LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E PROBABILIDADE.
|
|
|
- Sebastiana Costa Porto
- 9 Há anos
- Visualizações:
Transcrição
1 LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E PROBABILIDADE. 03 EXERCÍCIOS EXTRAÍDOS LIVRO: MATEMÁTICA NOS VESTIBULARES VOL 5 (FUVEST) Um recenseamento revelou as seguintes características sobre a idade e a escolaridade da população de uma cidade. Se for sorteada, ao acaso, pessoa da cidade, determine a probabilidade de esta pessoa ter curso superior (completo ou incompleto) é: a) 6,12% b) 7,27% c) 8,45% d) 9,57% e) 10,23% uma 12 Em uma certa comunidade, dois homens sempre se cumprimentam (na chegada) com um aperto de mão e se despedem (na saída) com outro aperto de mão. Um homem e uma mulher se cumprimentam com um aperto de mão, mas se despedem com um aceno. Duas mulheres só trocam acenos, tanto para se cumprimentarem quanto para se despedirem. Em uma comemoração, na qual 37 pessoas almoçaram juntas, todos se cumprimentaram e se despediram na forma descrita acima. Quantos dos presentes eram mulheres, sabendo que foram trocados 720 apertos de mão? a) 16 b) 17 c) 18 d) 19 e) Em uma classe de 9 alunos, todos os alunos se dão bem uns com os outros, com exceção de Andrea, que não se dá bem com Manoel e Antônio. Nesta classe, será formada uma comissão de cinco alunos, com a exigência de que todos os alunos da comissão se deem bem uns com os outros. Quantas comissões podem ser formadas? 39 Uma urna contém 5 bolas brancas e 3 bolas pretas. Três bolas são retiradas ao acaso, sucessivamente, sem reposição. Determine: a) a probabilidade de que tenham sido retiradas 2 bolas pretas e 1 bola branca. b) a probabilidade de que tenham sido retiradas 2 bolas pretas e 1 bola branca, sabendo-se que as três bolas retiradas não são da mesma cor. 1
2 51 Um lotação possui três bancos para passageiros, cada um com três lugares, e deve transportar os três membros da família Sousa, o casal Lúcia e Mauro e mais quatro pessoas. Além disso, 1. a família Sousa quer ocupar um mesmo banco; 2. Lúcia e Mauro querem sentar-se lado a lado. Nessas condições, determine o número de maneiras distintas de dispor os nove passageiros no lotação. 66 Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos, 36% são especializados e 1400 têm mais de 30 anos e são especializados. Com base nesses dados, pergunta-se: a) Quantos funcionários têm até 30 anos e não são especializados? b) Escolhendo um funcionário ao acaso, qual a probabilidade de ele ter até 30 anos e ser especializado? 68 Seja S o conjunto dos números naturais cuja representação decimal é formada apenas pelos algarismos 0, 1, 2, 3 e 4. a) Seja x um número de dez algarismos pertencente a S, cujos dois últimos algarismos têm igual probabilidade de assumir qualquer valor inteiro de 0 a 4. Qual a probabilidade de que x seja divisível por 15? b) Quantos números menores que um bilhão e múltiplos de quatro pertencem ao conjunto S? 84 Dois prêmios iguais serão sorteados entre dez pessoas, sendo sete mulheres e três homens. Admitindo que uma pessoa não possa ganhar os dois prêmios, responda às perguntas abaixo. a) De quantas maneiras diferentes os prêmios podem ser distribuídos entre as dez pessoas? b) Qual é a probabilidade de que dois homens sejam premiados? c) Qual é a probabilidade de que ao menos uma mulher receba um prêmio? 110 Considere os algarismos 2, 3, 5, 7 e 11. Qual é a quantidade total de números distintos que se obtém multiplicando-se dois ou mais desses algarismos, sem repetição? a) 120 b) 52 c) 36 d) 26 e) 21 2
3 111 Numa pequena cidade realizou-se uma pesquisa com certo número de indivíduos do sexo masculino, na qual procurou-se obter uma correlação entre a estatura de pais e filhos. Classificaram-se as estaturas em 3 grupos: alta (A), média (M) e baixa (B). Os dados obtidos na pesquisa foram sintetizados, em termos de probabilidades, na matriz: O elemento da primeira linha e segunda coluna da matriz, que é 1/4, significa que a probabilidade de um filho de pai alto ter estatura média é 1/4. Os demais elementos interpretam-se similarmente. Admitindo-se que essas probabilidades continuem válidas por algumas gerações, a probabilidade de um neto de um homem com estatura média ter estatura alta é: a) 13/32 b) 9/64 c) 3/4 d) 25/64 e)13/ O sangue humano está classificado em quatro grupos distintos: A, B, AB e O. Além disso, o sangue de uma pessoa pode possuir, ou não, o fator Rhésus. Se o sangue de uma pessoa possui esse fator, diz-se que a pessoa pertence ao grupo sanguíneo Rhésus positivo (Rh+) e, se não possui esse fator, diz-se Rhésus negativo (Rh-). Numa pesquisa, 1000 pessoas foram classificadas, segundo grupo sanguíneo e respectivo fator Rhésus, de acordo com a tabela Dentre as 1000 pessoas pesquisadas, escolhida uma ao acaso, determine: a) a probabilidade de seu grupo sanguíneo não ser A. Determine também a probabilidade de seu grupo sanguíneo ser B ou Rh+. b) a probabilidade de seu grupo sanguíneo ser AB e Rh-. Determine também a probabilidade condicional de ser AB ou O, sabendo-se que a pessoa escolhida é Rh Dois rapazes e duas moças irão viajar de ônibus, ocupando as poltronas de números 1 a 4, com 1 e 2 juntas e 3 e 4 juntas, conforme o esquema. O número de maneiras de ocupação dessas quatro poltronas, garantindo que, em duas poltronas juntas, ao lado de uma moça sempre viaje um rapaz, é a) 4 b) 6 c) 8 d) 12 e) 16. 3
4 153 Uma pesquisa publicada pela revista Veja de sobre os hábitos alimentares dos brasileiros mostrou que, no almoço, aproximadamente 70% dos brasileiros comem carne bovina e que, no jantar, esse índice cai para 50%. Supondo que a probabilidade condicional de uma pessoa comer carne bovina no jantar, dado que ela comeu carne bovina no almoço, seja 6/10, determine a probabilidade de a pessoa comer carne bovina no almoço ou no jantar. 160 Numa certa região, uma operadora telefônica utiliza 8 dígitos para designar seus números de telefones, sendo que o primeiro é sempre3, o segundo não pode ser 0 e o terceiro número é diferente do quarto. Escolhido um número ao acaso, a probabilidade de os quatro últimos algarismos serem distintos entre si é a) 63/125 b) 567/1250 c) 189/1250 d) 63/1250 e) 7/ Considere uma prova com 10 questões de múltipla escolha, cada questão com 5 alternativas. Sabendo que cada questão admite uma única alternativa correta, então o número de formas possíveis para que um candidato acerte somente 7 das 10 questões é a) b) c) d) ( ) e) ( ) 224 Determine quantos números de 3 algarismos poder ser formados com 1,2,3,4,5,6 e 7, satisfazendo a seguinte regra: O numero não pode ter algarismos repetidos, exceto quando iniciar com 1 ou 2, caso em que o 7 (e apenas o 7) pode aparecer mais de uma vez. Assinale o resultado obtido. a) 204 b) 206 c) 208 d) 210 e) Considere uma população de igual número de homens e mulheres, em que sejam daltônicos 5% dos homens e 0,25% das mulheres. Indique a probabilidade de que seja mulher uma pessoa daltônica selecionada ao acaso nessa população. a) b) c) d) e) 292 José quer dispor 8 CDs numa disqueteira tipo torre de 8 lugares. São 5 CDs de diferentes bandas de rock, além de 3 outros de jazz, de bandas distintas. De quantos modos eles podem ser dispostos, de maneira que tanto os CDs de rock quanto os de jazz estejam numa determinada ordem, podendo estar misturados os CDs dos dois tipos de música? a) 336 b) c) 56 d) 6720 e)
5 308 Quatro meninas e cinco meninos concorreram ao sorteio de um brinquedo. Foram sorteadas duas dessas crianças ao acaso, em duas etapas, de modo que quem foi sorteado na primeira etapa não concorria ao sorteio na segunda etapa. A probabilidade de ter sido sorteado um par de crianças de sexo diferente é a) b) c) d) e) 332 Uma rede de televisão encomendou uma pesquisa com a intenção de identificar valores e comportamentos de jovens entre 15 e 30 anos para lançar uma nova programação. Os 2000 jovens entrevistados, das classes A, B e C, das cidades de São Paulo, Rio de Janeiro, Brasília, Salvador e Porto Alegre, definiram sua geração por meio de palavras como vaidosa (37%), consumista (26%), acomodada (22%) e individualista (15%). Dentre aqueles que classificaram sua geração como vaidosa, 45% são homens. a) Considerando tais dados, se for escolhido ao acaso um jovem que participou da pesquisa, qual a probabilidade de ele considerar sua geração vaidosa e ser mulher? b) Quantos jovens entrevistados não consideraram sua geração acomodada? 342 Um jogador aposta sempre o mesmo valor de $1 numa jogada cuja chance de ganhar ou perder é a mesma. Se perder, perderá o valor apostado, se ganhar, receberá $1 além do valor apostado. Se ele começa o jogo com $3 no bolso, joga três vezes e sai, com que valor é mais provável que ele saia? 344 Numa fila de oito pessoas, três pretendem votar no candidato A e cinco, no candidato B. a) Ao entrevistar as três primeiras pessoas da fila, qual a probabilidade de o resultado desta amostra ser favorável ao candidato A? b) Qual a probabilidade de dar empate, se as quatro primeiras pessoas forem entrevistadas nessa mesma fila? 363 Uma urna contém bolas numeradas de 1 até Sorteando-se ao acaso uma delas, a probabilidade de que o algarismo mais à esquerda do número marcado na bola seja 1, é igual a a) 11,02%. b) 11,11%. c) 11,12%. d) 12,21%. e) 21,02%. 5
6 388 Três números inteiros distintos de -20 a 20 foram escolhidos de forma que seu produto seja um número negativo. O número de maneiras diferentes de se fazer essa escolha é a) 4940 b) 4250 c) 3820 d) 3640 e) Um carteiro leva três cartas para três destinatários diferentes. Cada destinatário tem sua caixa de correspondência, e o carteiro coloca, ao acaso, uma carta em cada uma das três caixas de correspondência. a) Qual é a probabilidade de o carteiro não acertar nenhuma caixa de correspondência? b) Qual é a probabilidade de o carteiro acertar exatamente uma caixa de correspondência? 407 Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto, 70%. Se Cláudia for de ônibus, a probabilidade de chegar atrasada ao trabalho é 10% e, se for de moto, a probabilidade de se atrasar é 20%. A probabilidade de Cláudia não se atrasar para chegar ao trabalho é igual a: a) 30% b) 80% c) 70% d) 67% e) 83% 464 As permutações das letras da palavra PROVA foram listadas em ordem alfabética, como se fossem palavras de cinco letras em um dicionário. A 73ª palavra nessa lista é a) PROVA. b) VAPOR. c) RAPOV. d) ROVAP. e) RAOPV. 508 Três dados honestos são lançados. A probabilidade de que os três números sorteados possam ser posicionados para formar progressões aritméticas de razão 1 ou 2 é a) b) c) d) e) 6
7 Respostas 03 b) 12 b) 31 a) 39 a) b) 51 e) 66 a) 2200 b) a) b) a) 45 b) c) 110 d) 111 a) 128 a) 54% e 87% b) 1% e 40% 133 e) % 160 a) 188 a) 224 e) 243 a) 292 c) 308 a) 332 a) b) $2 ou $4 344 a) b) 363 c) 388 a) 397 a) b) 407 e) 464 e) 508 c) Exercícios: 03, 12, 31, 39, 51, 66, 68, 84, 110, 111, 128, 133, 153, 160, 174, 188, 224, 243, 292, 308, 332, 342, 344, 363, 388, 397, 407, 453, 464, 508 7
b) 35 c) 14 d) 35 Gab: D
0 - (PUC SP/006) Em um ônibus há apenas bancos vazios, cada qual com lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares forem escolhidos aleatoriamente,
c) 852 d) 912 e) 1044
1. (Pucsp) Na sala de reuniões de certa empresa há a) 664 uma mesa retangular com 10 poltronas dispostas da b) 792 forma como é mostrado na figura abaixo. c) 852 d) 912 e) 1044 Certo dia, sete pessoas
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24
MTM A Extra 0 Exercícios
MTM A Extra 0 Exercícios UNIFESP Duzentos e cinquenta candidatos submeteram-se a uma prova com 5 questões de múltipla escolha, cada questão com 3 alternativas e uma única resposta correta. Admitindo-se
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
c) 17 b) 4 17 e) 17 21
Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se
MATEMÁTICA Revisão II Módulo 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Revisão II Módulo 2 Professor Marcelo Gonzalez Badin 1.(Unicamp-2009) Em uma bandeja retangular, uma pessoa dispôs brigadeiros formando n colunas, cada qual com m brigadeiros, como mostra a
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou
8. (Uerj 2010) C30 + C20 A30 + A20
1. (Uerj 2007) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro, o Manual do Candidato do Vestibular Estadual 2007. Um desses grupos está apresentado a seguir. Considere que cada
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Erivaldo. Análise Combinatória, Probabilidade
Erivaldo Análise Combinatória, Probabilidade ACAFE 2013.01 Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. O "American Standard Code for Information Interchange"
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
MATEMÁTICA Revisão I Aula 3. Professor Marcelo Gonzalez Badin
MATEMÁTICA Revisão I Aula 3 Professor Marcelo Gonzalez Badin Se um evento A pode ocorrer de m maneiras distintas e se, para cada uma dessas m maneiras, um outro evento B pode ocorrer de n modos diferentes,
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
LISTA DE REVISÃO ANÁLISE COMBINATÓRIA SEJA AVANÇADO E RESOLVA TODOS OS EXERCÍCIOS 1) (ENEM)
LISTA DE REVISÃO ANÁLISE COMBINATÓRIA SEJA AVANÇADO E RESOLVA TODOS OS EXERCÍCIOS 1) (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caráter é um conjunto de 6 pontos dispostos
Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}?
Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0,, 3, 5,, 7, 8, 9}? ) Quantos pares ordenados com elementos distintos podemos formar com os
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De
1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.
COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
Exercícios Obrigatórios
Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um
PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS
MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS PROBABILIDADE 1- (Osec-SP) Foram preparadas noventa empadinhas de camarão, sendo que, a pedido, sessenta delas deveriam ser bem mais apimentadas. Por pressa e confusão
Exercícios de Matemática Permutação
Exercícios de Matemática Permutação 1) (FUVEST-2010) Seja n um número inteiro, n 0. a) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Luís e Antônio. b) Calcule de
2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?
UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista
01. Quantos números com 3 algarismos podem ser formandos usando-se os algarismos 2, 3, 4, 5, 6, 7?
Colégio Santa Maria 3º ano médio 2012. Lista de exercícios Análise Combinatória (Arranjos simples, permutações e combinações simples P.F.C). Professor: Flávio Verdugo Ferreira. 01. Quantos números com
Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1
Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
MATEMÁTICA I ANÁLISE COMBINATÓRIA 23! 48! 47! 24! 14! 13! 13! 18! 10! 100! 5! 3! 99! 98! =48. 48! 25 =98 b) ( ) 7! 6! n 1! =12. MÊS: FEVEREIRO NOME:
NOME: MÊS: FEVEREIRO SÉRIE: 3 a TURMA: ENSINO: MÉDIO ANÁLISE COMBINATÓRIA 01) Simplifique: 20! a) b) 18! 14! 13! 13! c) 23! 48! 47! 24! 02) Simplificando a fração 101! 102! 100!, obtém-se: (A) 101103 (D)
Probabilidade Condicional
18 Probabilidade Condicional Sumário 18.1 Introdução....................... 2 18.2 Probabilidade Condicional............... 2 1 Unidade 18 Introdução 18.1 Introdução Nessa unidade, é apresentada mais uma
LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho
LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho NOME: Nº: TURMA: 0. (Ufscar) Um espaço amostral é um conjunto cujos elementos representam todos os resultados possíveis de algum experimento.
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
Preparatórios e Cursos Eduardo Chaves - 1
1 3 ANÁLISE COMBINATÓRIA 3.1 Princípio Fundamental da Contagem Suponhamos que vamos a um restaurante e temos, no cardápio, 8 opções de prato principal, 10 opções de bebida e 6 opões de sobremesa. De quantos
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.
15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 25 mai Permutação simples e anagramas 01. Resumo
Matemática 2 Prof. Heitor Achilles
2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
21 Análise combinatória Banco de questões
UNIDADE V I I análise combinatória, binômio de Newton e probabilidade CAPÍTULO 21 Análise combinatória Banco de questões 1 (Fuvest SP) Em uma classe de 9 alunos, todos se dão bem, com exceção de Andréia,
ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6}
NOÇÕES DE PROBABILIDADE O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos. EXPERIMENTOS ALEATÓRIOS Experimentos aleatórios
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 7 / 8 / 2018 Aluno(: Nº: Turma: Assunto: ANÁLISE
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício
RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato.
RESUMO TEÓRICO AULA 0: NOÇÕES DE ROBABILIDADE.. INTRODUÇÃO rofessor Marcelo Renato Há certos fenômenos ou experimentos que, emora sejam repetidos muitas vezes e so condições idênticas, não apresentam os
A B e A. Calcule as suas respectivas probabilidades.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se
Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?
LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo
MATEMÁTICA LISTA DE ANÁLISE COMBINATÓRIA
MATEMÁTICA Prof. Anselmo LISTA DE ANÁLISE COMBINATÓRIA 1. Calcule quantos múltiplos de, de algarismos distintos, podem ser formados com,,, e 9 (Um número é divisível por quando a soma dos seus algarismos
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO
QUESTÃO 1: Uma urna contém 4 bolas vermelhas, 6 pretas e 5 azuis. Retirando-se dessa urna, ao acaso, uma bola, CALCULE a probabilidade de ela: ser vermelha. ser vermelha ou preta. não ser azul. QUESTÃO
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
MATEMÁTICA. Prof.: Favalessa
MATEMÁTICA Prof.: Favalessa 1. O professor Thiago foi visitar o professor Flávio em sua residência. Flávio é professor de Matemática e deu seu endereço através do seguinte enigma. Eu moro na Rua Bissetriz,
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente
MATEMÁTICA - 2 o ANO MÓDULO 43 PROBABILIDADE: CONDICIONAL E APLICAÇÕES GEOMÉTRICAS
MATEMÁTICA - 2 o ANO MÓDULO 43 PROBABILIDADE: CONDICIONAL E APLICAÇÕES GEOMÉTRICAS Como pode cair no enem (ENEM) A vida na rua como ela é O Ministério do Desenvolvimento Social e Combate à Fome (MDS) realizou,
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014 1. Seja o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos
Erivaldo. Análise Combinatória, Probabilidade
Erivaldo Análise Combinatória, Probabilidade Questão 01 (ACAFE 2013.01) Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. O "American Standard Code for Information
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
Ficha de trabalho - Combinatória. a) De quantas maneiras distintas se podem colocar os sete sabores no recipiente?
12º Ano - Matemática A Ficha de trabalho - Combinatória 1. No balcão de uma geladaria existe um recipiente com dez compartimentos, cinco à frente e cinco atrás, para colocar gelado. Em cada compartimento
UM MEIO OU UMA DESCULPA
Nome Nº Ano/Série Ensino Turma 3 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios Probabilidade 3º / 2012 05/out/2012 UM
3 + i na forma trigonométrica. Um casal deseja ter quatro filhos. Qual a probabilidade de serem todos do mesmo sexo?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - ª SERIE - ENSINO MÉDIO - 3ª ETAPA ============================================================================================== 0- Assunto: Análise Combinatória
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da
Probabilidade. Evento (E) é o acontecimento que deve ser analisado.
Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos
b) Se entre as 7 empresas escolhidas devem figurar obrigatoriamente as empresas R e S, de quantas formas ele poderá escolher as empresas?
1 1. (Fgv 97) Um administrador de um fundo de ações dispõe de ações de 10 empresas para a compra, entre elas as da empresa R e as da empresa S. a) De quantas maneiras ele poderá escolher 7 empresas, entre
Matemática Régis Cortes ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1 ANÁLISE COMBINATÓRIA PERMUTAÇÃO é o tipo de agrupamento ordenado em que cada grupo entram todos os elementos. Os grupos diferem pela ORDEM Pn = n! ARRANJO : é o tipo de agrupamento
Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:
Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
PLANO DE TRABALHO 2 1º BIMESTRE 2014
PLANO DE TRABALHO 2 1º BIMESTRE 2014 FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP 343 PROFª EMÍLIA DINIZ LIGIÉRO PROFESSOR: ANA CRISTINA PEREIRA COSTA MATRÍCULA:
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
CAPÍTULO 2 ANÁLISE COMBINATÓRIA
CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um
Interbits SuperPro Web
Ita analise combinatoria 1. (Ita 2016) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor
FICHA DE TRABALHO N. O 9
FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº1 - Probabilidades - 12º ano Exames
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº - Probabilidades - 2º ano Exames 2000-200-2002-2003. Uma caixa contém cinco bolas brancas e cinco bolas pretas, indistinguíveis ao tato. Tiram-se
FATEC GT/ FATEC SJC ESTATÍSTICA I
1. A urna 1 contém x bolas brancas e y bolas vermelhas. A urna 2 contém z bolas brancas e v bolas vermelhas. Uma bola é escolhida ao acaso da urna 1 e posta na urna 2. A seguir, uma bola é escolhida ao
Matemática E Extensivo V. 5
Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano
Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo
AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO INTRODUÇÃO À PROBABILIDADE
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ PROFESSOR: FABIANO BATTEMARCO ID FUNCIONAL: 4330273-4 3º ANO DO ENSINO MÉDIO TUTOR (A): EDESON DOS ANJOS SILVA AVALIAÇÃO
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
ANPAD CURSO QUANTITATIVO I
01. No sistema a 2b + c = 1 a + c = 3 o valor de b é a + b 2c = 2 a) 2 b) 1 c) 0 d) 1 e) 2 02. Se m homens fazem um trabalho em d dias, então m + n homens farão o mesmo trabalho, nas mesmas condições,
Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Soluções do Exercícios Adicionais Paulo Cezar Pinto Carvalho 1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC b) O líder pode ser escolhido de modos; uma vez escolhido o líder,
