Exercícios de provas nacionais e testes intermédios
|
|
|
- Martim Avelar Fortunato
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios de provas nacionais e testes intermédios 1. Considera o conjunto A = [ π[ Qual é o menor número inteiro que pertence ao conjunto A (A) 3 (B) 4 (C) π (D) π 1 2. Qual dos conjuntos seguintes é igual ao conjunto ]0, 3[ ]2, 5[ (A) ]0, 5[ (B) ]0, 2[ (C) ]2, 3[ (D) ]3, 5[ 3. Qual dos números seguintes está entre 0, 04 e 0, 03 (A) 0, 45 (B) 0, 35 (C) 0, 035 (D) 0, Considera o conjunto A = Z ] 2, 1] Qual dos seguintes conjuntos é igual a A (A) {0, 1} (B) { 1, 0} (C) { 1, 0, 1} (D) { 2, 1, 0} 5. Considera o conjunto A =] 15; 0, 9] Indica o menor número inteiro e o maior número inteiro pertencentes ao conjunto A 6. Qual dos números seguintes é maior do que 7 11 (A) 0, 6363 (B) 0, 637 (C) 0, 64 (D) 0, 7 7. Escreve um número compreendido entre 3,14 e π 8. Considera os conjuntos A =] 1[ e B =] 4, 2] Qual dos seguintes conjuntos é igual a A B (A) ] 4, 1[ (B) ] 1, 2] (C) ] 4, 2] (D) ] 1[ Prova Final 3 o Ciclo , 2 a chamada Prova Final 3 o Ciclo , 1 a chamada Teste Intermédio 9 o ano Prova Final 3 o Ciclo , 2 a chamada Prova Final 3 o Ciclo , 1 a chamada Teste Intermédio 9 o ano Prova Final 3 o Ciclo a chamada Prova Final 3 o Ciclo a chamada
2 9. Considera o conjunto A =] π, 1] Qual das seguintes afirmações é verdadeira (A) 3, 15 A (B) π A (C) π A (D) 3, 14 A Teste Intermédio 9 o ano Qual das seguintes afirmações é verdadeira (A) 1 2 é um número irracional (B) 2π é um número racional (C) 1,32(5) é um número racional (D) 16 é um número irracional 11. Qual dos números seguintes pertence ao conjunto A =], 0[ ]2, 3] (A) 0 (B) 1 (C) 3 (D) Qual é o menor número inteiro que pertence ao intervalo [ π, 0] (A) 4 (B) π (C) 3 (D) Considera o conjunto A = [ 5, 1[ Escreve todos os números pertencentes ao conjunto A Z (Z designa o conjunto dos números inteiros relativos). 14. Escreve todos os números do conjunto Z pertencentes ao intervalo [ 3, 2[ (Z designa o conjunto dos números inteiros relativos). 15. Seja A =] 1, 2[ e seja B =] 3, 0[ Em qual das opções seguintes está representado o conjunto A B (A) x R : x > 1 x < 0 (B) x R : x > 3 x < 0 Exame Nacional 3 o Ciclo , Época Especial Exame 2011, Época Especial Exame Nacional 3 o Ciclo , 2 a Chamada Exame Nacional 3 o Ciclo , 1 a Chamada Teste Intermédio 9 o ano (C) x R : x > 1 x < 2 (D) x R : x > 3 x < 2 Teste Intermédio 9o ano Qual das opções seguintes apresenta dois números irracionais (A) 3 8; π (B) 3 8; 3 27 (C) 3; 3 27 (D) 3; π Exame Nacional 3 o Ciclo , 2 a Chamada 17. Escreve, na forma de uma fração, em que o numerador e o denominador sejam números naturais, um número, x, que verifique a condição seguinte: 5 < x < 2, 5 Exame Nacional 3 o Ciclo , 2 a Chamada
3 18. Qual das opções seguintes apresenta um número irracional (A) 25 (B) 2, 5 (C) 0, 25 (D) 0, 0025 Exame Nacional 3 o Ciclo , 1 a Chamada 19. Considera o conjunto C = [ π, 3] ]1[ Qual dos conjuntos seguintes é igual a C (A) ]1, 3] (B) [ π[ (C) [ π, 3] (D) [ π, 1[ Exame Nacional 3 o Ciclo , 1 a Chamada 20. Considera o conjunto P = [ 3, 2] [ 2[ Qual dos conjuntos seguintes é igual a P (A) [ 2, 2] (B) [ 3[ (C) [ 3, 2] (D) [ 2[ 21. Considera o conjunto S = 1 1 4, 3 64, 3 27, 27 Qual dos números do conjunto C é um número irracional Teste Intermédio 9 o ano Teste Intermédio 9 o ano Considera o conjunto I =] 2, π] Qual dos conjuntos seguintes está contido no conjunto I (A) 32, 2, 4 (B) 32, 0, 1 (C) { 2, 1, 2} (D) { 4, 1, 0} Teste Intermédio 9 o ano Considera o conjunto B = [ 1; 1, 42 [ ] 2[ Escreve o conjunto B na forma de um intervalo de números reais. Teste Intermédio 9 o ano Escreve um valor aproximado, por excesso, a menos de uma centésima, do número Teste Intermédio 9 o ano Considera o conjunto A = [ 2[. Qual dos seguintes números pertence ao conjunto A (A) 1, (B) 1, (C) 1, (D) 1, 4 10 Exame Nacional 3 o Ciclo , 2 a Chamada 26. Quais são os números do conjunto A = 8; 27; 3 7, π, 81 que são irracionais (A) 27 e π (B) π e 81 (C) 27 e 81 (D) 3 7 e 81 Exame Nacional 3 o Ciclo , 1 a Chamada
4 27. Considera o conjunto seguinte: S = 3, 5; 1 7 ; 109; 2, (45) Qual dos números do conjunto S corresponde a uma dízima infinita não periódica Teste Intermédio 9 o ano A qual dos conjuntos seguintes pertence o número 5 (A) ]2, 22; 2, 23[ (B) ]2, 23; 2, 24[ (C) {2, 22; 2, 23} (D) {2, 23; 2, 24} Teste Intermédio 9 o ano Considera o conjunto B =] ; 3, 15 [ [π[ Escreve o conjunto B na forma de um intervalo de números reais. 30. Qual é o menor número inteiro pertencente ao intervalo 10, 1 2 Teste Intermédio 9 o ano (A) 4 (B) 3 (C) 2 (D) Considera a seguinte representação gráfica de um intervalo de números reais. Exame Nacional 3 o Ciclo , 2 a Chamada Qual dos seguintes conjuntos define este intervalo (A) x R : x 1 x < 4 (B) x R : x > 1 x 4 (C) x R : x 1 x < 4 (D) x R : x > 1 x 4 Exame Nacional 3 o Ciclo , 1 a Chamada 32. Sabe-se que I 2 3, 10 = 0, 10 Qual dos intervalos seguintes poderá ser o conjunto I (A) ]0[ (B) [0[ (C) 23, 0 (D) Apenas um dos quatro números que se seguem é um número irracional. Qual Teste Intermédio 9 o ano (A) 1 16 (B) 0, 16 (C) 1 16 (D) 1, 16 Teste Intermédio 9 o ano
5 34. Considera o conjunto A =] ; 3, 141] [ 2, π[ Escreve o conjunto na forma de um intervalo de números reais. 35. Considera o intervalo π, 1. 3 Teste Intermédio 9 o ano Escreve todos os números inteiros relativos pertencentes a este intervalo. Exame Nacional 3 o Ciclo , 2 a Chamada 36. Considera os intervalos A =], 2[ e B = [ 3[. Qual dos seguintes intervalos é igual a A B (A) ], 3] (B) [2[ (C) ] [ (D) [ 3, 2[ 37. Sabe-se que A = [π, 7] 10 Exame Nacional 3 o Ciclo , 1 a Chamada Escreve, na forma de um intervalo de números reais, o conjunto A. Exame Nacional 3 o Ciclo , 2 a Chamada 38. Considera o conjunto A = [π[. Qual dos seguintes números pertence ao conjunto A (A) 3, (B) 3, (C) 3, (D) 3, Exame Nacional 3 o Ciclo , 1 a Chamada y 39. Na figura ao lado, está representado, num referencial ortogonal (eixos perpendiculares), um triângulo [ABC]. O segmento de reta [BC] é perpendicular ao eixo dos xx. Sabe-se que AB = 20, AC = 5 e BC = 5. O A B x Indica um valor aproximado por defeito e outro por excesso do perímetro do triângulo [ABC], a menos de 0,1. C 40. Considera o intervalo 73, 3 Exame Nacional 3 o Ciclo , 2 a Chamada Escreve todos os números inteiros relativos pertencentes a este intervalo Escreve, na forma de intervalo de números reais, o conjunto ] 2, π] 73, 3 Exame Nacional 3 o Ciclo , 2 a Chamada
6 41. Considera o conjunto A = [ 1[ Qual das quatro igualdades que se seguem é verdadeira (A) A = [ 1, 1[ 32 (B) A = [ 1, 1[ 12 (C) A = [ 1, 1[ 32 (D) A = [ 1, 1[ 12 Exame Nacional 3 o Ciclo , 1 a Chamada 42. Escreve um número irracional compreendido entre 4 e 5. Exame Nacional 3 o Ciclo , 1 a Chamada 43. Através dos tempos, foram utilizadas diferentes aproximações para o valor de π (pi). Na tabela estão indicados alguns desses valores. Egípcios Gregos Indus Romanos Qual o povo que usava uma melhor aproximação de π (pi) (A) Egípcios (B) Gregos (C) Indus (D) Romanos Prova de Aferição
Escola Básica de Ribeirão (Sede) ANO LETIVO 0/0 Ficha de Trabalho outubro 0 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Números Reais
MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios. Como o ponto O é a origem da reta e a abcissa do ponto A é 5, então OA
Escola Secundária de Lousada
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9º ano N.º Assunto: Números reais e inequações-exercícios de exames nacionais e testes intermédios Lições nº e Data: /02 /2012 1 Qual das
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano)
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Seja n um número natural e seja A = n,n] Z. (Z é o conjunto dos números inteiros relativos.)
Números Reais e Inequações. Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI)
A G R U P A M E N T O D E E S C O L A S 172 303 MÃES D ÁGUA SEDE - Escola Básica e Secundária Mães d Água Números Reais e Inequações Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano)
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Seja n o menor número natural tal que 0, 3 n ] ]20 é um conjunto não vazio. Qual é o valor
Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2010/2011 Números Reais + Inequações Outubro 2010
Escola EB, de Ribeirão (Sede) ANO LECTIVO 00/0 Números Reais + Inequações Outubro 00 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios(TI) Tema: Números
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o conjunto A Z tem sete elementos, os sete elemento são três
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, a expressão i + i 1 + i 2 +...i 218 é
Departamento de Matemática e Ciências Experimentais. Nome: N.º Data: /maio 2014
Matemática 9.º Ano - 2013/2014 Agrupamento de Escolas de Carnaxide-Portela Departamento de Matemática e Ciências Experimentais Ficha de Trabalho n.º12 5.ª Ficha de Avaliação Nome: N.º Data: /maio 2014
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 5 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.
FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
Caderno 1. (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno 2).
Nome: Ano / Turma: N.º: Data: - - Caderno 1 (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 9 de abril de 013 Nome: N.º Turma: Classificação:
1 Conjunto dos números naturais N
Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se
Proposta de Exame Final Nacional do Ensino Secundário
Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 010/011 Outubro 010 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: Ficha de Avaliação de Matemática Versão Duração do Teste: 90 minutos 8 de Outubro
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
Prova de Aferição de Matemática Prova 86 8.º Ano de Escolaridade 2018
Rubricas dos professores vigilantes A PREENCHER PELO ALUNO Nome completo Documento de identificação CC n.º Assinatura do aluno A PREENCHER PELa escola N.º convencional Prova de Aferição de Matemática Prova
Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO
Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
2 º T E S T E D E A V A L I A Ç Ã O GRUPO I VERSÃO 1
2 º T E S T E D E A V A L I A Ç Ã O COLÉGIO INTERNACIONAL DE Disciplina Matemática A VERSÃO 1 VILAMOURA INTERNATIONAL Ensino Secundário Ano 11º - A e B Duração 90 min SCHOOL Curso CCS e CCT Componente
Prova de Ingresso Específica de acordo com os artigos 8.º e 11.º do Decreto-Lei n.º 113/2014 de 16 de julho.
Prova de Ingresso Específica de acordo com os artigos 8.º e 11.º do Decreto-Lei n.º 113/2014 de 16 de julho. Prova de Matemática Prova Modelo Duração da Prova: 90 minutos. Tolerância: 30 minutos. 10 Páginas
T E S T E D E A V A L I A Ç Ã O GRUPO I VERSÃO 1
1º T E S T E D E A V A L I A Ç Ã O COLÉGIO INTERNACIONAL DE Disciplina Matemática A VERSÃO 1 VILAMOURA INTERNATIONAL Ensino Secundário Ano 11º - A e B Duração 90 min SCHOOL Curso CCS e CCT Componente de
Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade Duração da Prova: 90 minutos A PREENCHER PELO ALUNO Nome completo
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência
Prova de Aferição de Matemática 8.º Ano de Escolaridade
Prova de Aferição de Matemática 8.º Ano de Escolaridade Prova 86 Decreto-Lei n.º 17/2016, de 4 de abril 7 Páginas Duração da Prova: 90 minutos. Parte A: 35 minutos (com calculadora) Parte B: 55 minutos
Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff
1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Na figura abaixo, está representado um triângulo equilátero [ABC]. Seja a o comprimento de cada um dos lados do triângulo. Seja M o ponto médio do lado [BC]. Mostre
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
TPC PÁSCOA. A função g é de proporcionalidade inversa e o ponto Os segmentos de reta OD e AB e EF. são paralelos;
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS TPC PÁSCOA Ano letivo 014 / 15 1. No referencial da figura está representado um quadrilátero e um triângulo retângulo em F. A figura não está desenhada à
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
Proposta de teste de avaliação
Matemática A 0. AN DE ESCLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.
1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2018 / 2019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Na figura abaixo, está representado, num referencial o.n. Oxyz, o cubo [OPQRSTUV] de aresta 2. Os pontos, P, R e T pertencem aos semieixos positivos. Numa das opções
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 018 / 019 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro
MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere: z 1 = 1 i ] π [, com θ 2e iθ 12,π 4 w = z 1
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA Trabalho Estudos Independentes 8º Ano
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA Trabalho Estudos Independentes 8º Ano Nome Nº Turma Data Nota Disciplina Matemática Prof. Elaine Cristina Francisco de Oliveira Valor 30,0 Instruções para a
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Teste de Matemática A 2016 / 2017
Teste de Matemática A 2016 / 2017 Teste N.º 3 Matemática A Duração do Teste: 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 4 - Geometria - 11º ano Exames 014-017 1. Na figura, está representada, num referencial o.n. Oxyz, uma pirâmide quadrangular regular [ABCDV], cuja
Funções - Primeira Lista de Exercícios
Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando
Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores
Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora.
EXAME TIPO 12. O ANO DE ESCOLARIDADE MATEMÁTICA A Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora. Utiliza apenas caneta ou esferográfica de tinta azul ou preta. É permitido
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste
Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)
Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto
Teorema de Tales no plano
MA620 - Aula 3 p. 1/ Teorema de Tales no plano Teorema de Tales: (no plano) Se duas retas paralelas são cortadas por duas retas concorrentes, então as medidas dos segmentos correspondentes determinados
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
1 a Lista de Exercícios MAT 105 Geometria Analitica
1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Entrelinha 1,5, sem figuras Duração da Prova (Caderno 1 + Caderno 2):
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação
Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.
Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade
Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff
1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado
