Um algoritmo espectral para redução do envelope de matrizes esparsas
|
|
|
- Iago das Neves Schmidt
- 10 Há anos
- Visualizações:
Transcrição
1 Um algoritmo espectral para redução do envelope de matrizes esparsas Universidade Federal do Espírito Santo Mestrado em Informática Maio de 2009
2 Seja dada A R n n definida positiva (note que A é simétrica com diagonal positiva). A fica completamente determinada por seu triângulo inferior e sua diagonal. Definimos Para cada linha i de A, definimos row(a, i) = {j; a ij 0, 1 j i}. f i (A) = min {j; j row(a, i)}, r i (A) = i f i (A). Observe que como a ii 0, i, temos 1 f i (A) i, i. O envelope de A é definido como env(a) = {(i, j); f i (A) j < i, i = 1,, n}. Denotaremos por esize(a) = env(a) o tamanho do envelope de A.
3 A fatoração de Cholesky de A pode ser feita ignorando os termos nulos fora de env(a). Isto pode ser feito em tempo ( 1 n n ) ri 2 (A) + O r i (A). 2 i=2 Uma boa medida para isso é ework(a) = n i=2 i=2 r 2 i (A). Os parâmetros esize(a) e ework(a) dependem da ordem das linhas/colunas de A. Definimos então esize min (A) = min P perm esize(pt AP), onde P perm significa P é matriz de permutação. Definimos também ework min (A) de maneira análoga. Vale observar que esses mínimos em geral não são atingidos para uma mesma matriz de permutação.
4 Agora, associamos um grafo à matriz A, da maneira que segue. Tome G(V, E) não orientado com V = {v 1,, v n } e (v i, v j ) E (A diag(a)) ij 0. G é o grafo sem laços cuja matriz de adjacência tem a estrutura de A. O produto P t AP equivale a uma reordenação dos vértices de G. Podemos então tratar os problemas de minimizar esize(p t AP) e ework(p t AP) buscando a melhor ordenação dos vértices de G. Dada uma ordenação (bijeção) α : V {1,, n} dos vértices de G, definimos r(v, α) = max {α(v) α(w); w {v} adj(v), α(w) α(v)}, onde adj(v) são os vértices adjacentes à v V. Também definimos esize(g, α) = v V r(v, α), ework(g, α) = v V r 2 (v, α), esize min (G) = min esize(g, α) e ework min(g) = min ework(g, α) α α Temos esize(g, α) = esize(p t AP), ework(g, α) = ework(p t AP), onde α = P[1 n] t.
5 Para exemplificar, consideramos uma matriz de ordem 6, cuja estrutura de espassidade é dada abaixo, e seu grafo associado. onde P troca as linhas 3 e 4, e (α(v 1 ),, α(v 6 )) = (1, 2, 4, 3, 5, 6).
6 A fim de minimizar esize(g, α) e ework(g, α), consideramos o problema de r-soma (1 r < ), que consiste em minimizar, sobre todas P de permutação, Sendo σ r min (A) = n σ r (P t AP) = i=1 j row(p t AP,i) (i j) r min σ r (P t AP), é possível mostrar que P perm 1 r. esize min (A) σ 1 min (A), ework min (A) σ 2 2 min(a) e σ 1 min (A) E σ 2 min (A) esize min (A) σ 2 min (A). Apresentaremos uma maneira de aproximar σ2 2 min (A) via laplaciana de G. Isso de certa forma é suficiente pois vemos que esize min (A) σ 2 2 min(a) e ework min (A) σ 2 2 min(a). Observamos somente que o problema de 1-soma é mais custoso computacionalmente que o de 2-soma.
7 Além de aproximar σ2 2 min (A), apresentaremos uma maneira de recuperar uma matriz de permutação que aproxima σ 2 min (A). Primeiramente, sendo Q = diag(d(v 1 ),, d(v n )) adjg a laplaciana de G, sejam λ 1 (Q) λ n (Q) seus autovalores. É possível mostrar que 1 12 λ 2(Q)n(n 2 1) σ 2 2 min(a) 1 12 λ n(q)n(n 2 1). Sendo p = [1 n] t, é possível mostrar que σ 2 2 min(a) = min tr QXBX t, X perm onde B = pp t R n n tem posto 1 (daí a facilidade computacional em relação à problemas de 1-soma). A fim de aproximar soluções deste problema, observamos que X é matriz de permut. Xu = X t u = u, X t X = I n e X 0, onde u = 1 n (1, 1,, 1) R n (u é unitário).
8 Seja V R n (n 1) uma base ortornormal do complemento do espaço gerado por u. Temos V t u = 0 e P = [u V ] R n n ortornormal. Mais ainda, [ P t 1 0 t XP = 0 Y ], onde Y = V t XV. Daí [ 1 0 t X = P 0 Y ] P t = uu t + VYV t. Com um pouco mais de argumentação o problema σ 2 2 min (A) = min X perm tr QXBX t, pode ser escrito como min tr QY BY t, s.a. YY t = I n 1, VYV t uu t, onde Q = V t QV e B análogo. Relaxando a restrição VYV t uu t, temos que Y = RS t é solução ótima, onde R (respect. S) é matriz de autovetores de Q (respect. B), correspondentes aos autovalores de Q (respect. B) ordenados.
9 Daí X 0 = uu t + VRS t V t aproxima σ2 2 min e atinge o limitante inferior σ2(x 2 0 t AX 0 ) = 1 12 λ 2(Q)n(n 2 1). Notemos no entanto que não necessariamente X 0 0. A estratégia agora é encontrar uma matriz de permutação Z que melhor aproxima X 0. Sabemos que quando uma matriz C é definida positiva, existe uma única C 1 2 definida positiva tal que C 1 2 C 1 2 = C. Temos Q + αi n definida positiva para qualquer α > 0 pois x t (Q + αi n )x = x t Qx + α x 2 α x 2 > 0 se α > 0 e x 0 donde usamos o fato de que x t Qx = (x i x j ) 2 0, x R n (Q é semidefinida positiva). j i,a ij 0 Agora, daremos uma nova formulação ao problema de minimizar σ2 2(Z t AZ) sobre {Z; Z perm}. Da igualdade acima, vemos que n p t Qp = σ2(a) 2 = (i j) 2 (p = [1 n] t ). i=1 j row(a,i)
10 Observamos que (Zp) t Q(Zp) = p t (Z t QZ)p = Também (Q + αi n ) 1 2 Zp 2 = n i=1 j row(z t AZ,i) [ (Q + αi n ) 1 2 Zp ] t (Q + αin ) 1 2 Zp (i j) 2 = σ 2 2(Z t AZ). = (Zp) t Q(Zp) + α(zp) t I n (Zp) = (Zp) t Q(Zp) + αp t p, } {{ } cte onde usamos o fato de Z t Z = I n e (Q + αi n ) 1 2 ser simétrica. Portanto o problema de minimizar σ2 2(Z t AZ) é descrito como min (Q + αi n) 1 2 Zp 2. Z perm
11 Fazendo Z = X 0 + (Z X 0 ), chegamos à (Q + αi n ) 1 2 Zp 2 = (Q + αi n ) 1 2 X0 p 2 + 2tr p t (Z X 0 )(Q + αi n )X 0 p + (Q + αi n ) 1 2 (Z X0 )p 2. Descartando os termos constantes e o último, Z pode ser aproximado por Z arg min Z perm tr (Q + αi n)x 0 BZ t. Substituindo X 0 = uu t + VRS t V t e fazendo (muitas!) contas chegamos à Z arg min Z perm tr Z t x 2 p t, onde x 2 é autovetor de Q associado à λ 2 (Q).
12 A solução do problema anterior é uma matriz Z correspondente à permutação que, ou deixa as coordenadas de x 2 em ordem não-crescente, ou não-descrescente (já que x 2 também é autovetor). Supondo que o grafo induzido G é conexo, temos o algoritmo: Algoritmo 1 1 Dada A definida positiva, tome a matriz Q laplaciana do grafo associado à A; 2 Calcule um autovetor x 2 de Q associado ao autovalor λ 2 (Q) (isto pode ser feito pelo algoritmo de Lanczos); 3 Ordene as coordenadas de x 2 em ordem não-crescente e faça a matriz de permutação Z 1 correspondente. Faça o mesmo em ordem não-descrescente e tome a matriz de permutação Z 2 correspondente. Escolha a permutação (Z 1 ou Z 2 ) que leva ao menor esize(z t AZ).
13 Últimas observações De acordo com as referências: O presente algoritmo mostra-se mais eficiente, em tempo de execução e consumo de memória, que o algoritmo Reverse Cuthill-McKee. O desempenho do algoritmo pode ser melhorado se usarmos pertubações na diagonal de Q. Uma pertubação por um vetor d é dada por Q = Q + diag(d). O passo 1 requer o cálculo dos graus de todos os vértices de G, que pode ser feito com complexidade quadrática (basta contar em cada linha de A o número de elementos não nulos). O algoritmo de Lanczos utilizado para o cálculo do autovetor x 2 (passo 2) é paralelizável. O passo 3 requer a ordenação de x 2, que pode ser feito eficientemente pelo Quicksort (complexidade quadrática no pior caso).
14 O algoritmo espectral Barnard, S. T., Pothen A., Simon H. D. A spectral algorithm for envelope reduction of sparse matrices, Numerical Linear Algebra with Applications 2: , George A., Pothen A. An analysis of spectral envelope-reduction via quadratic assignment problems. SIAM Journal of Matrix Analysis and its Applications, 18: , Saad Y. Numerical methods for large eigenvalue problems. Manchester University Press, Oxford, Coleman T. F. Large sparse numerical optimization. Springer-Verlag, Lima E. L. L. Álgebra linear. 5ed. Coleção Metemática Universitária, IMPA, 2001.
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares
Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).
5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.
Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos
Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:
1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia
Ponto, reta e plano no espaço tridimensional, cont.
Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
Álgebra Linear I Solução da 5ª Lista de Exercícios
FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária
[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo
4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a
Resolução de sistemas lineares
Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)
O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração
9. Derivadas de ordem superior
9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum
Åaxwell Mariano de Barros
ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................
4.2 Produto Vetorial. Orientação sobre uma reta r
94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,
Teoria dos Grafos. Edson Prestes
Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em
Controlabilidade e Observabilidade
IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada
Análise de Componente Principais (PCA) Wagner Oliveira de Araujo
Análise de Componente Principais (PCA) Wagner Oliveira de Araujo Technical Report - RT-MSTMA_003-09 - Relatório Técnico May - 2009 - Maio The contents of this document are the sole responsibility of the
Capítulo 1. x > y ou x < y ou x = y
Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN
1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada
Capítulo 5: Transformações Lineares
5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
Disciplina: Introdução à Álgebra Linear
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
4 a LISTA DE EXERCÍCIOS Valores Próprios e Vectores Próprios Álgebra Linear - 1 o Semestre - 2013/2014 LEE, LEGI, LEIC-TP, LETI
4 a LISTA DE EXERCÍCIOS Valores Próprios e Vectores Próprios Álgebra Linear - 1 o Semestre - 2013/2014 LEE, LEGI, LEIC-TP, LETI Problema 1 Considere a matriz A = 1 0 0 0 2 1 2 0 3 Diga quais dos seguintes
Conceitos Fundamentais
Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;
Álgebra linear algorítmica
Álgebra linear algorítmica S. C. Coutinho Este arquivo reúne as provas do curso álgebra linear algorítmica (MAB 5) oferecido pelo Departamento de Ciência da Computação da UFRJ. Primeira Prova200/. Seja
(a) Encontre o custo total de ações, usando multiplicação de matrizes.
NIVERSIDADE ESTADAL DE SANTA CRZ - ESC DEARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSNTO: MATRIZES EXERCÍCIOS RESOLVIDOS. Suponha que um corretor da Bolsa de Valores faça um pedido
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
Pesquisa Operacional Programação em Redes
Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).
f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores
a 1 x 1 +... + a n x n = b,
Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos
Capítulo 2: Transformação de Matrizes e Resolução de Sistemas
2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1
Vestibular 2ª Fase Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis
Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.
Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações
Gobooks.com.br. PucQuePariu.com.br
ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.
Espaços não reversíveis
{Nome da seção} Notas de aula Espaços não reversíveis Fernando Lucatelli Nunes UnB-UC/UP 1 Se X e Y são espaços topológicos quaisquer, o gráfico de uma função f : X Y é o conjunto G( f )={(x, f (x)) :
ESTRUTURAS DE DADOS II
ESTRUTURAS DE DADOS II Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF Conteúdo Programático 1. Introdução
Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013
Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante
EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.
EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área
E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO
E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou
Figura 1 Busca Linear
----- Evidentemente, possuir os dados não ajuda o programador ou o usuário se eles não souberem onde os dados estão. Imagine, por exemplo, uma festa de casamento com cem convidados na qual não se sabe
Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade,
D Resumo de Álgebra Matricial Este apêndice resume os conceitos de álgebra matricial, inclusive da álgebra de probabilidade, necessária para o estudo de modelos de regressão linear múltipla usando matrizes,
Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma
Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só
Resolução da Lista 2 - Modelos determinísticos
EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos
2 Problema das p-medianas
2 Problema das p-medianas 2.1 Definição O PMNC é definido da seguinte forma: determinar quais p facilidades (p m, onde m é o número de pontos onde podem ser abertas facilidades) devem obrigatoriamente
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais
ESPAÇOS MUNIDOS DE PRODUTO INTERNO
ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e
Notas de Aula. Álgebra Linear
Notas de Aula Álgebra Linear Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)
Notas de Aula. Álgebra Linear Numérica
Notas de Aula Álgebra Linear Numérica Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas ICEx) Universidade Federal de Minas Gerais UFMG) Notas de aula da disciplina Álgebra
Sistema de equações lineares
Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1
RELAÇÕES BINÁRIAS Produto Cartesiano A X B
RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os
2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.
2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode
PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS
A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos
Lista de Exercícios 4: Soluções Sequências e Indução Matemática
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,
Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo
Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material
Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES
Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
Exercícios resolvidos P2
Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte
Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros
Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).
Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem
Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007
Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está
Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).
PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
Prof. Márcio Nascimento. 22 de julho de 2015
Núcleo e Imagem Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em
Lista 1 para a P2. Operações com subespaços
Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos
Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade
Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos
Aula 03 Custos de um algoritmo e funções de complexidade
BC1424 Algoritmos e Estruturas de Dados I Aula 03 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco [email protected] 1Q-2015 1 Custo de um algoritmo e funções de complexidade
TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto
Capítulo 7. Topologia Digital. 7.1 Conexidade
Capítulo 7 Topologia Digital A Topologia Digital estuda a aplicação das noções definidas em Topologia sobre imagens binárias. Neste capítulo vamos introduzir algumas noções básicas de Topologia Digital,
MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade
MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha
2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea
2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais
PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *
PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária
QUADRADO MÁGICO - ORDEM 4
CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores
NIVELAMENTO MATEMÁTICA 2012
NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4
Estabilidade Linear e Exponencial de Semigrupos C 0 e
ERMAC 2: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL - 3 de Novembro de 2, São João del-rei, MG; pg 232-236 232 Estabilidade Linear e Exponencial de Semigrupos C e Aplicações Francis F.
POLINÔMIOS SIMÉTRICOS Carlos A. Gomes, UFRN, Natal RN.
POLINÔMIOS SIMÉTRICOS Carlos A. Gomes, UFRN, Natal RN. Nível Avançado Uma ferramenta bastante útil na resolução de problemas algébricos de fatoração, na resolução de sistemas de equações não lineares,
Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008
Revisões Variantes sobre o método Simplex: Método do grande M Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis
GLOSSÁRIO: UM DICIONÁRIO PARA ÁLGEBRA LINEAR
GLOSSÁRIO: UM DICIONÁRIO PARA ÁLGEBRA LINEAR Matriz de adjacência de um grafo. Matriz quadrada com a ij = 1 quando existe uma arestado nodo i para o nodo j; caso contrário a ij = 0. A = A T para um grafo
Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais
Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares
Variantes sobre o método Simplex: Método do grande M
Variantes sobre o método Simplex: Método do grande M Revisões Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis
FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim
FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação
INTRODUÇÃO AOS MÉTODOS FACTORIAIS
Capítulo II INTRODUÇÃO AOS MÉTODOS FACTORIAIS A Análise Factorial de Correspondências é uma técnica simples do ponto de vista matemático e computacional. Porém, devido ao elevado suporte geométrico desta
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2
FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade
Os Postulados da Mecânica Quântica
Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná [email protected] Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o
A otimização é o processo de
A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.
