Probabilidade II Aula 12
|
|
|
- Maria das Dores Farias Antas
- 9 Há anos
- Visualizações:
Transcrição
1 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em toro da média. A desigualdade de Chebyshev os forece uma maeira de eteder como a variâcia mede a dispersão em toro da média, e os permite ecotrar limites superiores e iferiores para certas probabilidades. Itrodução Estes limites ão são ecessariamete próximos dos valores reais das probabilidades, e são usados pricipalmete em discussões teóricas, e ão como aproximações. A desigualdade de Marov é um resultado teórico importate que, etre outras coisas, os ajuda a demostrar a desigualdade de Chebyshev. 3 4
2 Itrodução Estas duas desigualdades os forecem limites superiores e iferiores para probabilidades quado apeas a média (Marov) é cohecida ou quado só a média e a variâcia são dadas (Chebyshev). Em geral, estes limites para as probabilidades ão são eficietes do poto de vista computacioal, mas também os requisitos ecessários para o seu cálculo são míimos, pois precisamos apeas cohecer o máximo a média e a variâcia. Desigualdade de Marov Teorema Seja u( X ) uma fução ão egativa da variável aleatória X. Se E [u( X )] existe, etão para qualquer costate positiva c temos: ( u X c) Pr ( ) ( ( )) E u X c 5 6 Desigualdade de Marov Demostração caso cotíuo Seja A o cojuto{x : u( x ) c}. Etão o valor esperado de u(x) pode ser escrito como: ( ( )) E u X = u ( x ) f ( x ) dx = u ( x ) f ( x ) dx + u ( x ) f ( x ) dx * ode A* é o complemeto de A, ou seja: A* = { X : u(x) < c} A 7 A Desigualdade de Marov Cada uma das itegrais do lado direito acima é ão egativa, e etão o lado esquerdo da equação é maior ou igual a cada uma destas itegrais. Em particular: E( u( X )) u( x) f ( x) dx A Mas, pela defiição do cojuto A, se X A etão u ( X ) c. Assim: ( ( )) ( ) ( ) ( ) =.Pr( ) =.Pr( ( ) ) E u X u x f x dx c f x dx c X A c u X c A A 8
3 Desigualdade de Marov Isto é: E [ u ( X ) ] c. Pr {u ( X ) c } Pr{ u ( X ) c } E [ u ( X ) ] /c Note que, a demostração da desigualdade de Marov a úica hipótese é que E [u(x)] existe e é uma fução ão egativa. 9 Desigualdade de Marov Exemplo Seja Y uma v.a. tal que E(Y 4 ) 00. Use esta iformação para ecotrar um limite superior para Pr(Y 5). Solução Seja W = Y 4. Etão W é uma v.a. ão egativa cuja média é, o máximo, 00. Note que se Y 5 etão W = Y Pela desigualdade de Marov: E( W ) 00 Pr ( Y 5) = Pr( W 65) = A desigualdade de Chebyshev pode ser ecarada como um corolário da desigualdade de Marov. Seja X uma v.a. qualquer com média µ e variâcia σ, ambas fiitas. Etão: Pr σ { X µ } Demostração Como u(x) = (X-µ) é uma fução ão-egativa, podemos aplicar a desigualdade de Marov e obter: E ( ) ( ) ) ( u( X )) E( X µ ) ) σ Pr u( X ) = Pr X µ = = Mas, os evetos: ( X µ ) e X µ São equivaletes, o que prova a desigualdade de Chebyshev.
4 Aalogamete podemos escrever: Pr σ ( X µ ) A desigualdade de Chebyshev pode ser escrita de maeira mais coveiete em termos da distâcia (em uidades do desvio padrão) em relação à média, ou seja: 3 A probabilidade de X estar a uma distâcia "grade" (maior que desvios padrões) da sua média é pequea (meor que / ). Pr ( X µ. σ ) A probabilidade de X estar a uma distâcia "pequea" (meor que desvios padrões) da sua média é grade (maior que - / ). Pr ( X µ. σ ) 4 Os limites forecidos pelas desigualdades de Marov e Chebyshev são, como já dissemos, grades demais para uso como aproximações uméricas. Suas maiores virtude são as de fucioar sob codições muito pouco restritivas, exigido apeas o cohecimeto da média (Marov) ou da média e variâcia (Chebyshev). Exemplo Comparação de uma probabilidade exata com o limite dado por Chebyshev. Seja X uma v.a. Uif(- 3, + 3). Verifique que E(X) = 0 e VAR(X) = Calcule exatamete: 3 Pr X = Pr X 3 = + 3/ 3/ 3 dx = =
5 Por Chebyshev, =3/ e o limite superior para esta probabilidade tora-se (vide slide 4): 3 4 Pr X 0.() = = ( 3/ ) Ou seja, o limite dado por Chebyshev é mais de 3 vezes maior que o valor real este caso. Exemplo 3 Neste caso a distribuição da v.a. é descohecida. O úmero de TVs produzido por uma fábrica um itervalo de uma semaa é uma v.a. com média 500. ) Ecotre um limite para a probabilidade do úmero de TVs produzido esta semaa exceder Neste caso usamos a desigualdade de Marov, pois só cohecemos a média. Note que a variável de iteresse (úmero de TVs produzidas é itrisecamete ão egativa, justificado o uso de Marov). ( X ) E 500 Pr ( X 000) = = ) Supoha agora que cohecemos também a variâcia do úmero de TVs produzidas a semaa, que é igual a 00. O que se pode dizer sobre a probabilidade do úmero de TVs produzidas esta semaa estar etre 400 e 600? Pela desigualdade de Chebyshev, e usado µ = 500, σ = 00 temos: 00 Pr{ X } = Pr{ 400 X 600} = = (00)
6 Exemplo 4 Seja X uma variável Expo(). Use a desigualdade de Marov para provar que Pr(X >c) /c ode c é um úmero positivo qualquer. Solução Note que a desigualdade de Marov pode ser usada diretamete em X, que é uma variável ão egativa. Também, E(X) =. Por Marov: Pr(X > c) E(X)/c = /c A extesão deste exemplo para uma variável Expoecial qualquer é trivial. Se X é Expoecial(λ) etão: E( X ) Pr( X > c) = c λ. c Para qualquer costate positiva c. Note que isso é realmete verdadeiro, pois: ( ) { } λc λc Pr X > c = F( c) = e = e = = + λc 3 e ( ) ( λc) ( λc) λc + λc ! 3! Exemplo 5 Aplicação a uma sequêcia de Beroullis. Sejam X, X,..., X iid Beroulli(p), de tal forma que Y = X + X X é Biomial (, p). Pela desigualdade de Chebyshev: Pr VAR( Y ) pq { Y p } = 3 Mas, a fução.p.q =.p.(-p) tem um máximo em p=/ (faça o gráfico) e etão podemos garatir que: Pr 4 { Y p } = Cosidere agora a proporção de sucessos as repetições, isto é: Y p ˆ = 4
7 Pelas propriedades das fuções lieares de v.a., pode-se provar que: Y p E( pˆ ) = E = E( Y ) = Y pq VAR( pˆ ) = VAR = VAR( Y ) = = Aplicado Chebyshev a p^ segue que: pq Pr VAR( pˆ) pq 4 { pˆ p } = Esta última expressão tem implicações importates em amostragem. Por exemplo, se > 000, a probabilidade de p^ diferir do valor verdadeiro de p por mais de 0. é, o máximo, 0.05 para qualquer valor de p. 5 6 Exemplo 6 Com base a expressão do slide aterior, calcule (tamaho da amostra) ecessário para que a probabilidade da difereça etre o p real e o estimado ser maior que 3% seja meor ou igual a 5%. Solução Aqui = 0.03 e /(4 ) = 5% Logo: /4(3/00) = 0000/36 = 5/00 = 0 6 /80 = 5555 aproximadamete 7 Desigualdade de Jese Ates de euciar esta desigualdade, é preciso lembrar o que são fuções covexas. Uma fução f(x) é covexa se: f{t.x + (-t).y} t.f(x) + (-t).f(y) para 0 t e x e y um itervalo [a,b]. Se acima a desigualdade é estrita dizemos que f é estritamete covexa. 8
8 Desigualdade de Jese Este gráfico idica uma típica fução covexa Desigualdade de Jese A desigualdade de Jese pode ser escrita como: E { f ( X )} f { E( X )} alterativamete f { E( X )} E{ f ( X )} se f é uma fução covexa A igualdade ocorre se f ão é estritamete covexa ou se X tem uma distribuição degeerada (i.e, X tem toda a probabilidade um úico poto) Desigualdade de Jese A demostração será omitida. A desigualdade de Jese será importate em Iferêcia Estatística para provar algus resultados, por exemplo, o Teorema de Rao-Blacwell. Uma aplicação iteressate segue. Desigualdade de Jese Exemplo 7 Use a desigualdade de Jese para provar que a variâcia de uma v.a. é sempre ão egativa. Solução A fução f(x) = x é covexa. Assim, pela desigualdade de Jese: E(X ) { E(X)} E(X ) - { E(X)} 0 VAR(X) 0 3 3
9 Lei Fraca dos Grades NúmerosN A média µ de uma distribuição pode ser ecarada como a média empírica de X o logo prazo após um úmero muito grade de repetições. Sejam X, X,..., X iid com média µ e variâcia σ, ambas fiitas. Mostraremos que a média amostral covergirá para µ o setido idicado a seguir. 33 Lei Fraca dos Grades NúmerosN Note que a soma S = X + X X é uma v.a. com média.µ e variâcia.σ e assim ambas a média e a variâcia de S crescem à medida que tomamos mais termos a soma. A média e a variâcia da média amostral são: S. µ S E( X ) = E = = σ µ VAR( X ) = VAR = =. σ 34 Lei Fraca dos Grades NúmerosN Defiição Covergêcia em Probabilidade Dizemos que uma sequêcia de v.a. Y, Y,..., Y coverge em probabilidade para outra v.a. Y quado tede a ifiito se: lim Pr lim Pr ( Y Y ε ) equivaletemete : = 0 para todo ε > 0 ( Y Y < ε ) = para todo ε > 0 Ode os limites se referem a tededo a ifiito Lei Fraca dos Grades NúmerosN Em outras palavras: Y coverge em probabilidade para Y se tede a ifiito se, e somete se, Y está arbitrariamete perto de Y com uma probabilidade tão grade quato ecessário para suficietemete grade. Em muitos casos (como a lei fraca a seguir), a covergêcia em probabilidade será para uma costate
10 Lei Fraca dos Grades NúmerosN Teorema (Lei Fraca dos Grade Números) Sejam X, X,..., X iid com média µ e variâcia σ, ambas fiitas. Etão, para qualquer : X = X + X X Coverge em probabilidade para µ = E(X i ) quado tede a ifiito. Lei Fraca dos Grades NúmerosN Demostração Segue direto da desigualdade de Chebyshev e da defiição de covergêcia em probabilidade. VAR ( ) ( X ) X µ ε Pr σ = ε. ε 0 quado Lei Fraca dos Grades NúmerosN Exemplo 8 Sejam X, X,..., X iid Uif(0,). Seja X () o máximo de X, X,..., X. Mostre que X () coverge em probabilidade para quado tede a ifiito. Solução Note que Pr(X () > ) = 0 Também: Pr(X () - ε) = {Pr(X i ε)} = = ( ε) para 0 < ε < e etão o limite desta probabilidade quado é zero. Lei Fraca dos Grades NúmerosN Exemplo 9 Simulação de Mote Carlo Uma aplicação muito útil da lei fraca dos grades úmeros está o cálculo de itegrais que ão podem ser resolvidas umericamete. Isso pode ser feito através de simulação de Mote Carlo, como mostrado a seguir
11 Lei Fraca dos Grades NúmerosN Supoha que queremos calcular: = 0 I( f ) f ( x) dx E esta itegral ão tem uma solução aalítica, ou ão pode ser avaliada através de tabelas ou algum método fácil. O que fazer? 4 Lei Fraca dos Grades NúmerosN Uma solução bastate comum é apelar para métodos de simulação. A idéia este caso é: Gere um cojuto de variáveis iid Uif(0,) X, X,..., X Calcule uma aproximação para a itegral baseada os valores simulados, a saber: Iˆ( f ) = i= f ( ) X i 4 Lei Fraca dos Grades NúmerosN Pela lei fraca dos grades úmeros, este valor, se é grade, deve estar próximo de sua média, que é E{f(X)}, que é simplesmete: { f ( X )} = f ( x)() dx I( f ) E = 0 Este esquema pode ser alterado para, por exemplo, modificar o itervalo de itegração. Lei Fraca dos Grades NúmerosN Exemplo 0 aplicação do exemplo 9 Supoha que desejamos avaliar: I( f ) = 0 e π x / dx = Φ() 0.5 Neste caso já sabemos a resposta, pela tabela da N(0,), que é
12 Lei Fraca dos Grades NúmerosN Como resolver isso por Mote Carlo? Geramos observações iid da Uif(0,) e calculamos: X Iˆ( f ) = exp i = i π Faça algumas simulações o Excel. Numa a. simulação, gerei = 000 variáveis Uif(0,) e ecotrei como o valor aproximado da itegral (erro percetual de 0.4%) 45 Lei Fraca dos Grades NúmerosN Numa seguda simulação, com 0 mil úmeros gerados, o valor aproximado da itegral foi (erro percetual de 0.%). Numa terceira simulação, gerei 50 mil úmeros e obtive como valor aproximado da itegral, um erro percetual de 0.%. 46 Exemplo para casa Seja X uma variável aleatória discreta com valores maiores ou iguais a zero. Seja G(s) = E(s x ) a fução geradora de probabilidades de X, e supoha que G(s) é fiita para todo s. Seja u um úmero positivo qualquer. Usado o mesmo tipo de argumetos que a demostração da desigualdade de Chebyshev prove que: G ( ) ( s) Pr X u, 0 s u s Exemplo para casa Seja X ~ Poisso(λ). Use as desigualdades de Chebyshev e Marov para mostrar que: ) λ 4 Pr X λ ( λ) ) Pr X λ 47 48
13 Exemplo para casa Uma variação do método de Mote Carlo Supoha que desejamos avaliar: b = a I ( f ) f ( x) dx Seja g(x) uma desidade em [a, b]. Gere X, X,..., X da desidade g(x) e estime I através de: Iˆ( f ) = i= f g ( X i ) ( X ) i 49 Exemplo para casa a) Use este exemplo para defiir um procedimeto para avaliar uma itegral defiida o itervalo [-,+] b) Você cosegue usar este esquema para avaliar: I x ( f ) = x e dx 0 c) E para avaliar a mesma itegral que acima mas o itervalo (0,)? 50
Probabilidade II Aula 9
Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas
Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?
Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.
Avaliação de Desempenho de Sistemas Discretos
Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado
A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.
UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população
S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números
S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim
Distribuições de Estatísticas Amostrais e Teorema Central do Limite
Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia
Capítulo 3. Sucessões e Séries Geométricas
Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre
Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.
Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:
Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas
Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,
1 Distribuições Amostrais
1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados
2.2. Séries de potências
Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise
Séquências e Séries Infinitas de Termos Constantes
Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates
Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial
Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma
MAE Introdução à Probabilidade e Estatística II Resolução Lista 2
MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,
Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo
Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.
Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo
Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004
Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO
Séries e Equações Diferenciais Lista 02 Séries Numéricas
Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.
Números primos, números compostos e o Teorema Fundamental da Aritmética
Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética
1 Formulário Seqüências e Séries
Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam
b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça
Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem
População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade
Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X
UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática
UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x
Exercícios de Cálculo III - CM043
Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das
( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...
Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada
DISTRIBUIÇÕES DE PROBABILIDADE
DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida
Revisando... Distribuição Amostral da Média
Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia
Secção 1. Introdução às equações diferenciais
Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço
INTERPOLAÇÃO POLINOMIAL
1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,
Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra
Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.
(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:
Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
10 - Medidas de Variabilidade ou de Dispersão
10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.
CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS
Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X
3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif
FUNÇÕES CONTÍNUAS Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos [email protected] Vamos estudar aqui uma ova classe de
DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016
DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório
Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)
Virgílio A. F. Almeida DCC-UFMG 1/2005
Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado
INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões
INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela
Capítulo II - Sucessões e Séries de Números Reais
Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,
