x 1 1 3x 1 = 1 x 1 = 1 3 Ou seja, a Bomba 1 esvazia 1 3 da piscina em uma hora. Bomba 2 Porcentagem da Piscina Horas para Esvaziar (h) 1 2 x 2 1 2x 2 = 1 x 2 = 1 2 Ou seja, a Bomba 2 esvazia 1 2 da piscina em uma hora. Assim, com as duas bombas ligadas, após uma hora será esvaziado = da piscina = 5 6 Agora, montamos outra tabela envolvendo as mesmas grandezas, mas com os dados que acabamos de encontrar:
3 Bomba 1 e Bomba 2 juntas Porcentagem da Piscina Horas para Esvaziar (h) x 5 6 x = 1 x = 6 5 x = 1, 2 Logo, as duas bombas juntas esvaziam a piscina em 1, 2 horas. 22. Na figura r e r são paralelas e a reta s é perpendicular a t. Se o menor ângulo entre r e s mede 72, então o ângulo α mede: R: Utilizando o Teorema de Tales (em vermelho) e a ideia de ângulo oposto pelo vértice (em amarelo), temos a seguinte figura: Observe que temos um triângulo com ângulos que medem 72, α e 90. Logo, α = 180 α = α = Na figura seguinte, AB = BC = CD. Calcule α, sabendo que D = 30 :
4 R: Do enunciado, concluímos que os triângulos ABC e BCD são isósceles. Então, temos B DC = C BD = 30. Portanto, DĈB = 180 DĈB = 120 E também, BĈA = CÂB = BĈA = CÂB = 60 E, como α é ângulo externo do triângulo ABD, temos que α = CÂB + B DC α = = A resolução já foi postada!
5 25. (UFPR-2013) Suponha que o número P de indivíduos de uma população, em função do tempo t, possa ser descrito de maneira aproximada pela expressão P = t Sobre essa expressão, considere as seguintes afirmativas: 1. No instante inicial, t = 0, a população é de 360 indivíduos. 2. Com o passar do tempo, o valor de P aumenta. 3. Conforme t aumenta, a população se aproxima de 400 indivíduos. R: No item 1, basta substituir t = 0 na expressão. Logo, o item 1 é falso P = 300 No item 2, basta observar que conforme t vai aumentando, o número 4 t vai ficando cada vez menor. Veja na tabela abaixo t 4 t t = = 1 t = = 1 4 = 0, 25 t = = = 1 16 = 0, 0625 Então, como o numerador esta fixo (em 3600), a população P vai aumentando. Logo, o item 2 é verdadeiro. No item 3, basta observar que conforme t aumenta, o número 4 t vai se aproximando de 0. Assim, para um valor t = T muito grande, teremos 4 T = 0 e então Portanto, o item 3 é verdadeiro. 9 P = 400
6 26. (UFPR-2011) Em uma cidade de habitantes, aproximadamente foram vacinados contra o vírus H1N1, número muito menor do que as autoridades de saúde previam. Se tomarmos aleatoriamente 50 habitantes dessa cidade, quantos deles se espera que tenham sido vacinados contra o vírus H1N1? R: Utilizaremos a regra de três, considerando as grandezas Total de Habitantes e Habitantes Vacinados. Observe que as grandezas são diretamente proporcionais. Total de Habitantes Habitantes Vacinados x Assim, x = x = x = 2 Logo, espera-se que 2 habitantes tenham sido vacinados. 27. Utiliza-se a mesma estratégia da questão 25.
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Colégio Naval 2003 (prova verde)
Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos
Teorema do ângulo externo e sua consequencias
Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.
01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
Grupo de exercícios I.2 - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles
Figura 1: Questão 8. (a) Pode-se dizer que ABC DEF? (b) Pode-se dizer que ABC EDF? (c) Determine o valor de m(ef ).
1. Diga se cada uma das afirmações abaixo é falsa ou verdadeira: (a) Por um ponto passam infinitas retas. (b) Por três pontos dados passa uma reta. (c) Quatro pontos dados, todos distintos, determinam
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
PONTOS NOTAVEIS NO TRIANGULO
1. (Udesc) Observe a figura. Sabendo que os segmentos BC e DE são paralelos, que o ponto I é incentro do triângulo ABC e que o ângulo BIC é igual a 105, então o segmento AC mede: a) 5 b) 10 c) 0 d) 10
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A
Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Relação de Euler para Quadriláteros 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros 2 Exercícios de Fixação Exercício 5. Seja
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:
2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade
1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO)
Aluno(a): Professora: Deise Ilha Turno: Matutino. Componente Curricular: Matemática Data: / / 2016.. 1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) QUESTÃO 01 Tipo A (Julgar Certo ou Errado)
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos:
Modulo 1 1) Seja x a medida do ângulo procurado x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: 180º - x = (90º x) + 16º 180º - x = 270º 3x + 48º 2x = 138º x = 69 3 2) â + b =
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UP 014...................................... 1 1.1.1 Questão 1................................. 1 1.1. Questão................................. 1 1.1.3 Questão 3.................................
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169
MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 17 GABARITO COMENTADO 1) O valor, em reais, pago pelo contribuinte é 0,15. (34000 26000) = 0,15. 000 = 1200
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.
aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
MAT Álgebra Linear para Engenharia I
MAT2457 - Álgebra Linear para Engenharia I Prova 2-15/05/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala sem entregar
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 07 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Em um condomínio residencial, há três tipos de
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Semelhança de triângulos
Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de
EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA
8º ANOA( ) B( )Data: / 05 / 2017. Professor(a): JUNIOR Etapa : 1ª( ) 2ª ( X ) 3ª ( ) Aluno (a): EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 1. O segmento da perpendicular traçada de um vértice
Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular
MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício
ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1
ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I
LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
PROVA DE MATEMÁTICA QUESTÃO 31 UFMG. Seja. O valor de m é D) 20 PROVA DE MATEMÁTICA
QUESTÃO 31 Seja. O valor de m é A) B) 68 3 85 1 C) 15 1 D) 0 3 5 QUESTÃO 3 Um reservatório cúbico, de 50 cm de profundidade, está com água até a metade e precisa ser totalmente esvaziado. O volume de água
XXXIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXIII Olimpíada Brasileira de Matemática GBRITO Segunda Fase Soluções Nível 2 Segunda Fase Parte PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa parte
Resolução do Simulado Camiseta Preta
Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
LISTA DE EXERCÍCIOS 3º ANO
Questão 0 a) Soma dos ângulos internos de um pentágono: 180 ( 5 ) = 540 Sendo o ângulo FPG = α, temos: α + 90 + 10 + 90 = 360 => α = 60. Como os lados adjacentes ao ângulo α são os lados de quadrados congruentes,
GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.
GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.
(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729
08. Determine o valor de 8 + 14 + 6 + 4. (R. ) 01. O valor da expressão LISTA 1 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio - 017 1 + 1 + 1 1 a) b) c) 0 d) 4 e) 4 (Alternativa E) 0. A expressão com
MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15
Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal
5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27
MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (
TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA
TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
Módulo Elementos Básicos de Geometria - Parte 3. Pontos Notáveis no Triângulo. Professores Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte 3 Pontos Notáveis no Triângulo. 8 ano/e.f. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Pontos Notáveis no Triângulo.
QUESTÃO 18 QUESTÃO 19
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de três números naturais múltiplos
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)
Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo
,12 2, = , ,12 = = (2012) 2.
1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro
O quadrado e outros quadriláteros
Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,
Lista 1 com respostas
Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105/MAT0112-1 semestre de 2015 Exercício 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta: (a) (A, B) (C, D) AB
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.
21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das
PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.
PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o
COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA
COLÉGIO MARISTA - PATOS DE MINAS º ANO DO ENSINO MÉDIO - 013 Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO QUESTÕES Conteúdos: - Matemática Financeira - Geometria Plana
Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo
CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.
CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)
EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Ano: 8 o - Ensino Fundamental Professores: Rose, Weslei e Wuledson Atividades para Estudos Autônomos Data: 4 / 9 / 2017 Aluno(a): N o : Turma: Caro(a) aluno(a),
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): N
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 2º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /06 Obs.: Esta lista deve ser entregue resolvida no dia da prova de Recuperação. Valor:
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática
Solução da prova da 1 a fase OBMEP 2009 Nível 2
1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o número, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente ao algarismo 5,
Média, Mediana e Distância entre dois pontos
Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 8o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 8o Ano Teste de Avaliação 14/12/2015 PROPOSTA DE RESOLUÇÃO 1. (18) 4 ( 9 2) 2 ( 4) 2 = ( ) 4 ( ) 2 1 1 = (9) 4 = 18 4 ( ) 4 ( ) 2 9 1 = = 18 4 ( )
6. S d 2 = 80 ( ) 2 S d 2 = S d 2 = (constante de proporcionalidade) 6.1. Se d = , então d 2 = e S = 20
Matemática.º Ano 41 Praticar + para a prova final páginas 1 a 4 1. 1.1. Número de casos favoráveis: 1 Número de casos possíveis: 5 Logo, P( ser o criminoso ) = 1 5 1.. Número de casos favoráveis: 1 Número
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
II OMIF 2019 RESOLUÇÃO DA PROVA
II OMIF 019 RESOLUÇÃO DA PROVA QUESTÃO 01 GABARITO: B Como 3µ tem que tem valor terminado em µ, então µ =0 ou µ =5. Contudo, µ não pode ser zero, pois, se fosse, todos os algarismos teriam que ser zero.
DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar
DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta
OS PRISMAS. 1) Conceito :
1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :
Disciplina: Matemática Data da entrega: 31/03/2015.
Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:...
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:... ============================================================================================= 1.
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
GAAL: Exercícios 1, umas soluções
GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos
