FORMULÁRIO DE FÍSICA

Tamanho: px
Começar a partir da página:

Download "FORMULÁRIO DE FÍSICA"

Transcrição

1 1º ano FORMULÁRIO DE FÍSICA Dinâmica de uma paícula maeial Posição, velocidade e aceleação Posição Lei do movimeno Deslocameno Velocidade Aceleação Noma da Aceleação Componenes Tangencial e Nomal da Aceleação Componenes Tangencial e Nomal da Aceleação Aceleação Tangencial Aceleação Nomal Movimeno Recilíneo + v. v ' k Movimeno Recilíneo e Unifome Lei das Posições Lei das Velocidades Ano Lecivo de 3-4 Página 1 de 7

2 1º ano a Lei das Aceleações Movimeno Recilíneo Unifomemene Vaiado 1 + v. +. a. Lei das Posições v v + a. Lei das Velocidades a v' k Lei das Aceleações v v +. a. d Relação ene velocidade e aceleação Movimeno Recilíneo Vaiado Movimeno Cuvilíneo e Unifome s s v. θ θ ω. + + s v v π. T v k s s 1 + v. + a. Movimeno Cicula e Unifome Lei das posições ω θ π v ω. ω T ω. α 1 θ + v v a. ω ω α. + + Lei das velocidades Lei das velocidades Lei das aceleações θ + ω. α. Lei das posições Movimeno Cicula Unifomemene Vaiado Lei das velocidades v v +. a. v k s ω ω +. α. θ ω. α k Relação ene velocidade e aceleação Lei das aceleações Movimeno Cuvilíneo Vaiado Velocidade Angula de uma Paícula Relação ene Velocidade Angula e Velocidade Aceleação Angula Ano Lecivo de 3-4 Página de 7

3 1º ano 1ª Lei de Newon ( Lei da Inécia ) ª Lei de Newon ( Lei Fundamenal da Dinâmica ) 3ª lei de Newon ( Lei da Acção Reacção ) Movimeno Relaivo de Tanslação Unifome Tansfomação de Galileu Relaividade do deslocameno e do espaço pecoido Invaiância da disância Fómula de Galileu da Composição de Velocidades Invaiância da aceleação Movimeno cuvilíneo de uma paícula maeial acuada po uma foça consane Foça esulane de um sisema de foças decomposas suas componenes angencial e nomal Foça esulane paa o movimeno ecilíneo unifome Foça esulane paa o movimeno ecilíneo unifomemene vaiado Foça esulane paa o movimeno ecilíneo vaiado Foça esulane paa o movimeno cuvilíneo Decomposição da foça esulane segundo as suas componenes angencial e nomal Ano Lecivo de 3-4 Página 3 de 7

4 1º ano Movimeno de um pojécil Aceleação de um pojécil Lei das aceleações num lançameno hoizonal Lei das velocidades num lançameno hoizonal Lei das posições num lançameno hoizonal Equações paaméicas paa um lançameno hoizonal Equação da ajecóia paa um lançameno hoizonal Tempo de voo paa um lançameno hoizonal Lei das aceleações paa um lançameno obliquo Lei das velocidades paa um lançameno obliquo com Lei das posições paa um lançameno obliquo Equações paaméicas paa um lançameno obliquo Equação da ajecóia paa um lançameno obliquo Tempo de subida paa um lançameno obliquo feio a pai do solo Tempo de voo paa um lançameno obliquo feio a pai do solo Ano Lecivo de 3-4 Página 4 de 7

5 1º ano Alua máxima aingida pelo pojécil num lançameno obliquo Alcance do pojécil ao nível do lançameno num lançameno obliquo Movimeno Cicula no plano hoizonal Resulane das foças do pêndulo cónico Resulane das foças do pêndulo cónico pela Lei Fundamenal de Newon Noma da ensão do fio do pêndulo cónico Noma da aceleação do pêndulo cónico g. gθ v g.. gθ Noma da velocidade do pêndulo cónico Noma da velocidade angula do pêndulo cónico Peíodo do movimeno do pêndulo cónico Velocidade necessáia paa uma paícula desceve, sem aio, uma cuva com elevé, de aio R, sem se despisa Ano Lecivo de 3-4 Página 5 de 7

6 1º ano Noma da ensão do fio do pêndulo gavíico simples Resulane das foças do pêndulo gavíico simples Aceleação do pêndulo gavíico simples com Posição de equilíbio do pêndulo gavíico simples Posição exema do pêndulo gavíico simples Posição genéica do pêndulo gavíico simples Posição mais baixa da ajecóia de uma paícula, pesa po um fio, que desceve um movimeno cicula no plano veical Posição mais ala da ajecóia de uma paícula, pesa po um fio, que desceve um movimeno cicula no plano veical Ano Lecivo de 3-4 Página 6 de 7

7 1º ano Noma da velocidade mínima com que, na posição mais ala da ajecóia, uma paícula, pesa po um fio, desceve um movimeno cicula no plano veical Cálculo da alua mínima de onde deve se abandonada uma paícula po foma a da uma vola compleo plano veical Movimeno de uma paícula maeial sujeia a foças de aio Inensidade da foça de aio esáico Inensidade da foça de aio cinéico Ano Lecivo de 3-4 Página 7 de 7

Capítulo 3 Cinemática e Dinâmica do ponto material. Corpo Rígido.

Capítulo 3 Cinemática e Dinâmica do ponto material. Corpo Rígido. Capíulo 3 Cinemáica e Dinâmica do pono maeial. Copo Rígido. 3. Movimeno Relaivo Um pono (um objeco) eibe um movimeno em elação a ouo, quando a sua posição espacial medida elaivamene a esse segundo copo

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as

Leia mais

Capítulo 3 Cinemática do ponto material.

Capítulo 3 Cinemática do ponto material. Capílo 3 Cinemáica do pono maeial. 3.1 Moimeno Relaio Um pono (m objeco eibe m moimeno em elação a oo, qando a sa posição espacial medida elaiamene a esse segndo copo - aia com o empo. Qando iso não aconece,

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio Mecânica dos Fluidos 1 Capíulo 2 Luis Fenando Azevedo Laboaóio de Engenhaia de Fluidos DEM/PUC-Rio A hipóese do meio conínuo Uma eoia complea paa o movimeno de fluidos deveia leva em consideação a esuua

Leia mais

Princípios de conservação e Equação de Evolução

Princípios de conservação e Equação de Evolução Pincípios de consevação e Equação de Evolução Os pincípios fundamenais da Mecânica aplicam-se a copos maeiais e po isso em fluidos aplicam-se a uma poção de fluido e não a um volume fixo do espaço. Ese

Leia mais

Movimentos bi e tridimensional 35 TRIDIMENSIONAL

Movimentos bi e tridimensional 35 TRIDIMENSIONAL Moimenos bi e idimensional 35 3 MOVIMENTOS BI E TRIDIMENSIONAL 3.1 Inodução O moimeno unidimensional que imos no capíulo aneio é um caso paicula de uma classe mais ampla de moimenos que ocoem em duas ou

Leia mais

Superfícies Sustentadoras

Superfícies Sustentadoras Supefícies Sustentadoas Uma supefície sustentadoa gea uma foça pependicula ao escoamento não petuado, foça de sustentação, astante supeio à foça na diecção do escoamento não petuado, foça de esistência.

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D] Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Exercícios propostos

Exercícios propostos Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Capítulo 5 Trabalho e Energia

Capítulo 5 Trabalho e Energia Caíulo 5 Tabalho e Enegia 5.1 Imulso Resolvendo a equação fundamenal da dinâmica, aa uma aícula; d F = (5.1) d conhecendo a foça F em função do emo, o inegação, emos; ou d = Fd (5.) = Fd = I (5.3) I chamamos

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Introdução à Análise Diferencial dos Movimentos dos Fluidos

Introdução à Análise Diferencial dos Movimentos dos Fluidos Inodção à Análise Difeencial dos Moimenos dos Flidos Eqação de conseação de massa (coninidade) Definições ailiaes: Fnção coene Deiada maeial Aceleação Roação de flidos Eqação de Conseação de Qanidade de

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

( z) Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Escoamento em torno de um cilindro circular com circulação Γ

( z) Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Escoamento em torno de um cilindro circular com circulação Γ Aeodinâmica I Fluido Pefeito/Ideal Foça Execida po um Escoamento Plano em Tono de um Sólido Escoamento em tono de um cilindo cicula com ciculação Γ - Potencial complexo W V - Velocidade complexa dw Mestado

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

uma função qualquer com uma variável independente. A derivada de uma função é

uma função qualquer com uma variável independente. A derivada de uma função é Ondas (EE) Análise vecorial. Derivadas parciais.. Derivada de uma função Seja a função f () uma função qualquer com uma variável independene. A derivada de uma função é d d lim 0 Geomericamene, a derivada

Leia mais

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos

Leia mais

Física. Regras. (Informática) Fisica IA, Carlos Dias 04-05, 1

Física. Regras. (Informática) Fisica IA, Carlos Dias 04-05,  1 Física I Disciplina T (H) TP (H) P (H) ECTS Áea Cien. Sec Física I (Infmáica) 3 0 1,5 6,5 Física DF Regas Funcinamen da disciplina Aulas Teóicas em blcs de 1,5 h cada (cm esluçã de pblemas) Aulas Labaiais

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Bola, taco, sinuca e física

Bola, taco, sinuca e física Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,

Leia mais

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos Accionamento de máquinas Estudo do moto eléctico, quando acoplado a uma máquina. A máquina accionada impõe duas condicionantes ao aanque: Bináio esistente Inécia das massas. Bináio esistente O conhecimento

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

DINÂMICA Dinâmica Cinemática Dinâmica Movimento rectilíneo Movimento Curvilíneo 11-1

DINÂMICA Dinâmica Cinemática Dinâmica Movimento rectilíneo Movimento Curvilíneo 11-1 DINÂMICA A Dinâmica inclui: - Cinemáica (Kinemaic): eudo da geomeia do moimeno. A Cinemáica é uilizada paa elaciona o delocameno, a elocidade, a aceleação e o empo, em elação com a caua do moimeno. - Dinâmica

Leia mais

Parte 1 - Múltipla escolha - 0,7 cada

Parte 1 - Múltipla escolha - 0,7 cada UFRJ - Instituto de Física Disciplina: Física I - Primeira Prova - 10/10/2016 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo

Leia mais