MATEMÁTICA ESTATÍSTICA
|
|
|
- João Henrique Teves Azenha
- 9 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA ESTATÍSTICA 1. U.Católica-DF Com base nas informações do texto e da tabela a seguir, julgue as afirmativas que se seguem com V ou F, conforme sejam Verdadeiras ou Falsas. Para uma vida moderna confortável, estima-se que cada pessoa precise de aproximadamente 60 m 2 de moradia, 40 m 2 para trabalhar, 50 m 2 para edifícios públicos e áreas de recreação, 90 m 2 para transportes (por exemplo, estradas) e 4000 m 2 para a produção de comida. (Adaptado de um problema de E. Batschelet, Introdução à Matemática para biocientistas, por L. Hoffmann & G. Bradley, Cálculo um curso moderno e suas aplicações, Ed. LTC) País População Área (em km 2 ) Austrália Brasil Índia Japão Fonte: Almanaque Abril Editora Abril ( ) Para os critérios utilizados no texto, dos 4 países apresentados, na tabela, a Austrália apresenta as melhores condições para oferecer uma vida moderna confortável aos seus habitantes. ( ) Em atendimento aos critérios citados no texto, o Japão deveria destinar uma área maior que todo o seu território somente para a produção de comida. ( ) O território indiano permite, para atender a todos os critérios apresentados no texto, oferecer uma vida moderna confortável para habitantes. ( ) Pelos critérios apresentados no texto, o Japão necessita de mais espaço que o Brasil para a produção de comida. ( ) Dos 4 países apresentados, o Brasil apresentava a menor densidade demográfia. 2. UFMT A tabela abaixo apresenta dados do eleitorado do Município de Cuiabá, referentes à Eleição Municipal de Faixa Etária Número de eleitores Sexo Sexo Não Masculino Feminimo Informado 16 ou 17 anos 18 a 44 anos 45 a 69 anos mais de 69 anos TOTAL (Tribunal Superior Eleitoral Seção de Estatística Eleitoral Sistema de Estatística do Eleitorado) Com base nessas informações, julgue os itens. ( ) Sejam M e N os números de eleitores do sexo feminino com 16 e 17 anos, respectivamente. Se N é o triplo de M, mais 61, então pode-se afirmar que N < ( ) Tomando-se um eleitor do município de Cuiabá ao acaso, a probabilidade de ele pertencer à faixa etária de 18 a 44 anos é superior a 70%. ( ) Sendo 632 o número de seções eleitorais no município de Cuiabá, então o número médio de eleitores por seção é igual a 410.
2 3. UFPE O gráfico abaixo ilustra a variação do percentual de eleitores com idade de 16 e 17 anos que moram nas capitais e de eleitores do Brasil nesta faixa de idade, de junho de 1990 a junho de Percentual de eleitores com 16 e 17 anos 4 3 3,22 3,56 2,86 2 2,54 2,24 2,34 1,76 1 1,62 1,66 1,17 1,23 1, Brasil Capitais 2 Supondo que nestes 10 anos o número de eleitores aumentou 30% e o percentual de jovens com 16 e 17 anos se manteve em 3,56% da população, é correto afirmar que: a) em 2000, metade dos eleitores com 16 e 17 anos não estavam nas capitais. b) em 1992, todo jovem de 16 e 17 anos era eleitor. c) em 1998, 40% dos eleitores com 16 e 17 anos não estavam nas capitais. d) o percentual médio de eleitores com 16 e 17 anos nas capitais neste período foi inferior ao percentual médio de eleitores nesta faixa de idade fora das capitais. e) o número de eleitores com 16 e 17 anos em 1990 foi menor que o número de eleitores com 16 e 17 anos em U. F. Lavras-MG Uma família dispõe de X reais para passar 30 dias de férias. Se esta família resolver ficar 20 dias, em vez dos 30 previstos, gastando todo o dinheiro previsto, o seu gasto médio diário será aumentado de: a) 25% b) 30% c) 50% d) 33% e) 40% 5. U. F. Lavras-MG Uma pesquisa eleitoral estudou a intenção de votos nos candidatos A, B e C, obtendo os resultados apresentados na figura: Número de votos A opção incorreta é: A B C Indecisos a) O candidato B pode se considerar eleito. b) O número de pessoas consultadas foi de c) O candidato B possui 30% das intenções de voto. d) Se o candidato C obtiver 70% dos votos dos indecisos e o restante dos indecisos optarem pelo candidato A, o candidato C assume a liderança. e) O candidato A ainda tem chance de vencer as eleições.
3 6. UFR-RJ Em uma das partidas do final do campeonato brasileiro de basquete, realizada no dia 27 de junho de 2000, obtivemos os seguintes dados estatísticos: FLAMENGO VASCO PLACAR Número de arremessos convertidos Na tabela acima, o número de arremessos convertidos por cada time é relativo aos totais de arremessos de 3 pontos, 2 pontos e 1 ponto (lance livre) somados. O cestinha do jogo, Oscar, converteu na faixa de 35 a 36% dos arremessos de três pontos convertidos em todo o jogo. Sabendo-se que o total de lances livres convertidos foi de 54, o número de arremessos de 3 pontos convertidos por Oscar foi igual a: a) 3 d) 7 b) 5 e) 8 c) Fei-SP Considerando-se a situação descrita na questão anterior e sabendo-se que o número de latas de alumínio coletadas dia a dia é proporcional à quantidade de lixo recolhido e que no dia 5 foram coletadas 330 latas, qual o número de latas coletadas no período de 5 dias? a) 1500 d) 1820 b) 1600 e) 1900 c) Fuvest-SP Considere os seguintes dados, obtidos em 1996 pelo censo do IBGE: I. A distribuição da população, por grupos de idade, é: idade número de pessoas de 4 a 14 anos de 15 a 17 anos de 18 a 49 anos anos ou mais II. As porcentagens de pessoas, maiores de 18 anos, filiadas, ou não, a sindicatos, órgãos comunitários, órgãos de classe, são: III. As porcentagens de pessoas, maiores de 18 anos, filiadas a sindicatos, órgãos comunitários e órgãos de classe são: A partir dos dados acima, pode-se afirmar que o número de pessoas, maiores de 18 anos, filiadas a órgãos comunitários é, aproximadamente, em milhões: a) 2 d) 21 b) 6 e) 31 c) 12
4 9. UEGO A tabela abaixo indica o número de acidentes de trabalho por grupo de pessoas. BRASIL EM NÚMEROS Pesquisa do INSS mostra que devido aos programas de treinamento o número absoluto de acidentes de trabalho caiu 60% nos últimos doze anos. Acompanhe abaixo quantos acidentes aconteceram por grupos de trabalhadores nesse período: Mortes no trabalho Acidentes graves Acidentes leves em cada em cada em cada em cada em cada em cada em cada em cada em cada Revista Veja, 16 set p Em relação à tabela, assinale verdadeiro (V) ou falso (F). ( ) Em 1997, o número de acidentes graves foi maior do que o número de acidentes leves. ( ) Se a população trabalhadora em 1985 era N, o número de acidentes leves é dado por N. 350 ( ) Para cada grupo de 00 pessoas, o número de acidentes leves reduziu mais de 70% no período de 1985 a ( ) O número total de acidentes leves e graves no ano de 1997, para um grupo de 00 pessoas, foi menor do que UFSE Segundo dados do IBGE (Instituto Brasileiro de Geografia e Estatística), o Brasil vem reduzindo nos últimos anos, o índice de mortalidade infantil. Na tabela abaixo temse, para a Região Nordeste e nos anos indicados, o número de óbitos em crianças de 0 a 1 ano de idade, para cada 0 nascidas vivas. Ano Taxa de mortalidade infantil 184,33 150,07 68,59 54,47 Das figuras abaixo, a que MELHOR representa esses dados é: Taxa de mortalidade infantil Taxa de mortalidade infantil (A) ano (B) ano Taxa de mortalidade infantil 200 Taxa de mortalidade infantil 200 Taxa de mortalidade infantil (C) ano (D) ano (E) ano
5 11. UERJ Observe o gráfico: Crepúsculo da garrafa azul Os brasileiros estão trocando o vinho branco alemão por produto de melhor 4,5 qualidade (em milhões 1998 de litros) 3,1 1999* *Estimativa Fontes: Product Audit/Expand (Veja, 01/09/99) 5 Se o consumo de vinho branco alemão, entre 1994 e 1998, sofreu um decréscimo linear, o volume total desse consumo em 1995, em milhões de litros, corresponde a: a) 6,585 b) 6,955 c) 7,575 d) 7, UERJ Analise o gráfico e a tabela: km Gasolina Álcool Combustível Preço por litro (em reais) Gasolina 1,50 1 litro Álcool 0,75 De acordo com esses dados, a razão entre o custo do consumo, por km, dos carros a álcool e a gasolina é igual a: a) 4 7 b) 5 7 c) 7 8 d) Fei-SP A tabela abaixo mostra as quantidades diárias (em toneladas) de lixo recolhido em uma praia durante os 5 primeiros dias de janeiro. dia quantidade 1,1 a 2,7 3a 2,2 Se nesse período, a quantidade média diária foi 2,4 toneladas, qual o valor de a? a) 1,5 b) 1,1 c) 4,5 d) 0 e) 2,2
6 14. U. F. São Carlos-SP Num curso de iniciação à informática, a distribuição das idades dos alunos, segundo o sexo, é dada pelo gráfico seguinte. Com base nos dados do gráfico, pode-se afirmar que: a) o número de meninas com, no máximo, 16 anos é maior que o número de meninos nesse mesmo intervalo de idades. b) o número total de alunos é 19. c) a média de idade das meninas é 15 anos. d) o número de meninos é igual ao número de meninas. e) o número de meninos com idade maior que 15 anos é maior que o número de meninas nesse mesmo intervalo de idades. F UFBA x ,5 165,5 175,5 185,5 190,5 Estatura (cm) O histograma acima apresenta o resultado de uma pesquisa sobre a distribuição das estaturas, em centímetros, de um grupo de pessoas. Com base nesse gráfico, pode-se afirmar: (01) Todas as classes têm a mesma amplitude. (02) O universo da pesquisa é composto por 113 pessoas. (04) Apenas dez pessoas têm estatura que varia de 165,5 cm a 175,5 cm. (08) A probabilidade de se escolher aleatoriamente uma pessoa com estatura maior que 175,5 cm é 56%. (16) A altura média do grupo é 175,6 cm. Dê, como resposta, a soma das alternativas corretas. 16. Unifor-CE Um instrumento para analisar as condições de vida de um país são os gráficos de mortalidade. O gráfico ao lado mostra a freqüência relativa de mortes, no ano de 1998, distribuída por faixa etária e reflete a situação de um país bastante pobre. De acordo com o gráfico, é verdade que: a) a maior quantidade de mortes referiu-se a pessoas com idade acima dos 70 anos. b) dentre as pessoas com mais de 60 anos, poucas morrem e a maioria sobrevive. Freqüência de mortes 40% c) mais de 50% da população morre após os 50 anos de idade. d) o número de mortes aumenta com o aumento da idade. e) cerca de 30% das mortes atingiu crianças com até 10 anos de idade. 30% 20% 10% Faixas de idades, em anos
7 Para responder às questões 17 e 18 dessa prova considere as tabelas seguintes, referentes ao ano de Grau de instrução por faixa etária Brasil População urbana Idade/grau Elementar Primeiro Segundo Grau Grau Superior 18 a 19 anos a 24 anos a 29 anos a 34 anos Totais Fonte: IBGE Censo Demográfico 7 Famílias domiciliadas no Brasil População urbana Rendimento nominal Número de médio familiar famílias Até 2 salários mínimos De 2 a 5 salários mínimos De 5 a 10 salários mínimos De 10 a 15 salários mínimos De 15 a 20 salários mínimos De 20 a 30 salários mínimos Acima de 30 salários mínimos Fonte: IBGE Censo Demográfico 17. AEU-DF De acordo com os dados apresentados, analise e julgue os itens seguintes. ( ) O censo de 1991 contou mais do que 28 milhões de famílias domiciliadas no Brasil. ( ) Mais da metade das famílias brasileiras apresentavam rendimentos de até 5 salários mínimos em ( ) Menos de 2% das famílias brasileiras tinham rendimento superior a 30 salários mínimos em ( ) Em 1991 a parcela mais jovem da população brasileira economicamente ativa (18 34 anos) contava com mais do que 30 milhões pessoas. ( ) Da população citada no item anterior, menos do que 6% possuía nível superior, em AEU-DF Analise e julgue os itens seguintes, todos relativos aos dados apresentados para o ano de 1991, no Brasil. ( ) Mais da metade da população apresenta uma escolaridade que não compreende o nível secundário. ( ) Da parcela da população que atinge o nível superior a maior parte o conclui com mais do que 20 anos de idade. ( ) Os 2% das famílias de maior renda ganham mais do que todas as famílias que percebem até 2 salários mínimos. ( ) Se forem plotados em um mesmo gráfico os valores correspondentes à escolaridade da população e ao rendimento médio das famílias, as curvas correspondentes tenderão a apresentar-se decrescentes. ( ) Dos gráficos apresentados pode-se intuir que um nível de escolaridade mais baixo da população leva a um menor rendimento per-capita.
8 19. U. Santa Úrsula-RJ Considere o gráfico abaixo que indica o crescimento da população brasileira durante os últimos 25 anos. POPULAÇÃO BRASILEIRA EM MILHÕES DE HABITANTES (tempo em anos) O número que melhor expressa o tempo em anos quando a população brasileira alcançou os 130 milhões de habitantes é: a) 1978 b) 1980 c) 1982 d) 1989 e) UERJ Observe o demonstrativo do consumo de energia elétrica: Para conhecimento, demostramos abaixo a evolução do consumo de energia elétrica nos últimos meses. kwh ago98 set98 out98 nov98 dez98 jan99 fev99 mar99 Para conhecimento, demonstramos acima a evolução do consumo de energia elétrica nos últimos meses. Considere que o consumo médio, de agosto/98 a dezembro/98, foi igual ao que ocorreu de janeiro/99 a abril/99. O consumo no mês de abril de 99, em kwh, foi igual a: a) 141 b) 151 c) 161 d) 171
9 21. Vunesp O gráfico indica o resultado de uma pesquisa sobre o número de acidentes ocorridos com 42 motoristas de táxi em uma determinada cidade, no período de um ano. Com base nos dados apresentados no gráfico, e considerando que quaisquer dois motoristas não estão envolvidos num mesmo acidente, pode-se afirmar que: a) cinco motoristas sofreram pelo menos quatro acidentes. b) 30% dos motoristas sofreram exatamente dois acidentes. c) a média de acidentes por motorista foi igual a três. d) o número total de acidentes ocorridos foi igual a 72. e) trinta motoristas sofreram no máximo dois acidentes. 9 Para resolver as questões 22 e 23 dessa prova, considere os dados da tabela. Valor do recebimento médio mensal (em Reais) em 1996 Região Metropolitana São Paulo Nível de instrução do Média geral Média de rendimentos dentre as chefe da família famílias na faixa de 15 a 20 SM* Sem instrução 950, ,45 4ª série do E. Fundamental 1.538, , 85 8ª série do E. Fundamental 1.679, ,87 Nível Médio 3.030, ,22 Superior 5.594, ,79 Mestrado ou doutorado 5.570, ,51 * SM = Salários Mínimos (1SM = R$112,00 em 1996) Fonte: IBGE Pesquisa de Orçamentos familiares. 22. AEU-DF Julgue os itens seguintes, relativos aos valores apresentados. ( ) Os maiores rendimentos familiares são percebidos pelas famílias cujos chefes apresentam os maiores níveis de instrução. ( ) À medida que se avança nos níveis de instrução (sem instrução E. Fundamental N. Médio Superior) o ganho familiar mais do que dobra a cada mudança de nível. ( ) Ao completar as quatro primeiras séries do primeiro grau um trabalhador consegue auferir, em média, um aumento de mais do que 60% em relação aos ganhos de um trabalhador sem instrução. ( ) A conclusão de um curso de nível superior representa, em média, um ganho de mais do que 80% nos rendimentos de um trabalhador em relação àqueles de nível médio. ( ) Muito embora possa ser uma exigência do mercado de trabalho a conclusão de cursos em níveis de mestrado ou doutorado não representa um aumento significativo nos rendimentos percebidos, em média. 23. AEU-DF Analise e julgue os itens seguintes, relativos aos valores apresentados. ( ) Em geral há uma relação entre nível de instrução e rendimento familiar. ( ) Para trabalhadores que recebem de 15 a 20 SM, possuir um nível de pós-graduação (mestrado ou doutorado) garante melhores rendimentos. ( ) Na faixa de rendimentos de 15 a 20 SM, o profissional de nível superior é o que consegue o melhor nível de remuneração. ( ) O grau de escolarização não é o único fator determinante dos rendimentos percebidos. Da tabela é possível intuir que um trabalhador de nível médio tem maiores chances de conseguir melhores rendimentos em certos nichos de mercado. ( ) Aparentemente existe um erro na terceira coluna da tabela, na linha referente ao nível médio se considerarmos o significado da palara média.
10 24. UnB-DF A tabela abaixo apresenta a evolução do número de indivíduos de uma população de Saccharomyces cerevisae em relação ao tempo, expresso em horas. tempo (t) número (N) A partir dos dados apresentados na tabela, julgue os itens abaixo. ( ) A curva que representa o crescimento dessa população em relação ao tempo no intervalo [0, 10] comporta-se como ums função do tipo N = logt. ( ) Infere-se que a população estabilizou-se em um número aproximadamente igual a 670 indivíduos. ( ) A taxa média de crescimento dessa população no intervalo [4, 10] é superior àquela correspondente ao intervalo [10, 16]. ( ) Não existem populações naturais que apresentem crescimento como o relatado na tabela. 10
11 MATEMÁTICA ESTATÍSTICA 1 1. V-V-V-F-F 2. F-V-F 3. E 4. C 5. A 6. B 7. C 8. C 9. F-V-V-V 10. B 11. D 12. D 13. A 14. D = E 17. V-V-F-F-V 18. V-V-F-V-V 19. C 20. A 21. D 22. F-F-V-V-V 23. V-F-F-V-F 24. F-V-V-F
Caracterização do território
Perfil do Município de Santos, SP 30/07/2013 - Pág 1 de 14 Caracterização do território Área 281,35 km² IDHM 2010 0,840 Faixa do IDHM Muito Alto (IDHM entre 0,8 e 1) (Censo 2010) 419400 hab. Densidade
Caracterização do território
Perfil do Município de Alto Boa Vista, MT 01/08/2013 - Pág 1 de 14 Caracterização do território Área 2248,35 km² IDHM 2010 0,651 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010) 5247 hab. Densidade
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como conseqüência a variação da outra. Exemplo 1: Tio
Caracterização do território
Perfil do Município de Areado, MG 29/07/2013 - Pág 1 de 14 Caracterização do território Área 282,6 km² IDHM 2010 0,727 Faixa do IDHM Alto (IDHM entre 0,700 e 0,799) (Censo 2010) 13731 hab. Densidade demográfica
Caracterização do território
Perfil do Município de Botelhos, MG 29/07/2013 - Pág 1 de 14 Caracterização do território Área 335,24 km² IDHM 2010 0,702 Faixa do IDHM Alto (IDHM entre 0,700 e 0,799) (Censo 2010) 14920 hab. Densidade
Caracterização do território
Perfil do Município de Sorriso, MT 02/08/2013 - Pág 1 de 14 Caracterização do território Área 9382,37 km² IDHM 2010 0,744 Faixa do IDHM Alto (IDHM entre 0,700 e 0,799) (Censo 2010) 66521 hab. Densidade
UFMS - PRÓ ENEM Matemática Estatística e Médias
1. (Ufsm 01) O Brasil é o quarto produtor mundial de alimentos, produzindo mais do que o necessário para alimentar sua população. Entretanto, grande parte da produção é desperdiçada. O gráfico mostra o
Os gráficos estão na vida
Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada
Revisão ENEM. Conjuntos
Revisão ENEM Conjuntos CONJUNTO DOS NÚMEROS NATURAIS N Números naturais são aqueles utilizados na contagem dos elementos de um conjunto. N = {0,1,2,3,...} N* = {1,2,3,4,...} CONJUNTO DOS NÚMEROS INTEIROS
FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004
QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy
SINDICADO DOS COMERCIÁRIOS DE PIAUÍ PRÉ-ENEM 2012 TURNO: NOITE DISCIPLINA: MATEMATICA PROFESSOR: REGINALDO COUTINHO REVISÃO
SINDICADO DOS COMERCIÁRIOS DE PIAUÍ PRÉ-ENEM 2012 TURNO: NOITE DISCIPLINA: MATEMATICA PROFESSOR: REGINALDO COUTINHO REVISÃO 1. (ENEM 10) Um dos grandes problemas da poluição dos mananciais (rios, córregos
Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02
M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.
RESOLUÇÃO PROVA TJ PR
PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam
Caracterização do território
Perfil do Município de Porto Alegre do Norte, MT 02/08/2013 - Pág 1 de 14 Caracterização do território Área 3994,51 km² IDHM 2010 0,673 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010) 10748 hab.
3 O Panorama Social Brasileiro
3 O Panorama Social Brasileiro 3.1 A Estrutura Social Brasileira O Brasil é um país caracterizado por uma distribuição desigual de renda. Segundo dados da Pesquisa Nacional por Amostragem de Domicílios
LISTA DE EXERCÍCIOS 3
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.
MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME. Nota MDS Brasília, 02 de maio de 2011.
Nota MDS Brasília, 02 de maio de 2011. Assunto: O perfil da Extrema Pobreza no Brasil com base nos dados preliminares do universo do Censo 2010. 1. INTRODUÇÃO O Instituto Brasileiro de Geografia e Estatística
Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.
Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu
FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.
FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau
Lista de Exercícios de Recuperação do 1 Bimestre
Lista de Exercícios de Recuperação do 1 Bimestre Instruções gerais: Resolver os exercícios à caneta e em folha de papel almaço ou monobloco (folha de fichário). Copiar os enunciados das questões. Entregar
Caracterização do território
Perfil do Município de Peruíbe, SP 30/07/2013 - Pág 1 de 14 Caracterização do território Área 323,17 km² IDHM 2010 0,749 Faixa do IDHM Alto (IDHM entre 0,700 e 0,799) (Censo 2010) 59773 hab. Densidade
Mercado de Trabalho. O idoso brasileiro no. NOTA TÉCNICA Ana Amélia Camarano* 1- Introdução
NOTA TÉCNICA Ana Amélia Camarano* O idoso brasileiro no Mercado de Trabalho 30 1- Introdução A análise da participação do idoso nas atividades econômicas tem um caráter diferente das análises tradicionais
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
Caracterização do território
Perfil do Município de Novo Mundo, MT 02/08/2013 - Pág 1 de 14 Caracterização do território Área 5826,18 km² IDHM 2010 0,674 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010) 7332 hab. Densidade
Caracterização do território
Perfil do Município de São José do Rio Claro, MT 02/08/2013 - Pág 1 de 14 Caracterização do território Área 5074,56 km² IDHM 2010 0,682 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010) 17124 hab.
Pesquisa Nacional por Amostra de Domicílios - Síntese
2014 Pesquisa Nacional por Amostra de Domicílios - Síntese Dieese Subseção Força Sindical 19/09/2014 PESQUISA NACIONAL POR AMOSTRA DE DOMICILIOS - PNAD 2013 Síntese dos Indicadores POPULAÇÃO A Pesquisa
www.aliancaprevestibular.com
Professor Victor Eduardo Disciplina Matemática Lista nº 2 Assuntos Função - Modelo UERJ e Exercícios Complementares 1 - (Uerj 2002) Sabedoria egípcia Há mais de 5.000 anos os egípcios observaram que a
Caracterização do território
Perfil do Município de Cabo Verde, MG 29/07/2013 - Pág 1 de 14 Caracterização do território Área 368,15 km² IDHM 2010 0,674 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010) 13823 hab. Densidade
Caracterização do território
Perfil do Município de Guaranésia, MG 29/07/2013 - Pág 1 de 14 Caracterização do território Área 294,28 km² IDHM 2010 0,701 Faixa do IDHM Alto (IDHM entre 0,700 e 0,799) (Censo 2010) 18714 hab. Densidade
MATEMÁTICA FINANCEIRA
Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,
Lista de Exercícios 2 Probabilidades e Variáveis aleatórias
1. Quais tabelas abaixo podem ser consideradas distribuições de probabilidade da variável correspondente? a) Apenas as tabelas relativas a X e Z b) Apenas as tabelas relativas a X, Y e Z c) Apenas as tabelas
PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A
PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A
Docente: Willen Ferreira Lobato [email protected]
Docente: Willen Ferreira Lobato [email protected] Natal 29/02/2012 1 Considerações Gerais; Principais conceitos demográficos; Gráficos de indicadores sociais; Estrutura das populações mundiais:
000 IT_005582 000 IT_007009
000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem
b) a 0 e 0 d) a 0 e 0
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ANO 2013 PROFESSOR (a) Ana Paula Cintra de Carvalho DISCIPLINA
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE
Regra de três e porcentagem:
1. O tabagismo (vício do fumo) é responsável por uma grande quantidade de doenças e mortes prematuras na atualidade. O Instituto Nacional de Câncer divulgou que 90% dos casos diagnosticados de câncer de
PESQUISA DE OPINIÃO PÚBLICA
PESQUISA DE OPINIÃO PÚBLICA SOBRE CORRUPÇÃO PARA A TRANSPARÊNCIA FEVEREIRO DE 2005 OPP008 OBJETIVO LOCAL ESPECIFICAÇÕES TÉCNICAS DA PESQUISA - Levantar junto a população da área em estudo opiniões relacionadas
Mudanças demográficas e saúde no Brasil Dados disponíveis em 2008
Mudanças demográficas e saúde no Brasil Dados disponíveis em 2008 José Cechin Superintendente Executivo Carina Martins Francine Leite Nos últimos meses, vários relatórios publicados por diferentes instituições
Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão
Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:
MATEMÁTICA ESTATÍSTICA
MATEMÁTICA ESTATÍSTICA 1. U.Católica-DF Com base nas informações do texto e da tabela a seguir, julgue as afirmativas que se seguem com V ou F, conforme sejam Verdadeiras ou Falsas. Para uma vida moderna
MATEMÁTICA FINANCEIRA Professor Fábio Maia. AULA 1 - Juros Simples. Formulário: Juros Simples: j = C.i.n e Montante: M = C. (1 + i.
MATEMÁTICA FINANCEIRA Professor Fábio Maia AULA 1 - Juros Simples Juros Simples é o processo financeiro onde apenas o principal rende juros, isto é, os juros são diretamente proporcionais ao capital empregado.
André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO
Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,
, então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0
LOGARITMOS Professor Clístenes Cunha -(CESGRANRIO-RJ) Se 5 0 a solução vale: a) 5 c) 7/ 0 -(PUC-MG) A soma das raízes da equação 5 a) c) -(CESGRANRIO-RJ) O valor de a) / / c) / / -(UEL-PR) Se 5 7 é igual
Prof. Diogo Miranda. Matemática Financeira
1. Uma alternativa de investimento possui um fluxo de caixa com um desembolso de R$ 10.000,00, no início do primeiro mês, Outro desembolso, de R$ 5.000,00, ao final do primeiro mês, e duas entradas líquidas
Gabarito de Matemática do 7º ano do E.F.
Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,
Nível 3 IV FAPMAT 28/10/2007
1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,
MATRIZ DOS INDICADORES
MATRIZ DOS INDICADORES 1. DEMOGRAFIA Indicador: População infantojuvenil, de 0 a 19 anos, por sexo e cor/raça, residente nos setores urbano e rural. Definição: apresenta o número total de crianças e adolescentes,
5º MATERIAL EXTRA 3º ANO PROF. PASTANA
5º MATERIAL EXTRA 3º ANO PROF. PASTANA RESOLUÇÃO DOS DESAFIOS 1º Material Extra Ex. 10 E h D 45 0 60 0 45 0 6 C A 6 B plano que passa pelo ponto D Seja h a altura da torre. DÊB = 45 0 O EDB é retângulo
CARTILHA DO PLANO DE BENEFÍCIO DEFINIDO
CARTILHA DO PLANO DE BENEFÍCIO DEFINIDO Fevereiro/2012 Apresentação Prezado participante, Com o objetivo de mostrar como funciona a Fundação Coelce de Seguridade Social Faelce e o Plano de Benefícios Definidos,
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Perfil Municipal - Florianópolis (SC)
Caracterização do Território Área: 436,5 km² Densidade Demográfica: 760,1 hab/km² Altitude da Sede: 3 m Ano de Instalação: 1.726 Distância à Capital: 0,0 km Microrregião: Florianópolis Mesorregião: Grande
Lista de Exercícios 1 - Estatística Descritiva
1. O arquivo satisfaçãocomuniversidade.xlsx contém informações de uma amostra de 400 alunos de uma universidade. Deseja-se construir um histograma para a variável desempenho acadêmico, com intervalos de
Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO
CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br
www.enemdescomplicado.com.br
Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)
Dimensão social. Habitação
Dimensão social Habitação Indicadores de desenvolvimento sustentável - Brasil 2004 235 39 Adequação de moradia Este indicador expressa as condições de moradia através da proporção de domicílios com condições
CPV 82% de aprovação dos nossos alunos na ESPM
CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1
GEOGRAFIA. População Brasileira
População Brasileira No Brasil a concentração populacional tem sua maior ocorrência em áreas litorâneas ou próximas ao litoral. Temos como fatores contribuintes as faixas de planície, clima tropical, sem
RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14
FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito
RQ Edição Fevereiro 2014
RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,
MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br
MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,
Distribuição de probabilidades
Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva
Porcentagem Coletânea ENEM
Porcentagem Coletânea ENEM 1. (Enem 2011) Um jovem investidor precisa escolher qual investimento lhe trará maior retomo financeiro em uma aplicação de R$ 500,00. Para isso, pesquisa o rendimento e o imposto
Exame Nacional de 2008 2. a chamada
1. Qual é o mínimo múltiplo comum entre dois números primos diferentes, a e b? Cotações a * b a + b a b 3 - œ10, - 1 24 2. Qual é o menor número inteiro pertencente ao intervalo? - 4-3 - 2-1 3. Numa aula
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer
Pesquisa Mensal de Emprego
Pesquisa Mensal de Emprego Rio de Janeiro, 28 de janeiro de 2016. PME Retrospectiva 2003-2015 13 anos Diretoria de Pesquisas Coordenação de Trabalho e Rendimento 1 (IBGE / DPE / COREN) 1 Rio de Janeiro,
Indicadores e Dados Básicos: situando Santa Catarina
Secretaria da Saúde do Estado de Santa Catarina Diretoria de Planejamento e Coordenação Gerência de Estatística e Informática Setor de Mortalidadade Indicadores e Dados Básicos: situando Santa Catarina
A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm
1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve
matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação
matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (
16) O produto nr tem um valor constante de 50atm.cm 3 /K. 32) A densidade final do gás foi de 50% do valor inicial.
Exercícios de termodinâmica Para as questões 01 e 02: Em uma transformação isotérmica, mantida a 127 C, o volume de certa quantidade de gás, inicialmente sob pressão de 2,0 atm, passa de 10 para 20 litros.
Exercícios complementares envolvendo a equação de Torricelli
01. (Vunesp-SP) Um veículo está rodando à velocidade de 36 km/h numa estrada reta e horizontal, quando o motorista aciona o freio. Supondo que a velocidade do veículo se reduz uniformemente à razão de
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor:
Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 (Unirio 2000) Um aluno pegou um fina placa metálica e nela recortou um disco de raio r. Em seguida, fez um anel também de raio r com um fio
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova para o cargo de Oficial de Promotoria do Ministério
Salário Mínimo e Mercado de Trabalho no Brasil no Passado Recente
Salário Mínimo e Mercado de Trabalho no Brasil no Passado Recente João Saboia 1 1. Introdução A questão do salário mínimo está na ordem do dia. Há um reconhecimento generalizado de que seu valor é muito
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM
MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente
Região Metropolitana Oeste de São Paulo
Região Metropolitana Oeste de São Paulo Sub-Região Oeste Fonte: Secretaria dos Transportes Metropolitanos de São Paulo No Estado de São Paulo, 14,5% da população vive com renda familiar menor que ½ salário
Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL
Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição
i ano = 2 x i semestre = 4 x i trimestre = 6 x i bimestre = 12 x i mês = 360 x i dia
que se aplicado a uma taxa de juros de 60% ao ano, por um período de um ano. Podemos representá-las da seguinte forma: MATEMÁTICA FINANCEIRA BANRISUL PEDRÃO AULA 05/10 Taxas de juros Antes de iniciarmos
POBREZA, SEGURANÇA ALIMENTAR E SAÚDE NO BRASIL
POBREZA, SEGURANÇA ALIMENTAR E SAÚDE NO BRASIL Escrito por: Angela Kageyama Rodolfo Hoffmann Consultora: FECAMP Contrato: 206066 ÌNDICE Insegurança alimentar, educação e na PNAD de 2004... 3. Dados gerais
Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D
Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,
a) C D. b) C D. c) (A B) (C D). d) (A B) (C D).
Conjuntos e Conjuntos Numéricos Exercícios 1. Uma pesquisa de mercado foi realizada, para verificar a preferência sobre três produtos, A, B e C. 1.00 pessoas foram entrevistadas. Os resultados foram os
BIODIESEL COMO FONTE ALTERNATIVA DE ENERGIA ELÉTRICA: ESTUDO DO ÓLEO DE DENDÊ
1/6 Title BIODIESEL COMO FONTE ALTERNATIVA DE ENERGIA ELÉTRICA: ESTUDO DO ÓLEO DE DENDÊ Registration Nº: (Abstract) 222 Company UNIVERSIDADE PRESBITERIANA MACKENZIE Authors of the paper Name Country e-mail
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm
A situação do câncer no Brasil 1
A situação do câncer no Brasil 1 Fisiopatologia do câncer 23 Introdução O câncer é responsável por cerca de 13% de todas as causas de óbito no mundo: mais de 7 milhões de pessoas morrem anualmente da
BANRISUL SIMULADO PRÉ-PROVA
BANRISUL SIMULADO PRÉ-PROVA MATEMÁTICA Instrução: Para responder às questões desta prova, considere, se necessário, as tabelas abaixo, as quais contêm resultados de cálculos de algumas fórmulas pertinentes
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (ENEM) Para construir um contrapiso, é comum, na constituição do
Nº 07 / 13 TEMA: As Crianças em Goiás
TEMA: As Crianças em Goiás O dia das crianças foi instituído em 1924 pelo então presidente Arthur Bernardes, mas a data passou várias anos desprezada e apenas ganhou notoriedade na década de 1960. Infelizmente
