Passando do português para a linguagem matemática.

Tamanho: px
Começar a partir da página:

Download "Passando do português para a linguagem matemática."

Transcrição

1 1 Passando do português para a linguagem matemática. Professor Maurício

2 2 Um grande problema para quem está estudando matemática pela primeira vez é passar o enunciado (na forma de palavras e escrito em português) para a linguagem matemática (com sinais, números, operações, igualdades, desigualdades etc). Queridos alunos, sinto informar, mas não existe um algoritmo nem uma fórmula mágica para isto. Fazer esse processo exige treino e muito treino, embora sirva de consolo saber que depois de um tempo (pouco tempo eu diria) tudo se torna mais automático. Mesmo assim, é interessante fazer este tutorialzinho com algumas dicas práticas de como transformar o português em matematiquês. Atentem-se a tudo que será dito. Bom, vamos começar pelo básico: o nome. Esse processo de transformar da linguagem escrita para a linguagem matemática é chamado de EQUACIONAMENTO. Quando não sabemos o valor de algo, dizemos que este valor é a nossa incógnita e a nomeamos por alguma letra (que posteriormente assumirá um número). A princípio valem 4 dicas básicas para equacionar: I. A palavra de muitas vezes (não sempre, mas bem frequentemente) é sinônimo do sinal de multiplicação. II. A palavra é, sozinha ligando duas situações, muitas vezes é sinônimo do sinal de igual. III. Todos os termos que estão sendo somados de uma equação devem possuir a mesma unidade (ou não possuir unidade). IV. Para o problema ser determinado devemos possuir UMA EQUAÇÃO PARA CADA INCÓGNITA. Acredito que os dois primeiros itens e o último sejam bem claros na cabeça de todos, mas o terceiro não tanto. Então vamos exemplificar cada um num exercício simples. Entretanto, antes vamos falar um pouco mais (explicar melhor) sobre o item III. Explicação sobre o item III: Repare que em uma equação da forma A+B+C=D+E devemos ter A, B, C, D e E possuindo da mesma unidade.

3 Não faz sentido somarmos coisas de unidades diferentes. Repare que isso ocorre em todas as fórmulas que você conhece. Vejamos o exemplo: (equação da velocidade em um movimento uniformemente variado. Note que é a velocidade num determinado instante e possui unidade ; é a 3 velocidade no instante 0 e possui unidade ; possui unidade que, simplificando, também é. Assim, a equação diz que uma coisa em é igual a duas coisas somadas em, o que faz muito sentido, concorda? Não faz sentido falarmos que algo em somado com algo em resulta em alguma coisa com sentido. Exemplo: Eu tenho o dobro da idade que eu tinha há 13 anos. Quantos anos eu terei daqui 6 anos? Bom, vamos por partes: Eu tenho o dobro da idade que eu tinha há 13 anos. Podemos ler este trecho de maneira a utilizar nossas dicas anteriores: Minha idade hoje é o dobro da minha idade há 13 anos. Não sabemos o valor da idade, chamamos de X (uma incógnita): X = 2.(X-13) IMPORTANTE!!!: X representa uma idade e sua unidade é ANOS. Repare que (X-13) continua sendo ANOS e que 2.(X-13) é também em ANOS. Portanto, tudo está na mesma unidade, a equação é coerente neste sentido. Como temos uma incógnita, temos que ter uma equação (que já temos aí em cima). Basta resolver: X = 2X 26 => X = 26 anos. Como X representa minha idade, então hoje tenho 26 anos. A segunda parte: Quantos anos eu terei daqui 6 anos?. Podemos ler como: Minha idade futura é minha idade somado de 6 anos. Em matemática, usando nossas dicas: Y = X + 6. E assim Y = => Y = 32 anos Note que temos de novo a dica III valendo. Obs: É interessante que saibamos ler as frases de uma forma favorável, como fizemos no exemplo acima.

4 Para equacionar é necessário que saibamos relações. É extremamente importante que nos exercícios sejam observadas as relações de uma determinada incógnita com as demais. Em outras palavras, equacionar é basicamente relacionar às incógnitas. 4 Uma informação geralmente não vale nada para a resolução se ela não estiver ligada com alguma outra informação. Por exemplo, não serve para nada nomearmos a incógnita idade (num exercício de idade) se não soubermos alguma informação sobre ela. Sendo assim, vale ressaltar: As fórmulas que conhecemos servem para relacionar informações. Vale muito pouco uma fórmula decorada se não soubermos quais são as informações que ela relaciona. Veja, ao ser dada a força resultante sobre um corpo, a massa deste corpo e ao ser pedida a aceleração do movimento, não é dado pelo enunciado a relação entre a massa e a resultante. Espera-se que o aluno saiba que existe uma lei que relaciona isso:, ou seja, a segunda lei de Newton (tópico exigido no manual da FUVEST). Sendo assim, toda vez que você aprender uma fórmula pergunte-se: Quais incógnitas ela relaciona? Verifique sempre se faz sentido aquilo que está escrito em matematiquês. Por exemplo: ao falarmos que foi dado 20% de desconto em uma mercadoria não faz sentido falar que o novo preço é o (anterior 20%). Falar de porcentagem só faz sentido se for dito em relação a quem!!! Veja: O novo preço é o anterior 20% do preço anterior. Novamente temos a palavra de aparecendo como multiplicação e é como igualdade. Veja: Y = X 20%.X ou melhor, Y = X 0,2X = 0,8X 1) João tem o triplo da idade que tinha há 5 anos. Qual é a idade de João? 2) Daqui a 6 anos João terá o dobro da idade que tinha há 3 anos. Qual é a idade João? 3) Um ângulo somado à sua metade formam 75º. Qual é este ângulo? 4) Um ângulo somado ao seu triplo são suplementares. Qual é o dobro deste ângulo? 5) A) Existe uma fórmula que relaciona os 3 lados de um triangulo com um de seus ângulos internos? Qual? B) Um triangulo possui lados 3, 4 e 6 cm. Quais são os cossenos dos seus ângulos internos? E os senos desses ângulos?

5 Se você entendeu bem e conseguiu fazer os exercícios simples acima, aqui embaixo coloquei um que dá um certo nó na cabeça para equacionar. Tentem só depois de entenderem bem o caso acima. DESAFIO: Eu tenho o dobro da idade que tu tinhas quando eu tinha a idade que tu tens. Daqui a 5 anos, nossas idades somadas resultarão em 59. Qual a minha idade? 5 Queridos alunos, espero que este mini tutorial tenha servido para vocês entenderem melhor o processo de equacionar situações. Cada dica dada é muito valiosa. Claro que existem outras formas de leitura e certamente devem existir mais palavras chave. Tentei expor algumas bem frequentes e que devemos saber a principio. Em breve farei um complementar desta apostila caso necessário. Tomara que gostem. Abraços, Professor Luiz Maurício Matemática.

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

Matemática Divertida. Triângulos Mágicos

Matemática Divertida. Triângulos Mágicos Matemática Divertida Triângulos Mágicos ζ(s) = n=1 1 n s Prefácio Comecei a escrever esta série de livros intitulada Matemática Divertida, pois acredito que a matemática possa ser um agente de mudanças

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Física I P3 Exercícios

Física I P3 Exercícios Fuja do Nabo Rogério Motisuki Física I P3 Exercícios P3 011) a) Como são corpos pontuais, basta somar o produto, onde é a distância até o eixo de rotação: b) 4 3 4 5 8 A única força agindo sobre o haltere

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

Observando incógnitas...

Observando incógnitas... Reforço escolar M ate mática Observando incógnitas... Dinâmica 2 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Algébrico-Simbólico Sistemas Lineares. Aluno Primeira etapa

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

MATEMÁTICA. Polinômios. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Polinômios. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Polinômios Professor : Dêner Rocha Monster Concursos 1 Monômio, o que isso Professor Dêner? Monômios Denominamos monômio ou termo algébrico quaisquer expressões algébricas representadas por

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Primeiro Grau Isabelle da Silva Araujo - Engenharia de Produção Definição Equação x Inequação Uma equação é uma igualdade entre dois

Leia mais

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 3 Razões e Proporções 1. RAZÕES E PROPORÇÕES 1.1 RAZÃO: A razão entre dois números a e b é definida como sendo a fração ou. Em uma razão, a e b são ditos os

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Introdução Se você procurar pela Internet, irá encontrar dezenas de sites que falam sobre este assunto, alguns muito bons por sinal, mas a grande maioria deles embora apresentem

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

1 Completando Quadrados

1 Completando Quadrados UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.

Leia mais

... Onde usar os conhecimentos os sobre s?...

... Onde usar os conhecimentos os sobre s?... Manual de IV Matemática SEQÜÊNCIA OU SUCESSÃO Por que aprender Progr ogressõe ssões? s?... O estudo das Progressões é uma ferramenta que nos ajuda a entender fenômenos e fatos do cotidiano, desde situações

Leia mais

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios () Física Movimento Retilíneo Uniforme Resoluções dos Exercícios Professor Dutra Exercícios () 1)Um móvel parte da posição 15 m com velocidade

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Equações do 1º grau. A importância do estudo das equações está no fato de que elas facilitam a resolução de certos problemas.

Equações do 1º grau. A importância do estudo das equações está no fato de que elas facilitam a resolução de certos problemas. A UUL AL A Equações do 1º grau Durante nossas aulas, você aprendeu a resolver algumas equações bem simples. Na aula de hoje, aprofundaremos o estudo dessas equações. Portanto, é preciso que você saiba

Leia mais

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número:

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número: AULA 9 RAZÃO E PROPORÇÃO 1. Determine a razão do primeiro para o segundo número: Para montar a razão, basta fazer o numerador sobre o denominador. Para esse exercício, temos: a) 1 para 9 = 9 1 b) para

Leia mais

Equação de Primeiro Grau

Equação de Primeiro Grau } Equação de Primeiro Grau } Rene Freire M Φ c Matemática e Física A teoria de equação de primeiro grau é extremamente simples. Porém muitas pessoas têm dificuldade em resolver os problemas de equação

Leia mais

Curso: Análise e Desenvolvimento de Sistemas

Curso: Análise e Desenvolvimento de Sistemas Curso: Análise e Desenvolvimento de Sistemas Disciplina: Calculo para Tecnologia (Equação de 1o e 2o graus, Porcentagem, razão e proporção. Regra de três, Logaritmo, Funções Trigométricas ) Prof. Wagner

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

Feriadão bombando... E daí, não é mesmo?? Por aqui queremos passar no concurso rsrsrs

Feriadão bombando... E daí, não é mesmo?? Por aqui queremos passar no concurso rsrsrs Professora Karine Waldrich Ponto dos Concursos EXATAS SEM FÓRMULA GEOMETRIA Bom dia!! Feriadão bombando... E daí, não é mesmo?? Por aqui queremos passar no concurso rsrsrs Hoje no nosso #ExatasSemFórmula

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

Regra geral para a resolução de equações do primeiro grau com mais de. uma variável

Regra geral para a resolução de equações do primeiro grau com mais de. uma variável EQUAÇÃO DO PRIMEIRO GRAU COM DUAS VARIÁVEIS Uma equação do 1 grau com duas incógnitas, é qualquer equação que possa ser reduzida à forma ax + by = c, onde x e y são incógnitas e a, b e c são números racionais,

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau Denomina-se equação do 2 grau, qualquer sentença matemática que possa ser reduzida à forma ax 2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a 0. a, b e

Leia mais

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves. Prof.

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves.  Prof. Aula 00 Matemática Financeira Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Matemática Financeira Apresentação... 3 Modelos de questões resolvidas FGV... 4 Relação

Leia mais

O problema da velocidade instantânea

O problema da velocidade instantânea Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no

Leia mais

Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)

Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17) Gabarito de Matemática do 8º ano do E.F. Lista de Eercícios (L7) Queridos alunos, nesta lista vamos resolver equações fracionárias (aquelas que possuem incógnita nos denominadores) e mais algumas situações-problema

Leia mais

BIZU PARA POLÍCIA FEDERAL PROFESSOR: GUILHERME NEVES

BIZU PARA POLÍCIA FEDERAL PROFESSOR: GUILHERME NEVES Olá, pessoal! Meu nome é Guilherme Neves e estou ministrando o curso de Raciocínio Lógico para o concurso da Polícia Federal que será realizado pelo CESPE-UnB. Vamos, de uma maneira sucinta, fazer uma

Leia mais

Apresentação. Bento de Jesus Caraça ( ), matemático português

Apresentação. Bento de Jesus Caraça ( ), matemático português Apresentação A matemática é geralmente considerada uma ciência a parte, desligada da realidade, vivendo na penumbra de um gabinete fechado, onde não entram ruídos do mundo exterior, nem o sol, nem os clamores

Leia mais

É uma sequência lógica de ações, um passo a passo, para atingir determinado objetivo.

É uma sequência lógica de ações, um passo a passo, para atingir determinado objetivo. Computação I Introdução Olá pessoal, eu sou o Edivaldo e aqui vou tentar ensinar de um jeito resumido e descomplicado as noções iniciais do curso de Programação da UFRJ, que é ministrado na linguagem de

Leia mais

Sistemas de equações do 1 grau a duas variáveis

Sistemas de equações do 1 grau a duas variáveis Sistemas de equações do 1 grau a duas variáveis Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se que as equações

Leia mais

LEITURA DESCRITORES BIM3/2018 LEITURA 1º ANO

LEITURA DESCRITORES BIM3/2018 LEITURA 1º ANO LEITURA Identificar a finalidade de um texto. LEITURA 1º ANO Identificar, em palavras, a representação de unidades sonoras como letras com mais de uma correspondência sonora. Identificar, em palavras,

Leia mais

SISTEMAS DE EQUAÇÕES 2x2

SISTEMAS DE EQUAÇÕES 2x2 SISTEMAS DE EQUAÇÕES x 1 Introdução Em um estacionamento, entre carros e motos, há 14 veículos Qual é o número exato de carros e motos? Se representarmos o número de carros por x e o número de motos por

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

Prova TCE/SP Resolvida Raciocínio Lógico e Matemático Agente da Fiscalização. Prof. Thiago Cardoso. Olá, Alunos, tudo bem?

Prova TCE/SP Resolvida Raciocínio Lógico e Matemático Agente da Fiscalização. Prof. Thiago Cardoso. Olá, Alunos, tudo bem? Olá, Alunos, tudo bem? A prova do TCE/SP 2017 foi dentro do esperado, um pouco acima do nível de dificuldade padrão da Vunesp, porém, nada do outro mundo. Nesse arquivo, estamos corrigindo a prova de.

Leia mais

Física 1 - Aula 4. 1 Grandezas Físicas Escalares e Vetoriais. 2 Vetores. Prof. Afonso Henriques Silva Leite. 23 de março de 2016

Física 1 - Aula 4. 1 Grandezas Físicas Escalares e Vetoriais. 2 Vetores. Prof. Afonso Henriques Silva Leite. 23 de março de 2016 Física 1 - Aula 4 Prof. Afonso Henriques Silva Leite 23 de março de 2016 1 Grandezas Físicas Escalares e Vetoriais Algumas Grandezas Físicas são determinadas (ou conhecidas) por completo por apenas um

Leia mais

Solução da Prova de Matemática

Solução da Prova de Matemática SOLUÇÃO DA PROVA DE MATEMÁTICA UNEAL 014 Solução da Prova de Matemática Temos uma típica questão de Conjuntos no parágrafo inicial, misturada em sequência por um tópico de média aritmética simples. Usaremos

Leia mais

Ondulatória Resumo Teórico

Ondulatória Resumo Teórico Fuja do Nabo: Física II P1 014 Rogério Motisuki Ondulatória Resumo Teórico Todo mundo já aprendeu o que é uma onda, porém a matematização apresentada pode apresentar dificuldades. Equação genérica Uma

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)

APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA) APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA) 36 - TÓPICO 10.1 a 10.5 10. SISTEMAS LINEARES 10.1. EQUAÇÃO LINEAR 10.2. SISTEMA LINEAR Exemplos: É um sistema formado por equações lineares. APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Inequação do Primeiro Grau Bárbara Simionatto - Engenharia Civil Definição Equação x Inequação Uma equação é uma igualdade entre dois membros e por

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas incógnitas.

Leia mais

Aula 00 Matemática Financeira p/ Exame de Suficiência do CFC (Técnico em Contabilidade) - Com videoaulas

Aula 00 Matemática Financeira p/ Exame de Suficiência do CFC (Técnico em Contabilidade) - Com videoaulas Aula 00 Matemática Financeira p/ Exame de Suficiência do CFC (Técnico em Contabilidade) - Com videoaulas Professor: Arthur Lima AULA 00 (demonstrativa) SUMÁRIO PÁGINA 1. Apresentação 01 2. Cronograma do

Leia mais

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO ª ANO Verifique se esta contém 0 QUESTÕES, numeradas de 0 a 0. Leia atentamente toda a antes de começar a resolver. Não deixe questões em branco. Não converse. Boa Sorte! NOTA DA ] O corpo indicado na

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática e Raciocínio Lógico da prova de Auditor Fiscal da SEFAZ/RS 2014,

Leia mais

LEITURA DESCRITORES BIM2/2018

LEITURA DESCRITORES BIM2/2018 LEITURA LEITURA 1º ANO Diferenciar letras de outros sinais gráficos (como números e sinais de pontuação) ou de outros sistemas de representação. Identificar a finalidade de um texto. Identificar as letras

Leia mais

4 O método aritmético e o método algébrico

4 O método aritmético e o método algébrico A UA UL LA O método aritmético e o método algébrico Introdução Se você esteve bem atento na aula passada, na qual conhecemos os problemas com x, deve ter percebido que aquele problema das idades do casal

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano) 38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta

Leia mais

Conhecendo as Frações!!! 2013

Conhecendo as Frações!!! 2013 ANEXO HQ Vamos cortar uma pizza em fatias da seguinte maneira: Se comermos as três fatias menores, que fração indica o que sobrou da pizza? Matemática em quadrinhos Conhecendo as Frações!!! or S io do

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Equações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 3 de novembro de 018 No material da aula

Leia mais

CAPITAIS BANCO DE. com atenção! R.: capitais Regiões. Eu já bebi do suco. Eu estou levando do bolo.

CAPITAIS BANCO DE. com atenção! R.: capitais Regiões. Eu já bebi do suco. Eu estou levando do bolo. PROFESSOR: EQUIPEE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - º ANO - ENSINO FUNDAMENTAL ======== ========= ========= ========= ========= ========= ======== ======== ========= == 0- Veja algumas situações

Leia mais

Figuras Musicais Principais figuras musicais

Figuras Musicais Principais figuras musicais Figuras Musicais Figuras musicais (ou figuras rítmicas) são símbolos utilizados para representar os tempos de uma música. Agora que já aprendemos a representação das notas na partitura, chegou a hora de

Leia mais

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes

Leia mais

01. B 07. A 13. D 19. B 02. D 08. C 14. D 20. D 03. A 09. A 15. C 21. C 04. B 10. D 16. B 22. B 05. C 11. A 17. A B 12. B 18.

01. B 07. A 13. D 19. B 02. D 08. C 14. D 20. D 03. A 09. A 15. C 21. C 04. B 10. D 16. B 22. B 05. C 11. A 17. A B 12. B 18. SISTEMA ANGLO DE ENSINO PROVA ANGLO P-2 G A B A R I T O Tipo D-8-05/2012 01. B 07. A 13. D 19. B 02. D 08. C 14. D 20. D 03. A 09. A 15. C 21. C 04. B 10. D 16. B 22. B 05. C 11. A 17. A 00 06. B 12. B

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

Hoje vamos começar a falar em um conceito matemático importantíssimo: fração.

Hoje vamos começar a falar em um conceito matemático importantíssimo: fração. Oi, pessoal. Hoje vamos começar a falar em um conceito matemático importantíssimo: fração. Não tem como aprender qualquer assunto de Matemática se você não domina este conceito. Além do conceito em si,

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

PESQUISA OPERACIONAL

PESQUISA OPERACIONAL PESQUISA OPERACIONAL Uma breve introdução. Prof. Cleber Almeida de Oliveira Apostila para auxiliar os estudos da disciplina de Pesquisa Operacional por meio da compilação de diversas fontes. Esta apostila

Leia mais

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

Álgebra Linear II Apostila 2

Álgebra Linear II Apostila 2 Álgebra Linear II Apostila 2 1 SISTEMAS LINEARES Um sistema linear é um conjunto de equações de primeiro grau, que se escrevem em função de certas variáveis. A resolução do sistema visa encontrar justamente

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres. A UA UL LA Revisão I Introdução Vamos iniciar, nesta aula, a revisão do nosso curso do 2º grau. Ela será feita em forma de exemplos que vão abordar de novo os principais conteúdos. Para aproveitar bem

Leia mais

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Olhando por esse Prisma...

Olhando por esse Prisma... Reforço escolar M ate mática Olhando por esse Prisma... Dinâmica 7 2º Série 2º Bimestre DISCIPLINA série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria Espacial: Prismas e Cilindros Primeira

Leia mais

O CASO INVERSO DA QUEDA LIVRE

O CASO INVERSO DA QUEDA LIVRE O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial

Leia mais

Problemas do 2º grau

Problemas do 2º grau A UUL AL A 6 6 Problemas do º grau Nas Aulas 4 e 5, tratamos de resoluções de equações do º grau. Nesta aula, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas

Leia mais

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros Nuno Marreiros EQUAÇÕES 7º ANO Noção de equação Antes de começar Como o Diogo tinha 10 e já só tem 4 é porque gastou 6. Se andou três vezes no Kanguru foi porque cada bilhete custou 2. Representando por

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

Matemática. Professor Edgar Abreu.

Matemática. Professor Edgar Abreu. Matemática Professor Edgar Abreu www.acasadoconcurseiro.com.br Matemática Financeira PORCENTAGEM TAXA UNITÁRIA DEFINIÇÃO: Quando pegamos uma taxa de juros e dividimos o seu valor por 100, encontramos

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

AULA 01 Razão, Proporção e regra de Três

AULA 01 Razão, Proporção e regra de Três Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professoras Elvira e Larissa AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas diretamente proporcionais;

Leia mais