RESISTÊNCIA DOS MATERIAIS
|
|
|
- Heitor Cipriano de Paiva
- 8 Há anos
- Visualizações:
Transcrição
1 ereira Ediçã CAPÍULO RESISÊNCIA DOS MAERIAIS Ferdinand P. Beer E. Russell hnstn, r. rçã em Seções Cirulares Capítul 3 rçã em Seções Cirulares 3.1 Intrduçã 3. Análise Preliminar das ensões 3.3 Defrmações em Eixs Cirulares 3.4 ensões n Regime Elásti 3.5 Ângul de rçã n Regime Elásti 3.6 Prjet de Eix de ransmissã 3 -
2 3.1 - Intrduçã ensões e defrmações de eixs u peças de seçã transversal irular sujeits à açã de njugads u trques; Exempl: eixs de transmissã. A turbina exere um trque n eix; O eix transmite trque n geradr; O geradr ria um trque igual e pst, hamad mment trçr. Efeits da trçã: ensões de isalhament nas diversas seções transversais d eix; Prduz um deslament angular de uma seçã transversal em relaçã à utra Análise Preliminar das ensões A resultante das tensões de isalhament, geram um trque intern igual e pst a trque extern apliad df da Embra a resultante d trque devid às tensões de isalhament seja nheida, a distribuiçã das tensões ainda nã é. A determinaçã da distribuiçã das tensões de isalhament é estatiamente indeterminada, deve-se nsiderar as defrmações d eix para a sua sluçã. Diferentemente da distribuiçã das tensões nrmais devid à argas axiais, a distribuiçã das tensões de isalhament devid a trque nã pde ser nsiderada unifrme. 3-4
3 3. Análise Preliminar das ensões O trque apliad na barra irular prduz tensões de isalhament nas faes perpendiulares a eix axial. As ndições de equilíbri requerem a existênia de tensões iguais nas faes ds dis plans que ntêm eix da barra. Demnstraçã: nsiderand que a barra é feita de tiras axiais; uma lâmina desliza m relaçã a utra quand trques iguais e psts sã apliads nas extremidades d eix Defrmações em Eixs Cirulares O ângul de trçã d eix é prprinal a trque apliad e a mpriment d eix. L da seçã irular d eix permanee plana e sem distrçã quand a trçã é apliada. Lg, eix irular é definid m axissimétri (a aparênia é a mesma quand eix é bservad de algum pnt). Seções transversais de eixs nã-irulares sã distridas quand sujeitas a trçã. 3-6
4 3.3 Defrmações em Eixs Cirulares Cnsidere um element n interir de uma seçã de um eix, submetid a um trque. Desde que a extremidade d element permanee plana, a defrmaçã de isalhament é prprinal a ângul de trçã. Entã: AA L e AA L u L Lg, a defrmaçã de isalhament máxima será: e L ensões n Regime Elásti Pela lei de Hke para isalhament, G G lg, 1 A tensã de isalhament varia linearmente m a distânia radial na seçã. Cm a sma ds mments interns ausads pela tensã de isalhament deve ser igual a trque extern, da da Os resultads sã nheids m fórmulas de trçã elástia, min e 3-8
5 Exempl 3.1 Para eix vazad de aç, determinar: (a) mair mment de trçã que pde ser apliad para que as tensões de isalhament nã exedam 1 MPa; (b) valr mínim da tensã de isalhament para respsta d item (a). 3-9 ensões em Plans Ortgnais a Eix Elements m faes perpendiulares e paralelas a eix axial, estã submetidas a isalhament pur. ensões nrmais e tensões de isalhament sã enntradas para utras rientações. Cnsidere um element a 45 d eix axial, 45 F F A A s45 A A Element a está sb isalhament pur. Element está submetid a traçã em duas de suas faes e a mpressã nas utras duas. A 3-1
6 Falhas sb trçã Cisalhament pur ensões de traçã e mpressã Materiais dúteis geralmente falham pr isalhament. Materiais frágeis sã mens resistentes à traçã (tensã nrmal) d que a isalhament. Na trçã, s materiais dúteis rmpem n plan nde rre a tensã de isalhament máxima (plan perpendiular a eix axial). Na trçã, s materiais frágeis rmpem em um plan nde rre a tensã nrmal máxima (plan que frma 45 m eix axial) Exempl 3. O eix BC é m diâmetr intern de 9 mm e diâmetr extern de 1 mm. Os eixs AB e CD sã heis e de diâmetr d. Para arregament mstrad, determine: (a) as tensões de isalhament mínima e máxima n eix BC, (b) diâmetr d neessári para s eixs AB e CD, se a tensã admissível a isalhament para material d eix é de 65 MPa. 3-1
7 Exempl 3.3 O prjet preliminar de um eix de transmissã levu à eslha de uma barra de seçã vazada, m diâmetr intern de 1 mm e diâmetr extern de 15 mm. Pede-se determinar máxim trque que pderá ser transmitid, send a tensã admissível d material 83 MPa, nas seguintes situações: (a) d prjet preliminar; (b) supnd um eix sólid maiç de mesm pes daquele d anteprjet Ângul de rçã n Regime Elásti Sabems que ângul de trçã e a defrmaçã de isalhament estã relainadas pr: L Pela lei de Hke para isalhament: G G Igualand as equações e reslvend para ângul de trçã: L G Se trque, a seçã, material u mpriment variam a lng d eix: il i G i i i 3-14
8 Exempl 3.4 Determine valr d mment de trçã que deve ser apliad à extremidade d eix irular mstrad de md que ângul de trçã prduzid seja de º. Dad: G = 8 GPa Exempl 3.5 Para eix de seçã vazada uj material tem G = 8 GPa, alular valr d ângul de trçã que prva uma tensã de isalhament de 7 MPa na fae interna d eix. 3-16
9 Eixs Estatiamente Indeterminads O númer de inógnitas a enntrar é mair que númer de equações da estátia apliáveis. Ex: Dad eix da figura, desejams determinar s trque reativs em A e B. Da análise d D.C.L. d eix: A 9lb ft (1) B Dividind eix em duas partes, as quais preisam ter mpatibilidade de defrmações, AL BL L B 1G G L Substituind na equaçã de equilíbri, L 9lb ft () 1 A A L 1 1 A 3-17 Exempl 3.6 Dis eixs sólids de aç sã netads pr engrenagens. Sabend que material ds eixs tem G = 11, x 1 6 psi e tensã admissível a isalhament de 8 ksi, determine: (a) trque máxim que pde ser apliad em A; (b) rrespndente ângul de trçã em A. 3-18
10 SOLUÇÃO: Análise de equilíbri estáti ns dis eixs para enntrar uma relaçã entre CD e. Análise da inemátia para relainar a rtaçã angular das engrenagens. CD M F,875in. B M F,45in. C,8 CD r r B B C C rc,45in. B C C r,875in. B B,8 C 3-19 SOLUÇÃO: Enntre para a tensã máxima admissível em ada eix eslha menr deles. Eix AB: 8 psi AB 4 AB.375in. 663lb in.375in. Eix CD 8 psi CD 4 CD.5in. 561lb in.8.5in. O menr valr: 561lbin 3 -
11 SOLUÇÃO: Enntre ângul de trçã em ada eix e a rtaçã da extremidade A. Eix AB: L 561lb in. 4in. AB AB / 4 ABG rad..375in psi Partind d pnt D fix: D C C/ D.95 B Eix CD L.8 561lb in. 36in. CD C / D 4 CDG rad.95.8c A B A/ B.5in psi 8.6. A Prjet de Eix de ransmissã O prjet de eixs de transmissã (árvres) baseia-se na ptênia transmitida e na velidade de rtaçã d eix. O prjetista preisa seleinar material e alular adequadamente a seçã d eix, sem que exeda a tensã admissível d material e ângul de trçã máxim permitid para a apliaçã. O trque apliad é uma funçã da ptênia e da velidade de rtaçã, P f W P P N.m f A seçã d eix é enntrada, igualand-se a tensã máxima à tensã admissível d material, 3 eix sólid eix 3 -
12 Exempl 3.7 Determinar diâmetr que deve ser usad para eix d rtr de uma máquina de 5 hp, perand a 36 rpm, se a tensã de isalhament nã pde exeder 59 MPa. Exempl 3.8 Um eix é nstruíd pr um tub de aç de 5 mm de diâmetr extern e deve transmitir 1 kw de ptênia a uma frequênia de Hz. Determinar a espessura d tub para que a tensã máxima de isalhament nã exeda 6 MPa
Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes
RESISTÊNCIA DOS MATERIAIS
RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro
Torção Não-Uniforme - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI
- UNIVERSIDADE FEDERA FUMINENSE ESCOA DE ENGENHARIA INDUSRIA MEAÚRGICA DE VOA REDONDA SAEE SOUZA DE OIVEIRA BUFFONI RESISÊNCIA DOS MAERIAIS orção Não-Uniforme A barra não precisa ser prismática e os torques
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:
EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é
Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento
Torção. Deformação por torção de um eixo circular. Deformação por torção de um eixo circular. Capítulo 5:
Capítulo 5: Torção Adaptado pela prof. Dra. Danielle Bond Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal: preocupação no
Prof. Willyan Machado Giufrida. Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo circular Torque: É um movimento que tende a torcer um elemento em torno do seu eixo tangencial -Quando o torque é aplicado os círculos e retas longitudinais originais
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção
Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.
LISTA DE EXERCICIOS RM - TORÇÃO
PROBLEMAS DE TORÇÃO SIMPLES 1 1) Um eixo circular oco de aço com diâmetro externo de 4 cm e espessura de parede de 0,30 cm está sujeito ao torque puro de 190 N.m. O eixo tem 2,3 m de comprimento. G=83
Proposta de teste de avaliação 4 Matemática 9
Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens
Resistência dos Materiais
Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo
ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto
ENG285 1 Adriano Alberto Fonte: Hibbeler, R.C., Resistência dos Materiais 5ª edição; Beer 5ª Ed; Barroso, L.C., Cálculo Numérico (com aplicações) 2ª edição; slides do Prof. Alberto B. Vieira Jr.; http://pessoal.sercomtel.com.br/matematica/geometria/geom-areas/geomareas-circ.htm
1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de
1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S
Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016.
26 de setembro de 2016 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 Este capítulo é dividido em duas partes: 1 Torção em barras
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção
Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e
1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em
1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.
MECSOL34 Mecânica dos Sólidos I
MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
Momento torsor. Torção em Eixos de Seção Retangular. 26 de setembro de 2016
Torção em Eixos de Seção Retangular 26 de setembro de 2016 Torção em Eixos de Seção Retangular Quando um torque é aplicado a um eixo de seção transversal circular, as deforamções por cisalhamento variam
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2014-2 Objetivos Conceituar e capacitar para a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA
para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:
Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C
Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das
teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.
EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311
j^qbjžqf`^=^mif`^a^=
j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C
Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds
Resistência dos materiais 1
Resistência dos materiais 1 Prof. Dr. Iêdo Alves de Souza Assunto: torção em barras de seção transversal circular DECE: UEMA & DCC: IFMA Plano de estudo Plano de estudo Introdução Plano de estudo Introdução
Aula 10 - Transmissão de Potência e Torque.
Aula 10 - Transmissão de Potência e Torque. Prof. Wanderson S. Paris, M.Eng. [email protected] Transmissão de Potência Eixos e tubos com seção transversal circular são freqüentemente empregados
4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes
4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CÍTULO RESISTÊNCI DOS MTERIIS erdinand. Beer E. Russell Johnston Jr. Conceito de Tensão Capítulo 1 Conceito de Tensão 1.1 Introdução 1.2 orças e Tensões; 1.3 orças iais: Tensões Normais;
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
π Resposta: 4 + j195 Ω.
Operaçã e Cntrle de Sistemas de Ptência Lista de Exercícis N. 1 Parte 1: Análise em Regime Permanente de Circuits de Crrente Alternada 1. Se uma fnte csenidal v(t) = 50 cs wt, cm f = 60 Hz, é cnectada
Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão
Resistência dos Materiais
- Torção Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva Índice Tensões de corte nas secções circulares Rotação das secções Torção em veios circulares
Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009
Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2018-1 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção 2da. Parte Ângulo de Torção no Regime Elástico Lembre-se que o ângulo de torção e a deformação de
Resistência dos Materiais
1ª Parte Capítulo 1: Introdução Conceito de Tensão Professor Fernando Porto Resistência dos Materiais 1.1. Introdução O principal objetivo do estudo da mecânica dos materiais é proporcionar ao engenheiro
CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.
CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E
Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.
Lista de exercícios Conceitos Fundamentais
Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as
Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama
Tensão. Introdução. Introdução
Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO 3.1. Para os estados planos de tensão da figura abaixo, determinar: (a) componentes planas de tensão; (b) componentes de tensão num plano rotacionado a 35º no sentido
Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada
Sistemas Elétrics de Ptência Lista de Exercícis N. Revisã de ircuits em rrente lternada Parte : Ptência em Sistemas Mnfásics. Duas cargas em paralel cnsmem respectivamente 20 W cm um fatr de ptência de
Aula 15 - Estudo de Torção e Ângulo de Torção.
Aula 15 - Estudo de Torção e Ângulo de Torção. Prof. Wanderson S. Paris, M.Eng. [email protected] Ângulo de Torção O projeto de um eixo depende de limitações na quan5dade de rotação ou torção ocorrida
Matemática B Extensivo V. 1
Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele
MATEMÁTICA 1 o Ano Duds
MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã
UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.
UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)
MAC-015 Resistência dos Materiais Unidade 02
MAC-015 Resistência dos Materiais Unidade 02 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)
III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA
COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção
Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.
34
01 PQ é a crda um de duas circunferências secantes de centrs em A e B. A crda PQ, igual a, determina, nas circunferências, arcs de 60 º e 10 º. A área d quadriláter cnve APBQ é : (A) 6 (B) 1 (C) 1 6 0
1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)
11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
UFSC. Matemática (Amarela)
Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue
A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1
OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em
Escla Secundária cm 3º cicl D. Dinis 1º An de Matemática A Tema II Intrduçã a Cálcul Diferencial II TPC nº 8 entregar em 17-0-01 1. Jã é cleccinadr de chávenas de café. Recebeu cm prenda um cnjunt de 10
MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Pavimento determinação das deflexões pela viga Benkelman
Métd de Ensai Página 1 de 7 RESUMO Este dcument, que é uma nrma técnica, trata da determinaçã de deflexões em paviment rdviári cm aplicaçã da viga Benkelman, visand a cnheciment da capacidade estrutural
Diagramas líquido-vapor
Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri
Matemática B Extensivo V. 2
Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:
