Probabilidade II Aula 12

Tamanho: px
Começar a partir da página:

Download "Probabilidade II Aula 12"

Transcrição

1 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em toro da média. A desigualdade de Chebyshev os forece uma maeira de eteder como a variâcia mede a dispersão em toro da média, e os permite ecotrar limites superiores e iferiores para certas probabilidades. Itrodução Estes limites ão são ecessariamete próximos dos valores reais das probabilidades, e são usados pricipalmete em discussões teóricas, e ão como aproximações. A desigualdade de Marov é um resultado teórico importate que, etre outras coisas, os ajuda a demostrar a desigualdade de Chebyshev. 3 4

2 Itrodução Estas duas desigualdades os forecem limites superiores e iferiores para probabilidades quado apeas a média (Marov) é cohecida ou quado só a média e a variâcia são dadas (Chebyshev). Em geral, estes limites para as probabilidades ão são eficietes do poto de vista computacioal, mas também os requisitos ecessários para o seu cálculo são míimos, pois precisamos apeas cohecer o máximo a média e a variâcia. Desigualdade de Marov Teorema Seja u( X ) uma fução ão egativa da variável aleatória X. Se E [u( X )] existe, etão para qualquer costate positiva c temos: ( u X c) Pr ( ) ( ( )) E u X c 5 6 Desigualdade de Marov Demostração caso cotíuo Seja A o cojuto{x : u( x ) c}. Etão o valor esperado de u(x) pode ser escrito como: ( ( )) E u X = u ( x ) f ( x ) dx = u ( x ) f ( x ) dx + u ( x ) f ( x ) dx * ode A* é o complemeto de A, ou seja: A* = { X : u(x) < c} A 7 A Desigualdade de Marov Cada uma das itegrais do lado direito acima é ão egativa, e etão o lado esquerdo da equação é maior ou igual a cada uma destas itegrais. Em particular: E( u( X )) u( x) f ( x) dx A Mas, pela defiição do cojuto A, se X A etão u ( X ) c. Assim: ( ( )) ( ) ( ) ( ) =.Pr( ) =.Pr( ( ) ) E u X u x f x dx c f x dx c X A c u X c A A 8

3 Desigualdade de Marov Isto é: E [ u ( X ) ] c. Pr {u ( X ) c } Pr{ u ( X ) c } E [ u ( X ) ] /c Note que, a demostração da desigualdade de Marov a úica hipótese é que E [u(x)] existe e é uma fução ão egativa. 9 Desigualdade de Marov Exemplo Seja Y uma v.a. tal que E(Y 4 ) 00. Use esta iformação para ecotrar um limite superior para Pr(Y 5). Solução Seja W = Y 4. Etão W é uma v.a. ão egativa cuja média é, o máximo, 00. Note que se Y 5 etão W = Y Pela desigualdade de Marov: E( W ) 00 Pr ( Y 5) = Pr( W 65) = A desigualdade de Chebyshev pode ser ecarada como um corolário da desigualdade de Marov. Seja X uma v.a. qualquer com média µ e variâcia σ, ambas fiitas. Etão: Pr σ { X µ } Demostração Como u(x) = (X-µ) é uma fução ão-egativa, podemos aplicar a desigualdade de Marov e obter: E ( ) ( ) ) ( u( X )) E( X µ ) ) σ Pr u( X ) = Pr X µ = = Mas, os evetos: ( X µ ) e X µ São equivaletes, o que prova a desigualdade de Chebyshev.

4 Aalogamete podemos escrever: Pr σ ( X µ ) A desigualdade de Chebyshev pode ser escrita de maeira mais coveiete em termos da distâcia (em uidades do desvio padrão) em relação à média, ou seja: 3 A probabilidade de X estar a uma distâcia "grade" (maior que desvios padrões) da sua média é pequea (meor que / ). Pr ( X µ. σ ) A probabilidade de X estar a uma distâcia "pequea" (meor que desvios padrões) da sua média é grade (maior que - / ). Pr ( X µ. σ ) 4 Os limites forecidos pelas desigualdades de Marov e Chebyshev são, como já dissemos, grades demais para uso como aproximações uméricas. Suas maiores virtude são as de fucioar sob codições muito pouco restritivas, exigido apeas o cohecimeto da média (Marov) ou da média e variâcia (Chebyshev). Exemplo Comparação de uma probabilidade exata com o limite dado por Chebyshev. Seja X uma v.a. Uif(- 3, + 3). Verifique que E(X) = 0 e VAR(X) = Calcule exatamete: 3 Pr X = Pr X 3 = + 3/ 3/ 3 dx = =

5 Por Chebyshev, =3/ e o limite superior para esta probabilidade tora-se (vide slide 4): 3 4 Pr X 0.() = = ( 3/ ) Ou seja, o limite dado por Chebyshev é mais de 3 vezes maior que o valor real este caso. Exemplo 3 Neste caso a distribuição da v.a. é descohecida. O úmero de TVs produzido por uma fábrica um itervalo de uma semaa é uma v.a. com média 500. ) Ecotre um limite para a probabilidade do úmero de TVs produzido esta semaa exceder Neste caso usamos a desigualdade de Marov, pois só cohecemos a média. Note que a variável de iteresse (úmero de TVs produzidas é itrisecamete ão egativa, justificado o uso de Marov). ( X ) E 500 Pr ( X 000) = = ) Supoha agora que cohecemos também a variâcia do úmero de TVs produzidas a semaa, que é igual a 00. O que se pode dizer sobre a probabilidade do úmero de TVs produzidas esta semaa estar etre 400 e 600? Pela desigualdade de Chebyshev, e usado µ = 500, σ = 00 temos: 00 Pr{ X } = Pr{ 400 X 600} = = (00)

6 Exemplo 4 Seja X uma variável Expo(). Use a desigualdade de Marov para provar que Pr(X >c) /c ode c é um úmero positivo qualquer. Solução Note que a desigualdade de Marov pode ser usada diretamete em X, que é uma variável ão egativa. Também, E(X) =. Por Marov: Pr(X > c) E(X)/c = /c A extesão deste exemplo para uma variável Expoecial qualquer é trivial. Se X é Expoecial(λ) etão: E( X ) Pr( X > c) = c λ. c Para qualquer costate positiva c. Note que isso é realmete verdadeiro, pois: ( ) { } λc λc Pr X > c = F( c) = e = e = = + λc 3 e ( ) ( λc) ( λc) λc + λc ! 3! Exemplo 5 Aplicação a uma sequêcia de Beroullis. Sejam X, X,..., X iid Beroulli(p), de tal forma que Y = X + X X é Biomial (, p). Pela desigualdade de Chebyshev: Pr VAR( Y ) pq { Y p } = 3 Mas, a fução.p.q =.p.(-p) tem um máximo em p=/ (faça o gráfico) e etão podemos garatir que: Pr 4 { Y p } = Cosidere agora a proporção de sucessos as repetições, isto é: Y p ˆ = 4

7 Pelas propriedades das fuções lieares de v.a., pode-se provar que: Y p E( pˆ ) = E = E( Y ) = Y pq VAR( pˆ ) = VAR = VAR( Y ) = = Aplicado Chebyshev a p^ segue que: pq Pr VAR( pˆ) pq 4 { pˆ p } = Esta última expressão tem implicações importates em amostragem. Por exemplo, se > 000, a probabilidade de p^ diferir do valor verdadeiro de p por mais de 0. é, o máximo, 0.05 para qualquer valor de p. 5 6 Exemplo 6 Com base a expressão do slide aterior, calcule (tamaho da amostra) ecessário para que a probabilidade da difereça etre o p real e o estimado ser maior que 3% seja meor ou igual a 5%. Solução Aqui = 0.03 e /(4 ) = 5% Logo: /4(3/00) = 0000/36 = 5/00 = 0 6 /80 = 5555 aproximadamete 7 Desigualdade de Jese Ates de euciar esta desigualdade, é preciso lembrar o que são fuções covexas. Uma fução f(x) é covexa se: f{t.x + (-t).y} t.f(x) + (-t).f(y) para 0 t e x e y um itervalo [a,b]. Se acima a desigualdade é estrita dizemos que f é estritamete covexa. 8

8 Desigualdade de Jese Este gráfico idica uma típica fução covexa Desigualdade de Jese A desigualdade de Jese pode ser escrita como: E { f ( X )} f { E( X )} alterativamete f { E( X )} E{ f ( X )} se f é uma fução covexa A igualdade ocorre se f ão é estritamete covexa ou se X tem uma distribuição degeerada (i.e, X tem toda a probabilidade um úico poto) Desigualdade de Jese A demostração será omitida. A desigualdade de Jese será importate em Iferêcia Estatística para provar algus resultados, por exemplo, o Teorema de Rao-Blacwell. Uma aplicação iteressate segue. Desigualdade de Jese Exemplo 7 Use a desigualdade de Jese para provar que a variâcia de uma v.a. é sempre ão egativa. Solução A fução f(x) = x é covexa. Assim, pela desigualdade de Jese: E(X ) { E(X)} E(X ) - { E(X)} 0 VAR(X) 0 3 3

9 Lei Fraca dos Grades NúmerosN A média µ de uma distribuição pode ser ecarada como a média empírica de X o logo prazo após um úmero muito grade de repetições. Sejam X, X,..., X iid com média µ e variâcia σ, ambas fiitas. Mostraremos que a média amostral covergirá para µ o setido idicado a seguir. 33 Lei Fraca dos Grades NúmerosN Note que a soma S = X + X X é uma v.a. com média.µ e variâcia.σ e assim ambas a média e a variâcia de S crescem à medida que tomamos mais termos a soma. A média e a variâcia da média amostral são: S. µ S E( X ) = E = = σ µ VAR( X ) = VAR = =. σ 34 Lei Fraca dos Grades NúmerosN Defiição Covergêcia em Probabilidade Dizemos que uma sequêcia de v.a. Y, Y,..., Y coverge em probabilidade para outra v.a. Y quado tede a ifiito se: lim Pr lim Pr ( Y Y ε ) equivaletemete : = 0 para todo ε > 0 ( Y Y < ε ) = para todo ε > 0 Ode os limites se referem a tededo a ifiito Lei Fraca dos Grades NúmerosN Em outras palavras: Y coverge em probabilidade para Y se tede a ifiito se, e somete se, Y está arbitrariamete perto de Y com uma probabilidade tão grade quato ecessário para suficietemete grade. Em muitos casos (como a lei fraca a seguir), a covergêcia em probabilidade será para uma costate

10 Lei Fraca dos Grades NúmerosN Teorema (Lei Fraca dos Grade Números) Sejam X, X,..., X iid com média µ e variâcia σ, ambas fiitas. Etão, para qualquer : X = X + X X Coverge em probabilidade para µ = E(X i ) quado tede a ifiito. Lei Fraca dos Grades NúmerosN Demostração Segue direto da desigualdade de Chebyshev e da defiição de covergêcia em probabilidade. VAR ( ) ( X ) X µ ε Pr σ = ε. ε 0 quado Lei Fraca dos Grades NúmerosN Exemplo 8 Sejam X, X,..., X iid Uif(0,). Seja X () o máximo de X, X,..., X. Mostre que X () coverge em probabilidade para quado tede a ifiito. Solução Note que Pr(X () > ) = 0 Também: Pr(X () - ε) = {Pr(X i ε)} = = ( ε) para 0 < ε < e etão o limite desta probabilidade quado é zero. Lei Fraca dos Grades NúmerosN Exemplo 9 Simulação de Mote Carlo Uma aplicação muito útil da lei fraca dos grades úmeros está o cálculo de itegrais que ão podem ser resolvidas umericamete. Isso pode ser feito através de simulação de Mote Carlo, como mostrado a seguir

11 Lei Fraca dos Grades NúmerosN Supoha que queremos calcular: = 0 I( f ) f ( x) dx E esta itegral ão tem uma solução aalítica, ou ão pode ser avaliada através de tabelas ou algum método fácil. O que fazer? 4 Lei Fraca dos Grades NúmerosN Uma solução bastate comum é apelar para métodos de simulação. A idéia este caso é: Gere um cojuto de variáveis iid Uif(0,) X, X,..., X Calcule uma aproximação para a itegral baseada os valores simulados, a saber: Iˆ( f ) = i= f ( ) X i 4 Lei Fraca dos Grades NúmerosN Pela lei fraca dos grades úmeros, este valor, se é grade, deve estar próximo de sua média, que é E{f(X)}, que é simplesmete: { f ( X )} = f ( x)() dx I( f ) E = 0 Este esquema pode ser alterado para, por exemplo, modificar o itervalo de itegração. Lei Fraca dos Grades NúmerosN Exemplo 0 aplicação do exemplo 9 Supoha que desejamos avaliar: I( f ) = 0 e π x / dx = Φ() 0.5 Neste caso já sabemos a resposta, pela tabela da N(0,), que é

12 Lei Fraca dos Grades NúmerosN Como resolver isso por Mote Carlo? Geramos observações iid da Uif(0,) e calculamos: X Iˆ( f ) = exp i = i π Faça algumas simulações o Excel. Numa a. simulação, gerei = 000 variáveis Uif(0,) e ecotrei como o valor aproximado da itegral (erro percetual de 0.4%) 45 Lei Fraca dos Grades NúmerosN Numa seguda simulação, com 0 mil úmeros gerados, o valor aproximado da itegral foi (erro percetual de 0.%). Numa terceira simulação, gerei 50 mil úmeros e obtive como valor aproximado da itegral, um erro percetual de 0.%. 46 Exemplo para casa Seja X uma variável aleatória discreta com valores maiores ou iguais a zero. Seja G(s) = E(s x ) a fução geradora de probabilidades de X, e supoha que G(s) é fiita para todo s. Seja u um úmero positivo qualquer. Usado o mesmo tipo de argumetos que a demostração da desigualdade de Chebyshev prove que: G ( ) ( s) Pr X u, 0 s u s Exemplo para casa Seja X ~ Poisso(λ). Use as desigualdades de Chebyshev e Marov para mostrar que: ) λ 4 Pr X λ ( λ) ) Pr X λ 47 48

13 Exemplo para casa Uma variação do método de Mote Carlo Supoha que desejamos avaliar: b = a I ( f ) f ( x) dx Seja g(x) uma desidade em [a, b]. Gere X, X,..., X da desidade g(x) e estime I através de: Iˆ( f ) = i= f g ( X i ) ( X ) i 49 Exemplo para casa a) Use este exemplo para defiir um procedimeto para avaliar uma itegral defiida o itervalo [-,+] b) Você cosegue usar este esquema para avaliar: I x ( f ) = x e dx 0 c) E para avaliar a mesma itegral que acima mas o itervalo (0,)? 50

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Séries e Equações Diferenciais Lista 02 Séries Numéricas

Séries e Equações Diferenciais Lista 02 Séries Numéricas Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos [email protected] Vamos estudar aqui uma ova classe de

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais