ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA
|
|
|
- Iasmin Lencastre Bennert
- 9 Há anos
- Visualizações:
Transcrição
1 ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 1º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio Pentágono pressupõe uma revisão dos conteúdos essenciais que foram trabalhados neste bimestre. O roteiro de recuperação vai auxiliá-lo a planejar e organizar seus estudos. Para isso, sugerimos que: Anote tudo o que tiver para fazer. Fazer um esquema pode ajudar Faça um planejamento de estudos, estabelecendo um horário para desenvolver as diversas tarefas. Planejar significa antecipar as etapas que você precisa fazer e entregar; não deixe para depois o que pode ser feito hoje... Estabeleça prioridades: onde você tem mais dúvidas? Como se organizar para resolvê-las? Para que você aproveite essa oportunidade, é necessário comprometimento: resolva todas as atividades propostas com atenção, anote em um caderno suas dúvidas e leve-as para as aulas de recuperação. Sempre que possível, aproveite a monitoria de estudos. Procure esclarecer todas as dúvidas que ficaram pendentes no bimestre que passou. Tudo o que for fazer, faça bem feito!. Conteúdos Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados neste bimestre: Conceitos trigonométricos básicos ( capítulo 13) - Arcos e ângulos - Círculo trigonométrico Transformações trigonométricas ( capítulo 14) - Soma e subtração de arcos Matrizes(capítulo 16) - Representação genérica - Operações com matrizes Determinantes (capítulo 17) -Cálculo do determinante de ordem 1,,3 e 4 - Propriedades do determinante
2 3. Objetivos : Matrizes (capítulo 16) Determinantes (capítulo 17) Arcos e círculo trigonométrico (capítulo 13) Soma e subtração de arcos (capítulo 14 ) Domínio da linguagem Reconhecer e interpretar Reconhecer e interpretar Identificar e interpretar o círculo trigonométrico Compreensão de Fenomeno Identificar ou inferir informações Identificar ou inferir informações Construir e identificar conceitos Resolução da situação problema Modelar e resolver problemas Aplicar os conceitos na resolução de problemas Interpretar informaçõese aplicar estratégias geométricas Capacidade de argumentação Utilizar modelagem analítica Utilizar modelagem analítica Utilizar conceitos geométricos na seleção dos argumentos Elaboração de propostas Recorrer a conceitos geométricos para avaliar propostas 4. Materiais que devem ser utlilizados e/ou consultados durante a recuperação: Livro didático: caps. 13, 16 e 17; Listas de estudos; Anotações de aula feitas no próprio caderno. Provas mensais 1 e. Prova bimestral
3 5. Etapas e atividades Veja quais são as atividades que fazem parte do processo de recuperação: a) refazer as provas mensais e bimestral para identificar as dificuldades encontradas eaproveitar os momentos propostos para esclarecer as dúvidas com o professor ou monitor da disciplina. b) refazer as listas de estudos. c)revisar as atividades realizadas em aula, bem como as anotações que você fez no caderno. c) fazer os exercícios do roteiro de recuperação. 6. Trabalho de recuperação e forma de entrega Após fazer as atividades sugeridas para o processo da recuperação paralela, entregue os exercícios do roteiro de estudos em folha de bloco. O Trabalho de recuperação vale 1 ponto. Para facilitar a correção, organize suas respostas em ordem numérica. Não apague os cálculos ou a maneira como você resolveu cada atividade; é importante saber como você pensou! É muito importante entregar o Trabalho na data estipulada. TRABALHO DE RECUPERAÇÃO 1. (UFMG )Milho, soja e feijão foram plantados nas regiões P e Q, com ajuda dos fertilizantes X, Y e Z. A matriz A (fig. 1) indica a área plantada de cada cultura, em hectares, por região.a matriz B (fig. ) indica a massa usada de cada fertilizante, em kg, por hectare, em cada cultura: a) Calcule a matriz C = AB. b) Explique o significado de c 3, o elemento da segunda linha e terceira coluna da matriz C.
4 . (UDESC) Classifique cada proposição e assinale (V) para verdadeira ou (F) para falsa. ( ) Se A (a ij) é uma matriz de ordem 3 tal que aij i j, então o elemento que ocupa a posição da segunda linha e primeira coluna da matriz transposta de A é 3. ( ) O determinante da matriz inversa de 1 1 B é ( ) Se T 5 1 C e D então (C D) Assinale a alternativa que contém a sequência correta, de cima para baixo. a) V F F b) F V V c) F F F d) V V F e) V F V 3. (FATEC) Se x é um número real positivo tal que e det (A.B) =, então x -x é igual a : a)- 4 b) 1 4 c)1 d) e)4 4. (IFSP 013)Considere uma circunferência de centro O e raio 6 cm. Sendo A e B pontos distintos dessa circunferência, sabe-se que o comprimento de um arco AB é 5π cm. A medida do ângulo central AOB, ˆ correspondente ao arco AB considerado, é : a) 10. b) 150. c) 180. d) 10. e) (AMAN) O cosseno do menor ângulo formado pelos ponteiros de um relógio às 14 horas e 30 minutos vale : a) 3 1 b) 1 1 c) 4 d) 6 4 e) 3 4
5 6. (UEPG)Sobre as matrizes: A = (a ij ) x, tal que a ij = i j, e B = (b ij ) x3, tal que b ij = i + j, assinale o que for correto ) A.B ) A )A matriz B não existe ) A )det(A) = (UNICAMP) Um relógio foi acertado exatamente ao meio dia. Determine as horas e minutos que estará marcando esse relógio após o ponteiro menor ter percorrido um ângulo de (COL NAVAL)As quatro circunferências da figura abaixo têm raios r = 0,5. O comprimento da linha que as envolve é aproximadamente igual a: a) 6,96 b) 7,96 c) 8,96 d) 9,96 e) 10,96 9. Determine os valores de: a) y 3cos540º sen90º tg180º b) y = 4 sen 900 cos tg Sejam A e B as matrizes A B a j ij,aij i 4x3. Se C = A.B, então c b i vale: ij 3x4,bij j a) 3 b) 14 c) 39 d) 84 e) 58 x y z 11.Sabendo que m n p, calcule os seguintes determinantes: r s t a) x 5m r y 5n s z 5p t b) x m r 3y 3n 3s 4z 4p 4t x c) m 3r 10y 5n 15s z p 3t
6 d) x m r y n s z p t 1.(UFRRJ) Determine a inversa da matriz A = (aij) x, em que os elementos de A são definidos por sen i j π, se i j aij = cos j i π, se i j 13.Seja a matriz cos 5 o sen65 o X o o, calcule o determinante de X : sen10 cos 390 a) ( ) 3. b) (3 3). c) ( 3 ). d) 1. e) Calcule o determinante : 15. (UECE) Sobre a equação detm 1, na qual M é a matriz pode-se afirmar corretamente que a equação: 1 x x 1 x 1 x e detm é o determinante da matriz M, a) não possui raízes reais. b) possui três raízes reais e distintas. c) possui três raízes reais, das quais duas são iguais e uma é diferente. d) possui três raízes reais e iguais.
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: N Série: 2 A e B Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 1º Semestre 1º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
ROTEIRO DE RECUPERAÇÃO 3 - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO 3 - GEOMETRIA Nome: Nº 8º ano Data: / / Professores: Diego, Yuri e Diego Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Sami e Thiago Nota: (Valor 2,0) 2º Semestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Roteiro de Recuperação 1
Roteiro de Recuperação 1 Nome: Nº 8º Ano Data: / /2016 Professores Marcello, Yuri e Décio 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio Pentágono pressupõe uma
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 7º ano Data: / / Professores: Nota: (Valor,0) 1. Apresentação: Prezado aluno, o roteiro de recuperação vai auxiliá-lo a planejar e organizar seus estudos.
ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA Nome: Nº 8º Ano Data: / / Professores: Diego, Marcello e Yuri Nota: (Valor 1,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA Nome: Nº Série: 2 º EM Data: /10 /2015 Professor: DIEGO, LUCIANO e SAMI Nota: (VALOR 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação
1. Apresentação: Prezado aluno, o roteiro de recuperação vai auxiliá-lo a planejar e organizar seus estudos. Para isso, sugerimos que:
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 6º ano Data: / 12 / 2018 Professores: Décio, Leandro e Regis Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, o roteiro de recuperação vai auxiliá-lo
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - GEOMETRIA Nome: Nº 9º ano Data: / / Professores: Diego, Leandro, Milena e Yuri Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, o roteiro de recuperação vai
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA Nome: Nº Série: 2 º EM Data: /10 /2016 Professor: DIEGO, LUCIANO e SAMI Nota: (VALOR 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - ÁLGEBRA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - ÁLGEBRA Nome: Nº 9º ano Data: / / 2018 Nota: (Valor 2,0) Professores: Cauê / Marcello / Milena 1. Apresentação: Prezado aluno, o roteiro de recuperação vai auxiliá-lo
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 8º Ano Data: / /2016 Professores Marcello, Yuri e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma
ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / /2016 Professores: Décio e Leandro Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio
ROTEIRO DE RECUPERAÇÃO DO 1º SEMESTRE DE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 1º SEMESTRE DE MATEMÁTICA Nome: Nº Série: 2 º EM Data: /05 /2018 Professor: DIEGO, SAMI, THIAGO MIRANDA Nota: (VALOR 1,0) 1º Semestre 1. Apresentação Roteiro 1º Bimestre Prezado
2. Conteúdos Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados neste bimestre:
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 8ºAno Data: / / Professores: Yuri, Marcello e Décio Nota: (Valor 1,0) 2º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 8º ANO
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 8º ANO Nome: Nº 8º Ano Data: / /2017 Eloy e Rafael Professores Marcello, Yuri, Décio, Cauê, 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do
ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA Nome: Nº 9ºAno Data: / / Professores: Diego Leandro, Diego Silva e Yuri 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral do Colégio
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE. Nome: Nº: 2ª Série
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE Nome: Nº: 2ª Série Data: / /2018 Professor: Nota: Valor: 2,00 pontos 1. Apresentação Prezado aluno, A estrutura da recuperação bimestral
Roteiro de Recuperação do 3º Bimestre - Matemática
Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 1º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 2ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
ROTEIRO DE RECUPERAÇÃO BIMESTRAL 1 a SÉRIE - 1 o BIMESTRE de 2017
ROTEIRO DE RECUPERAÇÃO BIMESTRAL 1 a SÉRIE - 1 o BIMESTRE de 2017 Nome: N o Série: 1 a Nota: Professor: Andreza / Edson / Priscila 1. APRESENTAÇÃO: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 2ª Série Data: /12/ 2015 Professores: Diego, Luciano e Sami Nota: (Valor 2,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
ROTEIRO DE RECUPERAÇÃO SEMESTRAL- MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO SEMESTRAL- MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 2º semestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
ROTEIRO DE RECUPERAÇÃO DO 3º BIMESTRE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 3º BIMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / 2016 Professores: Leandro e Décio Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 8ºAno Data: / / 016 Professores: Yuri, Marcello e Décio Valor (.0) 1. APRESENTAÇÃO Prezado aluno, A estrutura da recuperação final do Colégio Pentágono
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 3ª Série Data: / / Professores: Décio, Diego, Luciano e Sami Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação anual do Colégio
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 3ª Série Data: / /01 Professores: Décio, Diego, Luciano e Sami Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 2º Semestre 1º BImestre 1. Apresentação: Prezado aluno, A estrutura da recuperação
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 3ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 2,0) ANO 2015 1. Apresentação: Prezado aluno, A estrutura da recuperação final do Colégio
Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores
Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos
COLÉGIO SHALOM Ensino MÉDIO 2º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a):. No.
COLÉGIO SHALOM Ensino MÉDIO º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a): No TRABALHO DE RECUPERAÇÃO VALOR, INSTRUÇÕES: LEIA com atenção cada questão; PROCURE compreender o que
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 3º BI DE MATEMÁTICA Nome: Nº Série: º EM Data: /10 /015 Professor: DIEGO, LUCIANO e SAMI Nota: (VALOR 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 3ª Série Data: / / Professores: Décio, Diego, Luciano e Sami Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)
DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 9º Ano Nota: (Valor 2,0) Data: / / Professores: Denys, Diego e Yuri 1. Apresentação: Prezado aluno, A estrutura da recuperação anual do Colégio Pentágono
2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3).
ROTEIRO DE ESTUDOS 3 NOME Nº 8 ANO MATEMÁTICA - 3º BIMESTRE Profs. Yuri, Marcello e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma revisão dos
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 1ª Série Data: /12/2015 Professores: Diego, Luciano e Sami Nota: (Valor 2,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 2º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões. Conteúdos para estudos: ÁLGEBRA Medidas de arcos Ciclo trigonométrico
ROTEIRO DE RECUPERAÇÃO BIMESTRAL - 3º BIMESTRE MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan
ROTEIRO DE RECUPERAÇÃO BIMESTRAL - 3º BIMESTRE MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do bimestre. Capítulo 4 Equações do primeiro grau
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia de número positivo
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33)
EU CONFIO COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33) 3341-1244 www.colegiosantateresinha.com.br PLANEJAMENTO DE AÇÕES DA 1ª ETAPA 2017 (06/02 a 28/04) PROFESSOR (A): Luciano Carlos De
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Sami e Thiago Nota: (Valor 1,0) 1º Semestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
7. Calcule o valore de x + y z sabendo que as
. Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual
2.Faça as conversões dos arcos abaixo de grau para radiano e de radiano para grau: a) 210 b) 2π/15 rad c) 300 d) 5π/12 rad
Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 35 pts 22,75 pts 12 18 2º ANO A B CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA Trigonometria no
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
2ª série do Ensino Médio Turma. 1º Bimestre de 2018 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2018 Data / / Escola Aluno 2 1 2 4 5 6 7 8 10 11 12 1 14 15 16 Avaliação da Aprendizagem em Processo Prova
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia
APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule
ROTEIRO RECUPERAÇÃO DE QUÍMICA 1º BIMESTRE DE 2016
ROTEIRO RECUPERAÇÃO DE QUÍMICA 1º BIMESTRE DE 216 Nome: N o 1ª Série Data: / / 216 Professor(a): Andreza / Edson / Priscila Nota: 1. APRESENTAÇÃO: Prezado aluno, A estrutura da recuperação bimestral paralela
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA. Nome: Nº 9ºAno. Data: / / Professores: Diego, Denys e Yuri Nota: (Valor 1,0) 3º Bimestre/
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Professores: Diego, Denys e Yuri Nota: (Valor 1,0) 3º Bimestre/2016 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Roteiro de Recuperação de MATEMÁTICA GEOMETRIA. Ano: 1º ANO Ensino Médio Período: Matutino
Roteiro de Recuperação de MATEMÁTICA GEOMETRIA Professor da Disciplina: VAGNER ANTIQUEIRA 2017 Aluno(a): Nº: Ano: 1º ANO Ensino Médio Período: Matutino 3º TRIMESTRE O estudo da matemática começa na sala
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º Trimestre 1 EM DISCIPLINA: Matemática - Setor A
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º Trimestre 1 EM DISCIPLINA: Matemática - Setor A Observação: Antes de responder às atividades, releia o material de orientação de estudos Exercícios: 1) Num programa
COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33)
EU CONFIO COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33) 3341-1244 www.colegiosantateresinha.com.br PLANEJAMENTO DE AÇÕES DA 1ª ETAPA 2018 (05/02 a 18/05) PROFESSOR (A): LUCIANO CARLOS DE
A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos.
MATEMÁTCA 01. Júnior marca com Daniela às 1 horas para juntos assistirem a um filme, cuja sessão inicia às 16 horas. Como às 1 horas, Daniela não chegou, Júnior resolveu esperar um tempo t 1 igual a 1
3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca
Matrizes. a inversa da matriz , onde cada elemento aij
Matrizes. (Ufpe 03) Seja a c b d a inversa da matriz 3. 4 Indique a b c d.. (Espm 03) A distribuição dos n moradores de um pequeno prédio de apartamentos é 4 x 5 dada pela matriz 3 y, onde cada elemento
MATEMÁTICA. Prova de 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Duração desta prova: TRÊS HORAS. UNIVERSIDADE FEDERAL DE MINAS GERAIS FAÇA LETRA LEGÍVEL
MATEMÁTICA Prova de 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este caderno contém oito questões, constituídas de itens e subitens, abrangendo um total de nove
Lista de Exercícios Matrizes
2º ano Regular / Comércio Exterior Nome: Classe: -2 Professor: Fábio Jun 3º período Lista de Exercícios Matrizes Questões dissertativas. (FGV) Uma fábrica decide distribuir os excedentes de três produtos
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
Matemática Ensino Médio Anotações de aula Trigonometira
Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo
Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA
Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.
Atividades De Recuperação Paralela De Matemática GEOMETRIA
Atividades De Recuperação Paralela De Matemática GEOMETRIA 1º ANO Ensino Médio 3º Trimestre Leia as orientações de estudos antes de responder as questões CONTEÚDO: Trigonometria na meia volta Lei dos cossenos
Roteiro de estudos 3º trimestre. Matemática-Física-Química. Orientação de estudos
Roteiro de estudos 3º trimestre. Matemática-Física-Química O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Décio/Eloy/Marcello
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Décio/Eloy/Marcello Os conteúdos essenciais do bimestre. Capítulo 1 Números inteiros Ideia de número positivo
MINISTÉRIO DA EDUCAÇÃO INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS - INEP DIRETORIA DE AVALIAÇÃO PARA CERTIFICAÇÃO DE COMPETÊNCIAS
MINISTÉRIO DA EDUCAÇÃO INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS - INEP DIRETORIA DE AVALIAÇÃO PARA CERTIFICAÇÃO DE COMPETÊNCIAS Exame Nacional de Certificação de Competências de Jovens e
Ano: 8º Turma: 801/802/803
COLÉGIO IMACULADO CORAÇÃO DE MARIA Programa de Recuperação Paralela 3ª Etapa 2010 Disciplina: Matemática Educador : Paulo Roberto Ano: 8º Turma: 801/802/803 Caro educando, você está recebendo o conteúdo
, a segunda coluna da matriz A é um múltiplo da primeira coluna.
Lista de exercícios - 2º ano - Matemática Aluno: Série: Turma: Data: Questão 1 Segundo diversos estudos, a função relaciona o número de dias y necessários para que um corpo, após sua morte, se torne esqueleto,
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FIH DE TRLHO.º NO OMPILÇÃO TEM TRIGONOMETRI Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM TRIGONOMETRI Matemática.º no Ficha de Trabalho ompilação Tema Trigonometria
Objetivos para os alunos
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 3ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 1º Semestre 1º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação
Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes
Matéria Eame Colegial Aula Matries Aula Matries: Igualdade, adição e subtração Aulas e Multiplicação de matries Aulas 5 e 6 Determinantes: Ordens, e Aula 7 Sistemas Lineares Aulas 8 Sistemas Lineares:
; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.
01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22
MATEMÁTICA. A é a matriz inversa de A.
MATEMÁTICA 41 - O estado do Paraná tem uma área de aproximadamente 200.000 km 2. Atualmente, em quatro milhões de hectares do estado se planta soja, sendo que um grão de soja ocupa um volume de 1 cm 3.
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 Avaliação da Aprendizagem em Processo
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Plano de Recuperação Semestral EM
Série/Ano: 1º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA
MATEMÁTICA conhecimento específico 1 01. CONJUNTOS Interessado em lançar os modelos A, B e C de sandálias, em uma determinada região do estado, foi realizada uma pesquisa sobre a preferência de compra
MATRIZ DE REFERÊNCIA PARA O ENEM 2009
MINISTÉRIO DA EDUCAÇÃO INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA MATRIZ DE REFERÊNCIA PARA O ENEM 2009 EIXOS COGNITIVOS (comuns a todas as áreas de conhecimento) I. Dominar
TRIGONOMETRIA NA CIRCUNFERÊNCIA
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 1º Ano 4º Bimestre/01 Plano de Trabalho TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 1 CURSISTA: FABIANA OLIVEIRA DA SILVA RODRIGUES
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
