MAT Álgebra Linear para Engenharia I
|
|
|
- Fábio Chaves
- 6 Há anos
- Visualizações:
Transcrição
1 MAT Álgebra Linear para Engenharia I Prova 2-15/05/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala sem entregar a prova. (3) Todo material não necessário à prova (mochilas, bolsas, calculadoras, agasalhos, bonés, celulares, livros, etc.) deve ficar na frente da sala. (4) Sobre a carteira devem permanecer apenas lápis, caneta, borracha e documento de identidade com foto. (5) É permitida a entrada na sala até as 8:00 e não é permitida a saída da sala antes das 8:40. (6) As respostas devem ser transferidas para a folha óptica durante as 2 horas de prova (não há tempo extra para o preenchimento da folha óptica). (7) Só destaque o gabarito do aluno (última folha) quando for entregar a prova. Não esqueça de anotar o tipo de prova no gabarito do aluno (para que você possa depois conferir suas respostas com o gabarito oficial). (8) A folha óptica deve ser preenchida com caneta esferográfica azul ou preta. (9) Para o correto preenchimento da folha óptica siga o exemplo abaixo.
2 Nas questões nas quais um sistema de coordenadas em E 3 não estiver especificado, deve-se levar em conta que todas as coordenadas estão dadas em um sistema de coordenadas de E 3 de base ortonormal e positiva. Questão 1. Considere o cubo representado na figura abaixo e o sistema de coordenadas Σ = ( A, { AB, AE, AD} ) em E 3. A B D C E F H G Então, uma equação geral do plano que passa pelo ponto B e é paralelo aos vetores GA e HF é dada por a. x 2y + z 1 = 0 b. 2x y z 2 = 0 c. x + 2y z 2 = 0 d. x 2y + z 2 = 0 e. 2x y z 2 = 0 Questão 2. Fixada uma orientação em V 3, dados u, v V 3, pode-se afirmar que a. ( u + 2 v) ( u 3 v) = 2 u v. b. se { u, v} é linearmente independente, então { u, v, u v} é uma base positiva de V 3. c. u v 2 + ( u v) 2 = u 4 v 4. d. se u é ortogonal a v, então u v = 0. e. u v = 0 se, e somente se, v = u. 2
3 Questão 3. Sejam A, B, C E 3 os vértices de um triângulo. Suponha que AB = BC e que a mediana relativa à base AC esteja contida na reta dada pelas equações x + 1 = 1 y = z. Se A = (1, 2, 3), então as 2 coordenadas do vetor AC são a. (1, 3, 2) b. ( 2, 2, 2) c. (0, 4, 4) d. (0, 2, 2) e. (2, 4, 2) Questão 4. Considere fixada uma orientação em V 3 e seja E uma base ortonormal positiva de V 3. Se a = ( 1, 0, 1) E, b = (1, 2, 1)E e x é um vetor tal que x a = b, então a soma das coordenadas de x com respeito à base E é igual a a. 1 b. 1 c. 2 d. 3 e. 0 Questão 5. Sejam A, B, C, D E 3 vértices de um tetraedro tais que AB = AC = 2 e AD = 3. Se o ângulo no vértice A do triângulo ABC mede 2π/3 radianos e a reta AD faz um ângulo de π/3 radianos com o plano ABC, então o volume do tetraedro ABCD é igual a a. 6/2 b. 3 3 c. 1 d. 6 e. 3/2 3
4 Questão 6. Considere os planos π 1 : x + y + 3z = 1 e π 2 : x z = 1. Seja r a reta dada pela interseção de π 1 e π 2, e seja s a reta de equação X = (3, 0, 1) + λ(2, 1, 2), λ R. Considere as seguintes afirmações abaixo. (I) π 2 e s são perpendiculares. (II) r e s são ortogonais. (III) π 1 e π 2 são perpendiculares. Assinale a alternativa correta. a. Nenhuma das três afirmações é verdadeira. b. Apenas as afirmações (II) e (III) são verdadeiras. c. Todas as três afirmações são verdadeiras. d. Apenas a afirmação (II) é verdadeira. e. Apenas as afirmações (I) e (II) são verdadeiras. 4
5 Questão 7. Sejam a, b, c, d R, com a 2 + b 2 + c 2 = 0, sejam X 0, X 1 E 3 e sejam m, n, p V 3, com { m, n} linearmente independente e p = 0. Considere os planos π 1 : ax + by + cz + d = 0 e π 2 : X = X 0 + λ m + µ n (λ, µ R) e a reta r : X = X 1 + λ p Considere as afirmações abaixo. (λ R). (I) Se o vetor (a, b, c) é ortogonal aos vetores m e n, e ax 0 + by 0 + cz 0 + d = 0, onde (x 0, y 0, z 0 ) = X 0, então π 1 = π 2. (II) Se [ m, n, p] = 0, então a reta r está contida no plano π 2. (III) Se ap 1 + bp 2 + cp 3 = 0, onde (p 1, p 2, p 3 ) = p, e ax 1 + by 1 + cz 1 + d = 0, onde (x 1, y 1, z 1 ) = X 1, então a reta r está contida no plano π 1. Está correto o que se afirma em a. (I) e (II), apenas. b. (III), apenas. c. (I) e (III), apenas. d. (I), (II) e (III). e. (I), apenas. Questão 8. Sejam E e F bases de V 3 tais que F = { (α, α, α) E, (0, α, α) E, (0, 0, α) E }, em que α é um número real não nulo. Se v = (1, 1, 2) F, então a soma das coordenadas de v com respeito à base E é igual a a. 4α b. 0 c. 2α d. 3α e. α 5
6 Questão 9. As trajetórias de duas partículas que se movimentam em E 3 são retilíneas e suas posições no instante t são dadas pelas equações X = (1, 1, 0) + t(1, 2, 3) e X = (2, 3, 3) + t(3, 2, 1). Dizemos que haverá colisão se existir um instante t em que as partículas se encontram em um mesmo ponto X. Então, podemos afirmar que a. as trajetórias não se cruzam, pois são reversas. b. as trajetórias são as mesmas, mas não haverá colisão. c. as trajetórias não se cruzam, pois são paralelas e distintas. d. as trajetórias se cruzam, mas não haverá colisão. e. haverá colisão. Questão 10. Considere os pontos A = (0, 2, 3), B = (1, 2, 4) e C = (1, 3 2, 7 2 ) de E3 e seja D o ponto da reta de equação X = A + t(0, 1, 3), t R, tal que BD seja ortogonal ao vetor (2, 1, 1). Então, o volume do paralelepípedo de lados AB, AC e AD é a. 9/4 b. 2 c. 4 d. 8/3 e. 3/2 6
7 Questão 11. Considere as afirmações abaixo. (I) Se E = { u, v, w} e F = { v, u, w} são bases de V 3, então E e F têm a mesma orientação. (II) Fixada uma orientação em V 3, se E = { e 1, e 2, e 3 } é uma base ortonormal positiva de V 3, então F = { e 1 + e 2, e 1 e 2, e 3 } é uma base ortogonal negativa de V 3. (III) Fixada uma orientação em V 3, se a, b V 3 são tais que { a, b } é linearmente independente, então { a, b, b a } é uma base negativa de V 3. Está correto o que se afirma em a. (III), apenas. b. (I), (II) e (III). c. (I) e (II), apenas. d. (I) e (III), apenas. e. (II) e (III), apenas. Questão 12. Sejam A, B, C, D quatro pontos de E 3 tais que { } AB, AC, AD seja linearmente independente. Seja P o paralelepípedo de lados AB, AC e AD. Considere as afirmações abaixo. (I) O volume do paralelepípedo P é igual à norma do produto vetorial de AB por u, onde u = ( ) AC AD AB. (II) A altura do paralelepípedo P com relação à base ABC é igual a [ DB, DA, DC] CB CA. (III) O vetor ( AB AC ) AD é paralelo ao plano ABC. Está correto o que se afirma apenas em a. (II). b. (II) e (III). c. (I) e (II). d. (III). e. (I) e (III). 7
8 Questão 13. Sejam A = (2, 1, 1) e B = (0, 1, 1) pontos de E 3, e seja C a interseção da reta de equação X = (0, 1, 1) + t(2, 1, 0), t R, com o plano de equação x + y z = 4. Então, a medida da altura do triângulo ABC com respeito à base AB é igual a a. 38/3 b. 2 14/3 c. 2 2 d. 8/3 e. 1 Questão 14. Seja m R, m = 0. Considere as retas r, s, t descritas abaixo. x my + 1 = 0 r : ; s : x = y y z 1 = 0 m = z ; t : 1 x = y = z 1 2 Assinale a alternativa FALSA. a. Existe um valor de m para o qual as retas r, s e t são paralelas a um mesmo plano. b. As retas s e t são reversas se, e somente se, m = 2. c. Se m = 1, então as retas r e s são reversas. d. Se m = 1, então as retas r e s são paralelas. e. As retas s e t são ortogonais se, e somente se, m = 3. 8
9 Questão 15. Assinale a afirmação FALSA a respeito de vetores u, v, w V 3, fixada uma orientação de V 3. a. [λ u, λ v, λ w] = λ 3 [ u, v, w], qualquer que seja λ R. b. [ u, v, w] = [ v, w, u]. c. Se { u, v, w} é linearmente independente, então o volume do paralelepípedo determinado por u, v e w é igual a [ u, v, w]. d. ( u v) w = u ( v w). e. Se { u, v, w} é uma base ortogonal negativa de V 3 e u = 1, v = 2, w = 5, então [ u, v, w] = 5. Questão 16. Nesta questão considere coordenadas dadas com respeito a uma base ortonormal de V 3. Seja u V 3. Sabendo que u = 3, u é ortogonal aos vetores (1, 0, 1) e ( 1, 1, 3), e u forma ângulo obtuso (isto é, de medida superior a π/2 radianos) com o vetor (0, 0, 1), se x, y, z R são tais que u = (x, y, z), então x + y z é igual a a. 6 b. 0 c. 2 6 d. 2 6 e. 6 9
10 Gabarito do Aluno Nome: NUSP: Tipo de prova: Questão a b c d e
GABARITO PSUB Questão Resposta 1 A 2 A 3 E 4 D 5 A 6 B 7 A 8 A 9 C 10 E 11 C 12 C 13 B 14 C 15 A 16 D
GABARITO PSUB 2013 Questão Resposta 1 A 2 A 3 E 4 D 5 A 6 B 7 A 8 A 9 C 10 E 11 C 12 C 13 B 14 C 15 A 16 D MAT2457 - Álgebra Linear para Engenharia I Prova Substitutiva - 26/06/2013 Nome: Professor: NUSP:
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b MAT2457 - Álgebra Linear para Engenharia I Prova 1-10/04/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova
1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1
Com exceção da Questão 15, em todas as questões da prova considera-se fixado um sistema de coordenadas Σ = (O, E), onde E é uma base ortonormal positiva. 1Q1. Considere o ponto A = (1, 2, 3), a reta r
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a
MAT Álgebra Linear para Engenharia II
MAT2458 - Álgebra Linear para Engenharia II Prova Substitutiva - 04/12/2013 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e
(e) apenas as afirmações (II) e (III) são verdadeiras.
Nas questões da prova em que está fixado um sistema de coordenadas Σ = (O, E, quando for necessário, considera-se que E é uma base ortonormal positiva. 1Q 1. Seja V um espaço vetorial e x 1, x 2,, x q,
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal
Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal positiva de V 3. 1Q1. Seja m R não nulo e considere as retas: r :
a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)
1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)
Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.
1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas
III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1
Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
1 a Lista de Exercícios MAT 105 Geometria Analitica
1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
MAT 112 Vetores e Geometria. Prova SUB C
MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015
MAT 112 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 LISTA 1 1. Ache a soma dos vetores indicados na figura, nos casos: 2. Ache a soma dos vetores indicados em cada caso, sabendo-se que (a) ABCDEFGH
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de y + az = a (a 2)x + y + 3z = 0 (a 1)y = 1 a
MAT457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de 018 Questão 1. Se a R, é correto afirmar que o sistema linear y + az = a (a x + y + 3z = 0 (a 1y = 1 a é: (a possível e indeterminado
x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
2 ) X = (0, 1, Escreva equações paramétricas dos eixos coordenados.
Universidade Federal Rural do Semi-Árido-UFERSA. Departamento de Ciências Exatas e Naturais. Bacharelado em Ciências e Tecnologia. Disciplina de Geometria Analítica. Lista 1. Estudando Geometria Analítica
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.
MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,
LISTA EXTRA DE EXERCÍCIOS MAT /I
LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,
MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018
MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I a Lista de Exercícios - o semestre de 8 Exercícios -8: os espaços V e V 3. Exercícios 9-7: dependência, independência linear, bases. Exercícios 8-48: sistemas lineares.
Exercícios de Geometria Analítica - CM045
Exercícios de Geometria Analítica - CM045 Prof. José Carlos Corrêa Eidam DMAT/UFPR Disponível no sítio people.ufpr.br/ eidam/index.htm 1o. semestre de 2011 Parte 1 Soma e produto escalar 1. Seja OABC um
TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.
FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:
Controle do Professor
Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS
P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)
P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w
Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1
ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 Questões 1. Sejam A, B, C e D vértices de um quadrado. Quantos vetores diferentes entre si podem ser definidos
1ª Prova de Geometria Analítica 1 Data: 06/09/2016
1ª Prova de Geometria Analítica 1 Data: 06/09/2016 Nome: GRR: Curso: Nota Esta prova contém 10 questões. Confira! Valor desta avaliação: 10,0. Leia com atenção as seguintes instruções: 1. O tempo de duração
GAAL: Exercícios 1, umas soluções
GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos
MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 2 - Álgebra Vetorial
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 2 - Álgebra Vetorial Desenvolvidas
EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
Geometria Analítica - Retas e Planos
Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GA3X1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Retas e Planos Prof. Lilian
Vetores e Geometria Analítica
Vetores e Geometria Analítica Prof. Wellington Lista 1 - E para final 4 ou 5 do RGA Instruções Assinale as alternativas corretas na folha de respostas que está no final da lista. É permitido deixar questões
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
A Reta no Espaço. Sumário
16 A Reta no Espaço Sumário 16.1 Introdução....................... 2 16.2 Equações paramétricas da reta no espaço...... 2 16.3 Equação simétrica da reta no espaço........ 8 16.4 Exercícios........................
G2 de Álgebra Linear I
G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
Lista de Exercícios de Geometria
Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)
Lista 2 com respostas
Lista 2 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2015 Exercício 1. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que ( OA, OB, OC ) é base e determine as coordenadas
... GABARITO 1 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado
CADERNO DE QUESTÕES -- PAS--UEM//01 -- ETAPA N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES I PARA A REALIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m
Lista de Álgebra Linear Aplicada
Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2
Lista 4 com respostas
Lista 4 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Estude a posição relativa das retas r e s. (a) r : X = (1, 1, 1) + λ( 2, 1, 1), s : (b) r : { { x y z = 2
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.
n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Teste [maio - 018] Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou
Provas de Cálculo Vetorial e Geometria Analítica. Período
Provas de Cálculo Vetorial e Geometria Analítica Período 2015.1 Sérgio de Albuquerque Souza 15 de dezembro de 2015 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de Resolva o sistema abaixo para as incógnitas x e y:
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2015 1 Determine x em função de u e v na equação 2 x 3 u = 10( x + v 2 Resolva o sistema abaixo para as incógnitas x e
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
Lista 4 com respostas
Lista 4 com respostas Professora Nataliia Goloshchapova MAT0 - semestre de 05 Exercício. Estude a posição relativa das retas r e s. (a) r : X = (,, ) + λ(,, ), s : (b) r : x y z = x y = 5 x + y z = 0,
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano
1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1
14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos
Álgebra Linear I - Lista 7. Respostas
Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,
Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)
UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
Álgebra Linear I - Aula 5. Roteiro
Álgebra Linear I - Aula 5 1. Produto misto. 2. Equação paramétrica da reta. 3. Retas paralelas e reversas. 4. Equação paramétrica do plano. 5. Ortogonalizade. Roteiro 1 Produto Misto Dados três vetores
Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff
1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre
Lista 2 com respostas
Lista 2 com respostas Professora Nataliia Goloshchapova MAT0112-1 semestre de 2015 Exercício 1. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que ( OA, OB, OC ) é base e determine as coordenadas
Álgebra Linear I - Lista 5. Equações de retas e planos. Posições relativas. Respostas
Álgebra Linear I - Lista 5 Equações de retas e planos. Posições relativas Respostas 1) Obtenha equações paramétricas e cartesianas: Das retas que contém aos pontos A = (2, 3, 4) e B = (5, 6, 7), A = (
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico
CURSO de MATEMÁTICA (Niterói) - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2009 e 1 o semestre letivo de 2010 CURSO de MATEMÁTICA (Niterói) - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:
1 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de (b)
a Lista de Exercícios de MAT457 Escola Politécnica o semestre de 04 Resolva os seguintes sistemas: x + x x 3 + 3x 4 = a 3x + x x 3 + x 4 = 4 3x + 3x + 3x 3 3x 4 = 5 c x + x 3 + x 5 = x + x 3 + x 5 + x
7 a lista de exercícios - GA Período de Prof. Fernando Carneiro
Lista 7 de GA 1 7 a lista de exercícios - GA Período de 014. - Prof. Fernando Carneiro 1 (Boulos): Dados os pontos A(1, 0, 0), B(, 1, 0), C(1, 0, 1) e D(, 1, 1), mostre que a) formam um retângulo; b) a
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. II Simulado de Matemática ITA. ALUNO(A): N o : TURMA:
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 4006.7777 3 o Ensino Médio II Simulado de Matemática ITA ALUNO(A): N o : TURMA: TURNO: MANHÃ DATA: 1/04/007
Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30
Retas no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Retas no Espaço 28 de Agosto de 2018 1 / 30 Equação Vetorial da Reta Um dos principais axiomas da Geometria Euclidiana diz que
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar PROVA DE MATEMÁTICA IV SIMULADO ITA. ALUNO(A): N o : TURMA:
D: 007 018 º EM MATEMÁTICA ITA IME SIMUL Rosângela FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 4006.7777 o Ensino Médio PROVA DE MATEMÁTICA IV SIMULADO
linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).
11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
Retas e planos no espaço
Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemáica
Universidade Tecnológica ederal do Paraná âmpus ampo Mourão epartamento de Matemáica 1. Verdadeiro ou falso? GX1 - Geometria nalítica e Álgebra Linear Lista de xercícios: Produto de Vetores Prof. Lilian
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
MAT 105- Lista de Exercícios
1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero
... GABARITO 4 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado
CADERNO DE QUESTÕES -- PAS--UEM//0 -- ETAPA N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES I PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
