Exercícios de Transportes Enunciados
|
|
|
- Vagner Amaro Sanches
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 3 Exercícios de Transportes Enunciados
2 Enunciados 49 Problema 1 Três reservatórios, com capacidades diárias de 15, 20 e 25 milhões de litros de água, abastecem 4 cidades com consumos diários de 8, 10, 12 e 15 milhõesdelitrosdeágua. O custo de abastecimento, por milhão de litros, é apresentado na tabela 1. Tabela 1: Custo de abastecimento, por milhão de litros. Cidades A B C D Reservatórios O problema consiste em determinar a política de abastecimento óptima (aquela com menor custo). Formule o problema como um problema de transportes e resolva-o usando o respectivo algoritmo.
3 Enunciados 50 Problema 2 Uma empresa possui duas fábricas (P1 e P2) onde produz um produto que éexportado para 3 locais num país vizinho (L1, L2 e L3). O transporte é feito através de duas fronteiras (F1 e F2) (não se impõe limites máximos à quantidade que pode atravessar diariamente cada uma delas). Por outro lado, cada fronteira cobra uma taxa por cada unidade do referido produto que a atravessa (independentemente de vir de P1 ou P2) tabela 1. São conhecidas as disponibilidades diárias em cada fábrica, que são suficientes para satisfazer as necessidades diárias de cada local, também conhecidas (tabela 1). Sabe-se também quais são os custos para transportar uma unidade do produto, de cada produtor para cada fronteira e de cada fronteira para cada destino, indicados na figura 1. Tabela 1: Disponibilidades, necessidades e taxas de fronteira. PRODUTORES P1 P2 Disponibilidades LOCAIS DE DESTINO L1 L2 L3 Necessidades FRONTEIRAS F1 F2 Taxa por unidade 4 3 Figura 1: Rede de transportes. (a) Considere o problema que permite encontrar a política óptima de transporte do produto entre cada produtor, fronteira e local de destino. Formule-o (sem resolver!) como um problema de transportes na forma standard. (b) Considere agora que diariamente chegam às fronteiras F1 e F2 100 e 90 unidades do produto, respectivamente. Usando o algoritmo de transportes, determine quais as quantidades a transportar de cada fronteira para cada um dos locais de destino, por forma a minimizar o custo global associado a esse transporte. Considere iguais os restantes dados do problema.
4 Enunciados 51 Problema 3 Uma companhia construtora de aviões pretende planear a produção de um motor, durante os próximos 4 meses. Para satisfazer as datas de entrega contratuais, necessita de fornecer os motores nas quantidades indicadas na 2 a coluna da tabela 1. O número máximo de motores que a companhia produz por mês, bem como o custo de cada motor (em milhões de dólares) são dados na 3 a e4 a colunas da mesma tabela. Dadas as variações nos custos de produção, pode valer a pena produzir alguns motores um ou mais meses antes das datas programadas para entrega. Se se optar por esta hipótese, os motores serão armazenados até ao mês de entrega, com um custo adicional de milhões de dólares/mês. Tabela 1: Encomendas, produção e custos. Mês Quantidades Produção Custo unitário Custo unitário a entregar máxima de produção de armazenagem O director de produção quer saber quantos motores deve fabricar em cada mês (e para que meses de entrega) por forma a minimizar os custos globais de produção e armazenagem. Formule o problema e resolva-o pelo algoritmo de transportes.
5 Enunciados 52 Problema 4 Durante a semana de exames do Instituto de Altos Estudos, realizados sob a forma de provas de escolha múltipla preenchidas a lápis, sendo este fornecido pelo Instituto (conforme o modelo usado nos EUA), são necessários 60, 50, 80, 40 e 50 lápis afiados no início de cada dia, de segunda a sexta-feira respectivamente. Os lápis afiados podem ser comprados por 15$00 cada. Os lápis usados num dia de exame podem ser afiados, recorrendo ao serviço da Afiadora Lda. - a um custo de 2$00 a unidade - que os devolve 2 dias depois, isto é, os lápis usados na segunda-feira só poderão ser reutilizados (já afiados) na quarta-feira, e assim sucessivamente. No fim da semana os lápis podem ser revendidos a um preço de 5$00 a unidade. (a) Formule este problema como um Problema de Transportes, de forma a que o fornecimento de lápis para o exame seja feito a um custo mínimo. (b) Resolva o problema.
6 Capítulo 3 Exercícios de Transportes Resoluções
7 Resoluções 54 Problema 1 Solução inicial pela regra dos custos mínimos: A B C D F A cidade F é uma cidade fictícia introduzida para equilibrar a oferta com a procura, isto é, para colocar o problema na forma standard. Para que existam 7 variáveis básicas (número de origens + número de destinos - 1) é ainda necessário promover uma variável não básica a básica. A variável x 1A foi então considerada como básica com o valor de zero. A escolha de x 1A em concreto seguiu a regra de o grafo representantivo das variáveis básicas dever ser conexo e sem ciclos. Resolvendo: θ 15-θ θ θ θ =min{3, 15} = θ 12-θ θ 15 θ θ =min{5, 12} = Custo = 80 Solução óptima: 1 8 A ;3 10 B ;3 12 C ;2 15 D
8 Resoluções 55 Problema 2 (a) Formulação como problema de transportes: L1 L2 L3 RP1 RP2 X P1/F P1/F P2/F P2/F Pi/Fj quantidade exportada a partir da fábrica Pi através da fronteira Fj. X coluna introduzida para equilibrar a oferta com a procura. Corresponde às quantidades que ficarão nas fábricas. RPi Restrição respeitante àfábrica Pi e que garante que o somatório do que atravessa as duas fronteiras, vindo da fábrica Pi, não excede a oferta em Pi. (b) Solução inicial pela regra dos custos mínimos: Aplicando o algoritmo de transportes: θ θ θ 70 θ θ = θ θ θ 70-θ θ = Quadro óptimo
9 Resoluções 56 Solução óptima: Custo óptimo = 6060 De Para Quantidade F1 L1 0 L2 40 L3 60 F2 L1 50 L2 30 L3 0
10 Resoluções 57 Problema 3 Produção Entrega Mês de entrega X Mês de produção (segue-se a resolução pelo algoritmo de transportes)
11 Resoluções 58 Problema 4 (a) Formulação como problema de transportes: (b) Destinos 2 a 3 a 4 a 5 a 6 a X Novos Origens Usados na 2 a Usados na 3 a Usados na 4 a
Problemas de Fluxos em Redes
Investigação Operacional Problemas de Fluxos em Redes Slide Transparências de apoio à leccionação de aulas teóricas Problemas de fluxos em redes Rede: Conjunto de pontos (vértices) ligados por linhas ou
Problemas de Fluxos em Redes
Problemas de Fluxos em Redes O problema da distribuição de frigoríficos Um fabricante de frigoríficos tem fábricas, de onde abastece clientes (distribuidores). No início de cada mês recebe de cada cliente
Problemas de Decisão em Redes
Problemas de Decisão em Redes Slide Tomar Melhores Decisões usando métodos quantitativos e folhas de cálculo Versão c 00, 997 Problemas de Decisão em Redes Problemas de Fluxos em Redes Slide Problemas
Pesquisa Operacional Aula 3 Modelagem em PL
Pesquisa Operacional Aula 3 Modelagem em PL Prof. Marcelo Musci [email protected] www.musci.info Programação Linear Programação Linear: Preocupação em encontrar a melhor solução para problemas associados
Optimização em Redes e Não Linear
Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.
Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema
INVESTIGAÇÃO OPERACIONAL Exercícios de Optimização em Redes 1
INVSTIGÇÃO OPRIONL xercícios de Optimização em Redes x. ada a seguinte rede: 0 0 0 0 a) etermine uma árvore de suporte de custo mínimo utilizando o algoritmo de Kruskal. b) etermine uma árvore de suporte
Pesquisa Operacional. Introdução à Pesquisa Operacional Programação Linear
Pesquisa Operacional Introdução à Pesquisa Operacional Programação Linear 1 Sumário Modelagem e limitações da Programação Linear. Resolução Gráfica. Forma padrão de um modelo de Programação Linear. Definições
Métodos de Decisão
Mestrado Integrado em Engenharia do Ambiente Métodos de Decisão 2008.01.07 Prova com consulta Alunos admitidos a exame com avaliação contínua Duração: 2h30 Uma Horta na Escola De modo a promover a redução
Problemas de Decisão em Redes
Problemas de Decisão em Redes Transparências de apoio à leccionação de aulas teóricas Versão 3 c 2010, 2001, 1997 José Fernando Oliveira Maria Antónia Carravilla FEUP Problemas de fluxos em redes Rede:
Problemas de Transportes e de Afectação
CAPÍTULO 6 Problemas de Transportes e de Afectação 1. Problema de Transporte Este problema, que é um dos particulares de PL, consiste em determinar a forma mais económica de enviar um bem disponível, em
max z = 10x 1 + 4x 2 s.a x 1 + x x 1 + 4x x 1 + 6x 2 300
Escola Superior de Tecnologia de Tomar Área de Matemática Investigação Operacional / Técnicas de Optimização e Decisão Engenharia Química, Engenharia do Ambiente, Engenharia Informática e Engenharia Civil
Cap ıtulo 4 Exerc ıcios de Afecta c Enunciados
Capítulo 4 Exercícios de Afectação Enunciados Enunciados 60 Problema 1 Existem quatro desenhadores para desenhar quatro projectos. Embora todos possam cumprir essas tarefas, as suas eficiências relativas
Pesquisa Operacional Modelos Determinísticos Parte 2
Pesquisa Operacional Modelos Determinísticos Parte Graduação em Engenharia de Produção DEPROT / UFRGS Prof. Flavio Fogliatto, Ph.D. O Problema do Transporte Descrição Geral de um problema de transporte:.
Problemas de Afectação (PA)
Investigação Operacional 1 Problemas de Afectação Slide 1 Transparências de apoio à leccionação de aulas teóricas Problemas de Afectação (PA) Exemplo típico: Afectação de n pessoas a n tarefas. Dados:
PESQUISA OPERACIONAL. Fabiano F. T. dos Santos. Instituto de Matemática e Estatística
PESQUISA OPERACIONAL Fabiano F. T. dos Santos Instituto de Matemática e Estatística Dualidade em Programação Linear Todo problema de programação linear, que chamaremos de primal, traz consigo um segundo
Gestão de Operações. Ano lectivo 2008/09. Frequência 12 de Janeiro de 2009
Ano lectivo 2008/09 Frequência 12 de Janeiro de 2009 Instruções 1. Leia atentamente todo o exame. 2. Escolha as questões: a) responda apenas às questões que é requerido em cada grupo; b) atribua tempos
Pesquisa Operacional
Pesquisa Operacional Problema de Transporte Profa. Sheila Morais de Almeida DAINF-UTFPR-PG maio - 2016 1 Algoritmo para Problema de Transporte são uma classe especial de problemas de Programação Linear.
Programação Linear/Inteira
Programação Linear/Inteira Prof. Thiago Alves de Queiroz Lista de Exercícios 9 Instruções para cada um dos exercícios abaixo: Faça o modelo de otimização discreta. 1. A companhia de transporte de mercadorias,
Investigação Operacional
Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto
Tópicos Especiais em Computação I
Tópicos Especiais em Computação I Pesquisa Operacional Exercícios (Simplex) Prof. Fabio Henrique N. Abe [email protected] Método Simplex Desenvolvido por George Dantzig em 1947 É um procedimento
MÓDULO 3 - PROBLEMAS DE TRANSPORTE
UNESA Sistemas de Transportes Currículo 08 / 009- MÓDULO 3 - PROBLEMAS DE TRANSPORTE. PROBLEMA CLÁSSICO DE TRANSPORTE O Problema de Transporte constitui uma das principais aplicações da PL para auxiliar
DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010
DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010 Exame de Recurso Dep. Econ. Gestão e Engª Industrial 14 de Julho de 2010 duração: 2h30 (80) 1. Considere o modelo seguinte, de Programação Linear
O Problema de Transportes
Investigação Operacional- 00/0 - Problemas de Transportes 8 O Problema de Transportes O problema geral de transportes consiste em determinar a forma mais económica de enviar um bem que está disponível
Aula 03: Algoritmo Simplex (Parte 2)
Aula 03: Algoritmo Simplex (Parte 2) Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Slides baseados no material de Haroldo Gambini Previously... Aula anterior:
Programação Linear (PL)
Programação Linear (PL) Prof. Paulo Cesar F. De Oliveira, BSc, PhD 07/08/15 P C F de Oliveira 2014 1 Características Técnicas mais utilizadas na abordagem de problemas em PO Técnica de solução programável
Investigação Operacional
Licenciatura em Engenharia Electrotécnica e de Computadores Investigação Operacional Recurso 2004.02.09 Duração: 2 horas Nome: Teórica Responda a cada afirmação com (V) Verdadeira ou (F) Falsa. Por cada
ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I. Trabalho 1 (T1)
ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I Trabalho 1 (T1) Grupo de até três acadêmicos; Entregar os algoritmos escritos; Entregar as implementações dos algoritmos em arquivo organizados em uma pasta,
Investigação Operacional
Investigação Operacional Licenciatura em Gestão 3.º Ano Ano Lectivo 2013/14 Programação Linear Texto elaborado por: Maria João Cortinhal (Coordenadora) Anabela Costa Maria João Lopes Ana Catarina Nunes
Investigação Operacional 2004/05 2º Mini-teste. 26 de Novembro, 9:00h 10:30h. Sem consulta, sem máquina de calcular Justifique todas as respostas
Investigação Operacional 004/05 º Mini-teste 6 de Novembro, 9:00h 0:h Sem consulta, sem máquina de calcular Justifique todas as respostas Departamento de Engenharia Civil Secção de Planeamento do Território
Programação Linear (PL)
Programação Linear (PL) ETAPA 05 Volume 04: O problema de transporte (PT) Definição e apresentação sobre forma de rede Formulação do caso equilibrado e não equilibrado Exemplos Propriedades fundamentais
Investigação Operacional 21076
text Investigação Operacional 21076 Período de Realização Decorre de 10 a 17 de Abril de 2019 Data de Limite de Entrega 17 de Abril de 2019, até às 23h55 de Portugal Continental Tema Programação Linear.
Pesquisa Operacional
Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 5 Modelo da Designação Fernando Marins [email protected] Departamento de Produção
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
1 Aula 3 Definição de Problemas de Investigação Operacional (Prática) Construção de um modelo matemático de PL. Programação Matemática(PM) e Programação Linear(PL). Exemplos clássicos de PL. 2 Problema
FMU Administração de Empresas Pesquisa Operacional Prof. Marcos José Traldi
Com a finalidade de mostrar como decisões do dia-a-dia das empresas poderiam ser facilitadas com a utilização de modelos simulados em uma planilha eletrônica. Uma forma de facilitar o processo de modelagem
UNIVERSIDADE DE ÉVORA UNIVERSIDADE DO ALGARVE
CURSO DE MESTRADO EM ENGENHARIA CIVIL FUNDAMENTOS DE INVESTIGAÇÃO OPERACIONAL 2010/2011 1º SEMESTRE 1º ANO Exame época normal Parte I: PROGRAMAÇÃO LINEAR 9 de Fevereiro de 2011 Observações Duração desta
EAD 350 Pesquisa Operacional Aula 04 Parte 1 Resolução de Exercícios
EAD 350 Pesquisa Operacional Aula 04 Parte 1 Resolução de Exercícios Profa. Adriana Backx Noronha Viana (Adapt. Material Prof. Cesar Alexandre de Souza) [email protected] FEA/USP Aula 3 Enunciado 4 Uma pequena
Fundamentos de Investigação Operacional /11 - Exercícios de Formalização 1
Fundamentos de Investigação Operacional - 2010/11 - Exercícios de Formalização 1 1. Uma empresa responsável pelo abastecimento semanal de certo bem às cidades de Lisboa e Porto pretende estabelecer um
C 3 C 3. De acordo com o teorema de Euler, um grafo não orientado admite um ciclo de Euler se e só for conexo e não tiver vértices de grau ímpar.
rafos ircuito e iclo de uler X. ircuito e iclo de uler Um grafo orientado diz-se euleriano se há um circuito que contenha todos os seus arcos uma e só uma vez (circuito euleriano ).O grafo da figura é
Slide 1. c 2000, 1998 José Fernando Oliveira, Maria Antónia Carravilla FEUP
Construção de Modelos de Programação Linear e Inteira Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Construção de Modelos de Programação Linear e Inteira 1 Modelização
CAPÍTULO 4. Teoria da Dualidade
CAPÍTULO 4 1. Introdução Uma dos conceitos mais importantes em programação linear é o de dualidade. Qualquer problema de PL tem associado um outro problema de PL, chamado o Dual. Neste contexto, o problema
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
Redes Aula 19: Modelos de Optimização de Redes O Problema do Caminho Mais Curto. O Problema do Fluxo Máximo. O Problema do Fluxo de Custo Mínimo. 2 Modelos de Optimização de Redes O que são redes em (IO)?
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2006/07
Complementos de Investigação Operacional Folha nº Programação Inteira 2006/07 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Problema de Transporte (Redes) Fernando Nogueira Problema de Transporte 1
Problema de Transporte (Redes) Fernando Nogueira Problema de Transporte 1 O Problema de Transporte consiste em determinar o menor custo (ou o maior lucro) em transportar produtos de várias origens para
Investigação Operacional 2005/06 Ficha 6 Teoria da Dualidade e Problema de Transportes
Investigação Operacional 2005/06 Ficha 6 Teoria da Dualidade e Problema de Transportes Departamento de Engenharia Civil Secção de Planeamento do Território e Ambiente 1. Problema da Pedreira III A empresa
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
Redes Aula 20: Modelos de Optimização de Redes (Prática) O Problema do Caminho Mais Curto. O Problema do Fluxo de Custo Mínimo. 2 Considere a seguinte rede Direccionada: Problema 20.1 (I) A C E B D F 3
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual
INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. IV Modelo Dual António Carlos Morais da Silva Professor de I.O. i Cap. IV - Modelo Dual - Exercícios IV. Modelo Problema Dual 1. Apresente o
Dualidade e Análise de Sensibilidade
Dualidade e Análise de Sensibilidade 33. Considere o seguinte problema de programação linear: Min Z = 4x 1 + 3x 2 + 6x 3 2x 1 + 2x 2 + 3x 3 4 3x 1 + x 2 + 3x 3 3 x 1, x 2, x 3 0 a) Escreva o dual associado
Complementos de Investigação Operacional. Folha nº 2 Programação Multiobjectivo 2006/07
Complementos de Investigação Operacional Folha nº 2 Programação Multiobjectivo 2006/07 1- x2 D(7,6) C(4,5) E(11,5) F(12,4) B(2,3) X G(13,2) A(1,1) H(10,1) max f 1 (x) = x 1 max f 2 (x) = x 2 (a) Represente
CAPÍTULO VI Dimensionamento de lotes - Lot Sizing
CAPÍTULO VI Dimensionamento de lotes - Lot Sizing O sistema MRP converte o programa director de produção em planos de lançamentos para a produção, montagem e/ou compra, faseados no tempo, para todos os
Vânio Correia Domingos Massala
Optimização e Decisão 06/0/008 Método do Simplex Vânio Correia - 5567 Domingos Massala - 58849 INSTITUTO SUPERIOR TÉCNICO Generalidades do Método do Simplex Procedimento algébrico iterativo para resolver
Complementos de Investigação Operacional. Folha nº 1 Programação Inteira 2007/08
Complementos de Investigação Operacional Folha nº Programação Inteira 2007/08 - A Eva e o Adão pretendem dividir entre eles as tarefas domésticas (cozinhar, lavar a louça, lavar a roupa, fazer as compras)
Programação Dinâmica Estocástica
Programação Dinâmica Estocástica Processos de Decisão Estocástica Multiestágios Um processo de decisão multiestágios é estocástico, se o resultado associado a pelo menos uma decisão do processo é aleatório.
B-727 Electra Bandeirante SP Rio ,4 SP P.Alegre ,8 Tonelagem
$ )508/$d (&. Uma fábrica produz tipos de chapas metálicas, A-B-C, que são prensadas e esmaltadas. A prensa dispõe de.000 minutos mensais e cada chapa, A ou B, leva 1 minuto para ser prensada, enquanto
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
Cap ıtulo 1 Exerc ıcios de Formula c Enunciados
Capítulo 1 Enunciados Enunciados 2 Problema 1 Publicações Polémicas vai publicar uma autobiografia de um político controverso, e admite que a 1 a edição vai ser vendida por completo se não houver atrasos.
Matemática. C. Requejo (UA) Métodos de Investigação Operacional MIO / 34
Modelação em Programação Matemática C. Requejo (UA) Métodos de Investigação Operacional MIO 2016-2017 1 / 34 Modelação de problemas simples Problema da compra de bilhetes Nas próximas 5 semanas vou, de
UFG Instituto de Informática Curso de Engenharia de Software Disciplina de Introdução à Programação
UFG Instituto de Informática Curso de Engenharia de Software Disciplina de Introdução à Programação Lista de exercícios 2.1 Estruturas condicionais - básico 1) Desenvolver um algoritmo que determine o
Técnicas de Planeamento e Gestão. Folha nº. 1 Introdução à Programação Linear 2007/08
Técnicas de Planeamento e Gestão Folha nº. 1 Introdução à Programação Linear 2007/08 1- A fábrica de gelados Derretem-se na Boca SARL fabrica duas qualidades de gelados: cassata de nozes (C) e pistachio
Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas
Mestrado Integrado em Engenharia Civil Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas Sessão Prática 12 : Modelos de distribuição e afectação de tráfego 1/27 O MODELO DE 4 PASSOS Passo Objectivo
Programação. Linear (PL) Exemplos Típicos de Aplicação da PL
Programação Linear (PL) Exemplos Típicos de Aplicação da PL Planeamento de produção Problema de Transporte Programa de Investimento Programação Sequencial da Produção (Scheduling) Problema de Transexpedição
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y
Exercícios de Caminho Mínimo Enunciados
Capítulo Exercícios de Caminho Mínimo Enunciados Enunciados 9 Problema Considere a seguinte rede: 9 7 (a) Usando o algoritmo de Dijkstra, determine a distância mínima do nó aonóe indique o respectivo caminho.
Programação Linear (PL) Solução algébrica - método simplex
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Simplex Prof. Dr. José Arnaldo Barra Montevechi Programação Linear (PL) Solução algébrica - método simplex
2. Problemas de Transportes e Afectação
2. Problemas de Transportes e Afectação 2.1 A empresa de calçado Sapatex SA tem duas fábricas (F1 e F2) em território nacional e outros tantos centros de distribuição (C1 e C2). O departamento de gestão
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA INVESTIGAÇÃO OPERACIONAL
INSTITUTO POLITÉCNICO DE SETÚBL ESCOL SUPERIOR DE TECNOLOGI DEPRTMENTO DE MTEMÁTIC INVESTIGÇÃO OPERCIONL TESTE CURSOS: EMP, EEM e EME 2005/2006 Data: 4 de Novembro de 2005 Duração: 19:0 às 21:0 Instruções:
X - D U A L I D A D E
X - D U A L I D A D E 1 - Introdução. Regras de transformação "Primal - Dual" Consideremos os dois problemas P1 e P2 de Programação Linear seguintes: P1 : n Maximizar F = Σ ck. Xk k = 1 n Σ aik. Xk bi
CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL PROBLEMAS DE TRANSPORTE
CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL PROBLEMAS DE TRANSPORTE Email: [email protected] SUMÁRIO Introdução; Tipos de Modais; Problema Clássico de Transporte; Modelo
EXERCÍCOS PO SEGUNDO BIMESTRE. Prof. Me. Carlos Guimarães. Administração de Empresas 7º e 8º semestre.
EXERCÍCOS PO SEGUNDO BIMESTRE Prof. Me. Carlos Guimarães Administração de Empresas 7º e 8º semestre. Unidade 4 Exercícios PO 215 Exercício 1 Objetivo Exercitar a construção do modelo quantitativo de um
Lista 3 - Exercícios sobre Modelagem Matemática
1 Lista 3 - Exercícios sobre Modelagem Matemática 1) Uma empresa de Agricultura quer decidir quais e em que quantidade os alimentos soja, arroz e feijão devem ser plantados em uma determinada área de forma
Matemática Aplicada Nt Notas de aula
Matemática Aplicada Nt Notas de aula Problema de transporte e designação Problema de transporte: motivação origem 1 destino 1 origem 2 destino 2 destino 3 Caracterização geral Dados: A estrutura de fontes
Exemplo 3. Operação de uma albufeira. IST: Gestão Integrada de Bacias Hidrográficas Rodrigo Proença de Oliveira,
Exemplo 3 Operação de uma albufeira IST: Gestão Integrada de Bacias Hidrográficas Rodrigo Proença de Oliveira, 2008 176 Ex.3 Operação de uma albufeira Uma albufeira com uma capacidade de 40 hm3, e que
EXERCÍCOS DES TESTES/EXAMES DE ANOS ANTERIORES (LEGI-IST-JRF)
EXERCÍCOS DES TESTES/EXAMES DE ANOS ANTERIORES (LEGI-IST-JRF) 1. Nero, o Imperador romano, num momento de inspiração resolveu promover um jantar para eliminar os seus melhores inimigos. Após consultar
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Problema da Mistura minimizar f ( 1, 2,..., n ) = c 1 1 + c 2 2 +... + c n n Sujeito a: a 11 1
Localização de Instalações. Projeto de Redes Logísticas. Escola Politécnica. Prof. Dr. Claudio Barbieri da Cunha.
Localização de Instalações Projeto de Redes Logísticas Prof. Dr. Claudio Barbieri da Cunha Escola Politécnica [email protected] Objetivo Definir a configuração de uma rede logística / supply chain em termos
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Aula 3 Definição de Problemas de Optimização (Prática) Construção de um modelo matemático de PL. Programação Matemática(PM) e Programação Linear(PL). Exemplos clássicos de PL. 2 Problema 3.1 Uma empresa
Pesquisa Operacional Programação em Redes
Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Seminários Datas Temas Problema do Caminho mais curto programação em redes Data 07/11/13 Problema do Fluxo máximo
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +
Lot-Sizing Lotes Económicos de Produção
Lot-Sizing Lotes Económicos de Produção Maria Antónia Carravilla Agosto 1996 1. LOTES ECONÓMICOS DE PRODUÇÃO (LOT-SIZING)...1 2. LOTEAMENTO POR QUANTIDADE E PERIODICIDADE ECONÓMICAS...2 2.1 Quantidade
Universidade Federal de Roraima. Resolução de Problema em Matemática
Universidade Federal de Roraima Resolução de Problema em Matemática Técnicas de Avaliação Héctor José García Mendoza https://w3.dmat.ufrr.br/hector/ [email protected] 1 Interpretações sobre a Resolução
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA INVESTIGAÇÃO OPERACIONAL
INSTITUTO POLITÉCNICO DE SETÚBL ESCOL SUPERIOR DE TECNOLOGI DEPRTMENTO DE MTEMÁTIC INVESTIGÇÃO OPERCIONL Eame - a Chamada CURSOS: EMP,EEM e EME / Data: de Janeiro de Duração: 8: às : Instruções:. Leia
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
1 Aula 2 Definição de Problemas de Investigação Operacional Construção de um modelo matemático de PL. Programação Matemática(PM) e Programação Linear(PL). Exemplos clássicos de PL. 2 Problemas de Investigação
Investigação Operacional 1. Transparências de apoio à leccionação de aulas teóricas. Não criar um modelo complicado quando um simples é suficiente.
Investigação Operacional 1 Modelização Slide 1 Transparências de apoio à leccionação de aulas teóricas Maria Antónia Carravilla José Fernando Oliveira Modelização Os 10 princípios Não criar um modelo complicado
Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2
Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel [email protected] Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo
Pesquisa Operacional (PO)
Pesquisa Operacional (PO) 1) Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato
Universidade Federal de Itajubá. Instituto de Engenharia de Produção e Gestão. Pesquisa Operacional. Redes. Prof. Dr. José Arnaldo Barra Montevechi
Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Redes Prof. Dr. José Arnaldo Barra Montevechi Problemas de rede Casos especiais de problemas de programação
Aula 08: Modelagem Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 08: Modelagem Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Aulas anteriores: Modelagem (básico) Método
