3.5 Métodos Numéricos para a Solução de Problemas de Contorno

Tamanho: px
Começar a partir da página:

Download "3.5 Métodos Numéricos para a Solução de Problemas de Contorno"

Transcrição

1 3.5 Métd Numéric ara a Sluçã d Prblma d Cntrn Equaçõ difrnciai rdinária Eml 3.7. Difuã-raçã m uma artícula catalítica ra: Figura 3.6. Partícula catalítica férica. Balanç d maa: (tad tacinári, itérmic) d dc r dr dr Dr r, < r < dc dr r (imtria) C ( ) C (cncntraçã fia na urfíci) Outra cnidraçõ: D cntant r k.f(c), nd k é a cntant da raçã. d dc D r k f( C) r dr dr Pd- ainda dfinir um fatr d ftividad da artícula (frma intgral): r C dv V k f C r dr r( C) dv ( ) V kf C rdr ( ) ( ) taa d raçã média na artícula η taa da raçã máima baada na urfíci Φ k D, cnhcid cm módul d Thil raçã difuã ara uma raçã d rimira rdm, u kf( C ) Φ ara uma raçã d qualqur rdm. DC Outra dfiniçã ara Módul d Thil é a ua vrã gnralizada: 3

2 Φ ˆ L r ( C ) C D r ( C) dc (Módul d Thil Gnralizad) nd L é cmrimnt caractrític da artícula, dfinid cm vlum da artícula dividid la ua urfíci trna, qu ara ca da fra L /3. Cm ta dfiniçã tm- Φ 3Φ ˆ ara uma raçã d rimira rdm na fra. -crvnd a quaçã difrncial: ( ) dc kf Crdr Dd r dr dc dc D d r r dr D dr D dc η 3 3 kf( C) rdr k f( C ) k f( C ) dr 3 3 r (frma difrncial) [ r η r ( C )] 3 dc η Φ C dr r Φ 3 d dc dr d r?? Dfinind: C ; C r g( ) f ( C ) f ( C ) d + Φ g( ), < < d d d () Prblma d valr d cntrn g() Sluçã: quaçã d Bl mdificada (luçã analítica): nh( Φ) 3 η nh( Φ) Φ tgh( Φ) Φ Nta: () é finit, nh( Φ) lim Φ Φ () nh( Φ) η < mtra fit da tranfrência d maa. Φ : η Φ : η 3 η Φ g() n raçã d rdm n u. 3

3 N + N + quaçõ variávi i i i + i+ +Φ h i i + i h h h N + Qu é um itma d quaçõ linar m trutura tridiagnal, qu d r rlvid l métd d Thma. Para ca d raçõ d rdn difrnt d zr u um tm- um itma nã-linar d quaçõ algébrica, qu d r rlvid l métd numéric já vit na çã 3.. Vlum finit frência: Tranfrência d Calr Mcânica d Fluid Cmutacinal, C.. Malika, 995. Cnit na ralizaçã d balanç d rridad m vlum lmntar (vlum finit), u d frma quivalnt na intgraçã br vlum lmntar da quaçã difrncial na frma cnrvativa (u frma divrgnt, nd flu aarcm dntr da drivada). W E Δ Δ Figura 3.8. Vlum finit. 35

4 Eml: Φ τ ; (, τ ) (,) [ ( )] m Vlum lmntar: β dv β d β π β 4π Cm m d Φ d τ valr médi n vlum: d ( + ) d ( ) + + d ( + ) Φ + dτ + ( ) difrnça cntrai: ; Δ Δ E W ( ) ( ) ( + ) E W Φ dτ ( + + ) Δ Δ dτ + + Φ W W E E ( + ) Δ + ( + ) W ; ( + ) + Δ Δ ( + + ) ( + ) Δ ( + + ) E 36

5 Balanç ara vlum da frntira: : P E Δ f Δ Figura 3.9. Frntira cm flu cificad. ( + ) Φ + dτ + ( ) ; ( E ) Δ ( + ) E dτ ( Δ ) Φ : W P Δ Δ f Figura 3.. Frntira cm variávl cificada. ( W) ; Δ Δ Δ f f ( + ) ( W) d ( + Φ τ ) Δf Δ 37

6 Sitma rultant: dτ + b, nd é uma matriz tridiagnal. Nta: Difrnça-finita: malha... N+ Vlum-finit: malha... N Elmnt finit frência: Numrical Mthd and Mdling fr Chmical Enginring, M. E. Davi, 984. rima a variávl dndnt r um linômi cntínu r art: n ( ) αiφi( ) (tacinári), [,] i nd φ i ( ) ã funçõ cnhcida (ba) cntinuamnt difrnciávi qu atifazm a cndiçõ d cntrn, α i ã cficint a dtrminar. (, τ) αj( τ) φj( ) (dinâmic), [,] j frma da dtrminaçã dt cficint é qu caractriza métd d lmnt finit utilizad, tai cm: métd d Galrkin métd da clcaçã Eml: ( ) ( ) (mudança d variávl) d m [ ( ) ] (,) dt d + Φ d () 38

7 Multilicand a quaçã r φ i () intgrand m [, ]: d + Φ φ d d ( ) m id i,,..., n Intgrand r art rimir trm: d φ i φi φ i d d d d d ( ) d Cm φ i (), i,...,n, atifaz a cndiçõ d cntrn: φ () ; φ () ( ) i d i () φ () i φ i d tm- qu ntã: Cm d φ d φ i( ) d d d d i ( ) ( ) m i d id d φ + Φ φ ( ) αjφj( ), tm- ara m j αj φ j φ i + α jφ φ j φ i Φ φ i j j ( ) ( d ) ( ) ( d ) ( d ) Dfinind: quaçã difrncial. abd ( ) ( ) ( ab, ), rulta m: α j ( φ j, φ i) + α jφ ( φj, φ i) Φ (, φi), chamada d frma fraca da j j j ( φ j, φ i) +Φ ( φj, φi) α j Φ (, φi) i,,..., n 39

8 α b Cntrn: Funçõ ba linar ϑ ( h ) : α φ ( ) α αφ () +αφ () α α φ ( ),, j, j j j j φ, j, j+ j+ j ( ), j j+ j+ j, n φ ( ) n, n n φ() φ j- φ j φ φ... j- j j+... n Figura 3.. Funçõ ba linar. utra funçõ ba : cúbica d Hrmit (ª drivada cntínua), ϑ ( h 4 ) B-lin, tc. 4

9 Para m : m α j( φ j, φ i) Φ α jφj, φ j i,,..., n j j F( α ) itma nã linar α φ () ; αφ () +αφ () Valr inicial tranfrma rblma d valr d cntrn m um rblma d valr inicial (P.V.I.) atribui um valr inicial ara a variávi cm valr inicial dcnhcid rlv P.V.I. vrifica a cndiçõ finai fram atifita rtrna a a antrir até ta rm atifita. Para ml da artícula catalítica: v, u d du v d dv Φ g( u) v d v() u() Métd: tntativa--rr u hting múltil hting uriçã (linar) 4

10 ) Equaçõ difrnciai linar: hting uriçã Eml: + f( ) + g( ) r( ) ( a, b) a ( ) α ; b ( ) β L [ ] + f ( ) + g( ) (radr linar) L [ c + c ] cl[ ] + cl[ ] a) hting : L [ ] ( a) ( a) L [ ] r ( ) ( a) α ( a) uriçã: () c () + c () L[] r() cl [ ] + c L [ ] c r( ) () c () + () ; (a) α c (a) + c (a) (b) β c (b) + (b) β ( b) + ( b) ( b) c β ( b) ( ) ( ) ( ) b) hting : L [ ] r ( ) ( a) α ( a) γ L [ ] r ( ) ( a) α ( a) γ γ γ tai qu (b) (b). uriçã: L[] r() c L[ ] + c L[ ] γ ( ) r( ) c + c (a) α c (a) + c (a) (b) β c (b) + c (b) c+ c ( b) c+ ( b) c β c β ( b) ( b) ( b) ( b) β ( b) ( b) ; c 4

11 ( ) β ( b) ( ) + ( b) β ( ) ( b) ( b) ) Equaçõ difrnciai nã-linar d F,,, d d a ( ) α ; b ( ) β {[ ] [ ] } a) hting : ( ) F, k, k, k k ( a) α k ( a) γk k,,,... β α β β β a b Figura 3.. Métd d hting. Prblma: g(γ) (b;γ) β E.: Ntn-cant γ k+ ( k( b) β)( γk γk ) γk ( b) ( b) k k 43

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a:

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a: I INSIUO DE FÍSIC D UFB DEPRMENO DE FÍSIC GERL DISCIPLIN: FÍSIC GERL E EXPERIMENL II (FIS ) URM: 0 SEMESRE: /00 RESOLUÇÃO D a PROV D URM 0 O tp qu a partícula ai d pnt d dlcant áxi ating pnt d quilíbri

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

condição inicial y ( 0) = 18 condições iniciais condições iniciais

condição inicial y ( 0) = 18 condições iniciais condições iniciais Prblmas d Mamáa IV - Dada a quaçã frnal abax, drmnar as sluçõs arular mlmnar snd qu das as quaçõs sã válda ara. a nçã nal. s. u u b 5 nçã nal s. 7,5,5 u nçã nal s. 5 u d 5 s nçã nal 8 s. s d 5 8 nçõs nas

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Método do Elementos Finitos na Análise e Projeto de Dispositivos Eletromagnéticos. Prof. Luís Alberto Pereira, Dr.-Ing. - DELET

Método do Elementos Finitos na Análise e Projeto de Dispositivos Eletromagnéticos. Prof. Luís Alberto Pereira, Dr.-Ing. - DELET Método do Elmntos Finitos na nális Projto d Dispositivos Eltromanéticos Prof. Luís lbrto Prira, Dr.-In. - DELET Oranização da Palstra 1. Gnralidads sobr o M. E. F.. Problmas d Valor d Contorno 3. olução

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

3 a Prova - CONTROLE DINÂMICO - 2 /2018

3 a Prova - CONTROLE DINÂMICO - 2 /2018 ENE/FT/UnB Dpartamnto d Engnharia Elétrica Prova individual, m conulta. Faculdad d Tcnologia Só é prmitido o uo d calculadora cintífica báica. Univridad d Braília (Númro complxo & funçõ trigonométrica)

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

CAPÍTULO 1 Teoria do Estado de Tensão

CAPÍTULO 1 Teoria do Estado de Tensão Escola Suprior d Tcnologia stão - Instituto Politécnico d Bragança CAPÍTULO Toria do Estado d Tnsão Tnsor das tnsõs: s, s, s TENSÕES NORMAIS s ij, i j TENSÕES TANENCIAIS Convnção d sinais: Tnsõs m dtrminada

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

01.Resolva as seguintes integrais:

01.Resolva as seguintes integrais: INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA MAT A CÁLCULO A a LISTA DE EXERCÍCIOS Atualizada m 7..Rsolva as sguints intgrais: 5.).).).) sn().5) sn cos.) tg 5 sc.7).8).9) ln 5.) arctg.).).).).7)

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

5 Simulação do sistema de cogeração

5 Simulação do sistema de cogeração 5 Simulação do itma d cogração Para imular numricamnt o comportamnto do itma foram ralizado tt xprimntai com a finalidad d lvantamnto d parâmtro rlvant d dmpnho comparação com o rultado numérico obtido.

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

= 0. O campo electrostático não tem fontes de circulação, não roda.

= 0. O campo electrostático não tem fontes de circulação, não roda. Aula Tórica nº 3-7 Prof. Rsponsávl: Mário J. Pinhiro 1. Opradors difrnciais (conclusão) Exrcício 1: Provar qu rot gradu = 1. Usando coordnadas cartsianas. rot u x u y u z U U grad U = = u x +... = x y

Leia mais

DISCIPLINA. PEF 3528 Ferramentas Computacionais na Mecânica das Estruturas Criação e Concepção. Aula 02

DISCIPLINA. PEF 3528 Ferramentas Computacionais na Mecânica das Estruturas Criação e Concepção. Aula 02 DSCPNA PF 358 Frramntas Computacionais na Mcânica das struturas Criação Concpção Aula Valério S Almida - 8 valrioalmida@uspbr MÉTODO DOS MNTOS FNTOS (MF) Prmit rsolvr problmas d difícil gomtria com rlativa

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 8º ONGRESSO IBEROAMERIANO DE ENGENHARIA MEANIA c, 23 a 25 d Otbr d 2007 RESMO ANÁLISE MAEMÁIA DE OLEOR SOLAR IPO PLAA PLANA ILIZANDO A SEGNDA LEI DA ERMODINÂMIA Olivira, S. D. R.; Marchi Nt, I.; Padilha,

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2012 Prof. Maurício Fabbri 2ª SÉRIE DE EXERCÍCIOS

FENOMENOS DE TRANSPORTE 2 o Semestre de 2012 Prof. Maurício Fabbri 2ª SÉRIE DE EXERCÍCIOS FENOMENOS DE TRANSPORTE o Smstr d 0 Prof. Maurício Fabbri ª SÉRIE DE EXERCÍCIOS 0. O coficint d transfrência d calor Transport d calor por convcção O transint ponncial simpls Consrvação da nrgia Lia o

Leia mais

Achar a solução geral de cada uma das seguintes equações, sendo dada uma solução particular:

Achar a solução geral de cada uma das seguintes equações, sendo dada uma solução particular: 3 ; Rs 9 ; 9 Rs _ Achar a solução gral d cada uma das sguints quaçõs sndo dada uma solução articular: ; solução articular ; ; solução articular 33 Equaçõs Difrnciais Linars d ª Ordm Equaçõs difrnciais

Leia mais

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles)

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Trmodinâmica 1 Análi Enrgética para Sitma Abrto (Volum d Control) Princípio d Trmodinâmica para Engnharia Capítulo 4 Part 1 Objtivo Dnvolvr Ilutrar o uo do princípio d conrvação d maa d nrgia na

Leia mais

Sistemas: Propriedades

Sistemas: Propriedades SS-TSS 6 Sima: Propridad. Conidrando o ima cuja função aprna (x() nrada y() aíd, drmin quai da guin propridad vrificam: i) mmória; ii) invariância no mpo; iii) linaridad; iv) caualidad; v) abilidad. (

Leia mais

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura:

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura: roblma I (6 val.) ágina I. Considr o problma da dtrminação da dformada d uma viga, ncastrada nas duas xtrmidads, sujita ao carrgamnto squmatizado na figura: q L/ L/ L/ As quaçõs difrnciais qu govrnam a

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Módulo 6: Conteúdo programático Estudo da perda de carga distribuída Bibliografia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Prentice Hall, 2007.

Módulo 6: Conteúdo programático Estudo da perda de carga distribuída Bibliografia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Prentice Hall, 2007. Módulo 6: Contúdo programático Etudo da prda d carga ditribuída Bibliografia: Buntti, F. Mcânica do Fluido, São Paulo, Prntic Hall, 2007. PERDA DE CARGA DISTRIBUÍDA NO ESCOAMENTO Turbulnto Cao 2 O tudo

Leia mais

Análise de Processos ENG 514

Análise de Processos ENG 514 áli d Proco NG 54 apítulo 5 Modlo do Tipo trada-saída Pro. Édlr Li d lbuqurqu Julho d 4 Forma d Rprtação d Modlo Matmático Fomológico Modlo dcrito por quaçõ Dirciai Modlo a orma d paço d tado Modlo do

Leia mais

MODELOS CONSTITUTIVOS

MODELOS CONSTITUTIVOS Prgrama de Pó-Graduaçã em ngenharia Civil Univeridade Federal de Alaga MODOS CONSIUIVOS Prf. Severin Pereira Cavalcani Marque VISCOASICIDAD INAR ORD KVIN 84-97 JAMS CRK MAXW 83 879 MODOS VISCOÁSICOS INARS

Leia mais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais Anális Modal Mcânica Estrutural (1091/1411) 018 1. Introdução Um problma d valors próprios é dfinido como sndo um problma m qu dsjamos obtr os valors do parâmtro l d forma qu a quação A( u) lb( u) é satisfita

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Para estimar o valor da tensão de pré-consolidação, é usual utilizar o método proposto por Casagrande, esquematizado na figura:

Para estimar o valor da tensão de pré-consolidação, é usual utilizar o método proposto por Casagrande, esquematizado na figura: 4 - CONSOLIDAÇÃO Cálcul da tnsã d pré-cnslidaçã, P, Para stimar valr da tnsã d pré-cnslidaçã, é usual utilizar métd prpst pr Casagrand, squmatizad na figura: c a - Lcalizar pnt da curva -lg d T h mínim

Leia mais

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas)

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) 1 Exame Final de EDI-38 Concreto Estrutural I rof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) Esta prova tem 4 páginas e 5 questões (divididas em 9 itens). Considere os

Leia mais

WEB YOUTUBE. Alemão MecFlu Resolve

WEB YOUTUBE.   Alemão MecFlu Resolve WE YOUTUE www.coladavida.n.br Almão McFlu Rolv 1 Por ond comçar? D ond aramo! Podmo comçar com uma qutão do xam d FT do undo mtr d 017? Ótima idia, vamo ar o da turma 11! 3 Para rolvr t roblma, tmo qu

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

Aula 8. Transformadas de Fourier

Aula 8. Transformadas de Fourier Aula 8 Jean Baptiste Jseph Furier (francês, 768-830) extracts ds riginais de Furier Enquant que as Séries de Furier eram definidas apenas para sinais periódics, as sã definidas para uma classe de sinais

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Palavras-chave: verificação, aproximação numérica, função de interpolação, equação de Laplace, equação de advecção-difusão.

Palavras-chave: verificação, aproximação numérica, função de interpolação, equação de Laplace, equação de advecção-difusão. AVALIAÇÃO DE ESQUEMAS NUMÉRICOS ARA ROBLEMAS DIFUSIVOS 2D RESOLVIDOS COM VOLUMES FINITOS Nil Franco d Carvalho nil@up.du.br Univrsidad ositivo (U) Curitiba, R, Brasil Carlos Hnriqu Marchi marchi@ufpr.br

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos

TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos Univrsidad Fdral d Paraná Sr d Tcnlgia Dparamn d Engnharia Mcânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prf. Dr. Rudmar Srafim Mas 2. ISOLAMENTO TÉRMICO Islans sã mariais d baix cficin d cnduividad,

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOÓGICA FEDERA DO PARANÁ OBSERVAÇÃO: O TEXTO É ADAPTADO DO IVRO: BRONSON. R. Modrna introdução à quaçõ difrniai. tradução d Alfrdo Alv d Faria, rvião ténia Robrto Romano. São Paulo:

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

1.Estudo de ondas electromagnéticas transversais guiadas por linhas de transmissão. k z = 2

1.Estudo de ondas electromagnéticas transversais guiadas por linhas de transmissão. k z = 2 T Aula (3.05.05) inha d transmissão.estudo d ondas lctromagnéticas transvrsais guiadas por linhas d transmissão. Modos TEM :H z E ~ z 0 z f. Estruturas qu suportam ondas TEM: a) inha d planos parallos

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

( k) Perfis Sustentadores Perfis de Kármán-Treftz. τ π. O expoente k está relacionado com o ângulo do bordo de fuga, τ, através de

( k) Perfis Sustentadores Perfis de Kármán-Treftz. τ π. O expoente k está relacionado com o ângulo do bordo de fuga, τ, através de z = b Perfis de Kármán-Treftz ( ζ + b) + ( ζ b) ( ζ + b) ( ζ b) O epoente está relacionado com o ângulo do bordo de fuga, τ, através de ( ) τ = π = b b = corresponde à transformação de Jouowsi z z + τ

Leia mais

Análise de Sinais. (Notas em Análise de Fourier) J. A. M. Felippe de Souza

Análise de Sinais. (Notas em Análise de Fourier) J. A. M. Felippe de Souza Anális d Sinais (tas m Anális d Furir) J. A. M. Flipp d Suza J. A. M. Flipp d Suza tas m Anális d Furir Anális d Sinais (tas m Anális d Furir) J. A. M. Flipp d Suza - Séri d Furir Séri trignmtria d Furir

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

s t r r t r tr és r t t t

s t r r t r tr és r t t t s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs

Leia mais

Instituto de Física USP Física V - Aula 7

Instituto de Física USP Física V - Aula 7 Institut d Física USP Física V - Aula 7 Prfssra: Mazé Bchara Aula 07 Mvimnts na atmfsfra ns cnstituints ds sólids.. A distribuiçã spacial ds gass da atmsfra: (a) dsprzand a frça da gravidad; (b) cnsidrand

Leia mais

Formas simplificadas das equações de Navier-Stokes

Formas simplificadas das equações de Navier-Stokes Formas simplificadas das qaçõs d Navir-Stoks Eqaçõs d camada limit o camadas d cort dlgadas (Bondar lar, tin sar lar qations) Prssão dtrminada plo scoamnto xtrior à rgião viscosa, p Difsão na dircção principal

Leia mais

Aula 5: Gravitação e geometria

Aula 5: Gravitação e geometria Aula 5: Gravitação e geometria A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 12 de Abril de 2010 Tort (IF UFRJ) IF-UFRJ Informal 1 / 20 Massa Inercial

Leia mais

1) Determine e represente graficamente o domínio de cada uma das funções:

1) Determine e represente graficamente o domínio de cada uma das funções: UNIVESIDADE FEDEAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPATAMENTO DE MATEMÁTICA ª LISTA DE EXECÍCIOS DE CÁLCULO II-A Última atualizaçã 4-4-4 ) Determine e represente graficamente dmíni de cada uma das funções:

Leia mais

Geração de calor em sólidos

Geração de calor em sólidos 3/09/06 ranferência de calr Geraçã de calr em ólid º. emetre, 06 Geraçã de calr em ólid Divera aplicaçõe prática de tranferência de calr envlvem a cnverã de aluma frma de eneria em eneria térmica n mei.

Leia mais

MULTI-LAYER PERCEPTRON

MULTI-LAYER PERCEPTRON MULTI-LAYER PERCEPTRON Rds d anas uma camada só rrsntam funçõs linarmnt sarávis Rds d múltilas camadas solucionam ssa rstrição O dsnvolvimnto do algoritmo Bac-Proagation foi um dos motivos ara o rssurgimnto

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Escoamento incompressível, tubo rígido I

Escoamento incompressível, tubo rígido I Balanço d aa: coano incorívl, ubo ríido I ) 0 ) Balanço d ono linar: Inrando nr a oiçõ, rula: vaão voluérica conan na oição d d ) nθ d ) ) uda d rão á cooa d uda d rão or nria oncial ravidad), nria cinéica

Leia mais

Respostas dos Exercícios

Respostas dos Exercícios Respostas dos Eercícios APÍULO EXERÍIOS. 9 a) ( ) / / + + b) ( + ) arctg( + ) + 5 t c) ln( e + ) + d) sen(5 ) + 5 7/ 5/ / 5/ / e) ( + ) ( + ) + ( + ) + ) ( + ) ( + ) + 7 5 5 5/ 8 / g) ( t ) + ( t ) + h)

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

Tópicos de Física Clássica I Aula 7 O problema de Dido; condições auxiliares II

Tópicos de Física Clássica I Aula 7 O problema de Dido; condições auxiliares II Tópicos d Física Clássica I Aula 7 O problma d Dido; condiçõs auxiliars II a c tort O problma d Dido Fugindo d su irmão Pigmalião qu havia assasinado su tio marido, Dido d Tiro, mais tard fundadora rainha

Leia mais

1.3 submodelo geração e distribuição de viagens

1.3 submodelo geração e distribuição de viagens 17 1.3 submodlo gração distribuição d viagns No caso da cidad d São Paulo foram considrados quatro motivos d viagns (p), drivadas da matriz d fluxos, d acordo com a dfinição dada à gração d atividads no

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir

Leia mais

Web site de foguetaria experimental de Richard Nakka

Web site de foguetaria experimental de Richard Nakka Wb sit d fgutaria xrimntal d Richard Naa 5 Tria d Tubira Tria d mtr-fgut sólid tubira d fgut d crtamnt sr dscrita cm símbl d xclnt simlicidad. funçã rincial d uma tubira é canalizar aclrar s rduts da cmbustã

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta d tst d avaliação Matmática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Cadrno (é prmitido o uso d calculadora) Na rsposta aos itns d scolha múltipla, slcion a opção corrta. Escrva, na

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Placa de interface WAN assíncrona/síncrona de 2 portas (WIC-2A/S)

Placa de interface WAN assíncrona/síncrona de 2 portas (WIC-2A/S) Placa intrfac WAN aíncrna/íncrna 2 prta (WIC-2A/) Índic rduçã Pré-rquiit Rquiit Cmpnnt Utilizad Cnnçõ Númr prdut Rcur Cab uprt à platafrma Prblma cnhcid Cnfiguraçã Infrmaçõ Rlacina rduçã A Placa rfac WAN

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-2 -22-24 -26-28 -3-32 Frqucy (khz) Hammig kaisr Chbyshv Siais Sismas Powr Spcral Dsiy Ev B F CS CS2 B F CS Groud Rvolu Body Rvolu Body Powr/frqucy (db/hz) Si Wav Joi Acuaor Joi Ssor Rvolu.5..5.2.25.3.35.4.45.5-34

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais