Teoria de Galois. Ana Cristina Vieira. Sandra Mara Alves Jorge. Verão MAT/UFMG

Tamanho: px
Começar a partir da página:

Download "Teoria de Galois. Ana Cristina Vieira. Sandra Mara Alves Jorge. Verão MAT/UFMG"

Transcrição

1 Teoria de Galois Ana Cristina Vieira Sandra Mara Alves Jorge Verão MAT/UFMG

2 Histórico Ana Cristina Vieira Graduação: UFF Mestrado: UnB Doutorado: UnB Sandra Mara Alves Jorge Graduação: UFJF Mestrado: UFMG Doutorado: UFMG

3 Évariste Galois França - 25 de outubro de 1811/31 de maio de 1832 Contato com a Matemática: Com doze anos, Galois foi para a escola no Liceu de Louis-le-Grand. Lá não encontrou nenhum curso de matemática. Somente aos dezesseis anos pôde fazer seu primeiro curso de matemática e com dezessete anos publicou seu primeiro trabalho nos Annales de Gergonne. Decepção: Foi reprovado duas vezes no exame de admissão para a École Polytechnique, os seus modos rudes e a falta de explicações na prova oral fizeram com que sua admissão fosse recusada. Progresso: Com dezessete anos, submeteu dois trabalhos de pesquisa à Academia de Ciências. Cauchy ficou muito impressionado com o trabalho do jovem e o julgou capaz de participar na competição pelo Grande Prêmio de Matemática da Academia. Para isso, os dois trabalhos teriam que ser reapresentados na forma de uma única tese.

4 Suicídio: Em julho de 1829, um jesuíta, contrário as idéias republicanas do pai de Évariste, começou uma campanha para depô-lo. Escreveu uma série de versos vulgares ridicularizando membros da comunidade e os assinou com o nome do velho Galois que não pode suportar a vergonha e se suicidou. Nova decepção: Galois voltou a Paris e juntou seus dois trabalhos num só e os enviou para o secretário da Academia, Joseph Fourrier. O trabalho de Galois não apresentava uma solução para os problemas do quinto grau, mas oferecia uma visão tão brilhante que Cauchy, o considerava como o provável vencedor. Mas o trabalho não ganhou o prêmio e nem foi oficialmente inscrito. Fourrier morrera algumas semanas antes da data da decisão dos juizes, e embora um maço de trabalhos tivesse sido entregue ao comitê, o de Galois não estava entre eles. O trabalho nunca foi encontrado e a injustiça foi registrada por um jornalista francês. Prisão: Em dezembro de 1830, o gênio contrariado tentou se tornar um rebelde profissional alistando-se na Artilharia da Guarda Nacional, acusado de conspiração Galois foi preso. Ficou na prisão durante um mês e mergulhou num estado de depressão, tentando suicídio. Em março de 1832, um mês antes do final da sentença, irrompeu uma epidemia de cólera em Paris e os prisioneiros foram libertados.

5 Romance: Galois envolveu-se com uma mulher misteriosa, chamada Stéphanie-Félice Poterine du Motel. Stephanie já estava comprometida com um cidadão um dos melhores atiradores da França e que descobriu a infidelidade de sua noiva. Furioso, não hesitou em desafiar Galois para um duelo ao raiar do dia. Na noite anterior ao confronto, que ele acreditava ser a última oportunidade que teria para registrar suas idéias no papel, ele escreveu cartas para os amigos explicando as circunstâncias. Teorema: Um de seus maiores temores era de que sua pesquisa, rejeitada pela Academia, se perdesse para sempre. Em uma tentativa desesperada de conseguir reconhecimento, ele trabalhou a noite toda, escrevendo o teorema que, acreditava, explicaria o enigma da equação do quinto grau. No final da noite, quando seus cálculos estavam completos, ele escreveu uma carta explicativa ao seu amigo Auguste Chevalier, pedindo que, caso morresse, aquelas páginas fossem enviadas aos grandes matemáticos da Europa.

6 Reconhecimento: Passou-se uma década antes que os trabalhos de Galois fossem reconhecidos. Uma cópia chegou às mãos de Joseph Liouville em Liouville passou meses tentando interpretar seu significado. Finalmente ele editou os artigos e os publicou no prestigioso Journal de Mathematiques Pures e Appliquées. A resposta dos outros matemáticos foi imediata e impressionante. Galois tinha de fato formulado uma completa explicação de como se poderia obter soluções para equações do quinto grau. Primeiro Galois classificara todas as equações em dois tipos: que podiam ser solucionadas e as que não podiam. Além disso, Galois examinou as equações de grau mais alto do que cinco,podendo identificar as que tinham soluções. Era uma das obrasprimas da matemática do século XIX, criada por um de seus mais trágicos heróis.

7 Grupos Corpos (G, ) é um grupo se G e : G G G (i)(a b) c = a (b c), a, b, c G (associatividade) (ii) e G tal que a e = e a, a G (existência de elemento neutro) (iii) a G, b G tal que a b = b a = e (existência de inversos) Se a b = b a ( é comutativa) então G é grupo abeliano. (K, +, ) é um corpo se K e + : K K K : K K K (i) (K, +) é grupo abeliano (i) (K, ) é grupo abeliano (iii) a (b + c) = a b + a c, a, b, c K ( é distributiva com relação a +)

8 Exemplos 1. (Z, +) é um grupo abeliano infinito. 2. (Z, +, ) não é um corpo mas Q, R e C são corpos infinitos. 3. (M 2 2 (R), +) é grupo abeliano infinito. 4. GL 2 (R) = { A M 2 2 (R) deta 0 } é grupo não abeliano. 5. Z n = {[0], [1],, [n 1]} (onde [a] é uma classe de restos módulo n) com as operações [a]+[b] = [a+b] e [a] [b] = [a b] em Z n. Temos (Z n, +) é um grupo abeliano finito. Mas, (Z n, ) é grupo se, e somente, se n = p é primo 6. Sim(X) = { f : X X f bijetora }, X, com operação de composição de funções é o grupo de permutações de X, em geral não abeliano. Caso X = {1, 2,..., n}, n 2 denotamos Sim(X) por S n e o denominamos grupo simétrico de grau n.

9 Subgrupos Um subgrupo de um grupo G pode ser definido como um subconjunto não vazio H de G que ainda é um grupo com a mesma operação definida em G. Exemplos: (1) Obviamente, Z é subgrupo de Q, Q é subgrupo de R, etc. ( ) a b (2) O conjunto das matrizes é um subgrupo 0 d de GL 2 (R) = { A M 2 2 (R) deta 0 }. Um subgrupo notável de GL 2 (R) é SL 2 (R) = { A M 2 2 (R) deta = 1 }. (3) Dado um subconjunto = X G, definimos o subgrupo de G gerado por X, denotado por X, como a intersecção de todos os subgrupos de G que contém X. Observamos que X = { x ±1 1 x±1 2...x±1 s x i X, s 0 }, onde interpretamos a expressão com s = 0 como sendo 1. Se X = {x} (conjunto unitário) então X = x é o subgrupo cíclico de G gerado pelo elemento x. O grupo G é dito cíclico se existe g G tal que G = g. Por exemplo, Z é um grupo cíclico (gerado por 1).

10 Teorema de Lagrange Seja G um grupo finito e denote por G o número de elementos de G (ordem de G). O teorema de Lagrange (1770) garante que se H é um subgrupo de G então H divide G. a H b (mod H) ab 1 H (é uma relação de equivalência em G). Ha = { ha h H } dita uma classe lateral (à direita) de H em G. Se N g = gn, para todo g em G, dizemos que N é um subgrupo normal de G. Um grupo que não possui subgrupos normais próprios não triviais é dito um grupo simples. Se N é subgrupo normal de G então o conjunto G/N = { Na a G } é um grupo com a operação Na.Nb = Nab, a, b G dito grupo quociente de G por N.

11 Subcorpos Um subcorpo de um corpo K pode ser definido como um subconjunto não vazio F de K que ainda é um corpo com as mesmas operações definidas em K (neste caso, K é dito ser uma extensão de F ). Exemplos: (1) R é subcorpo de C. (2) Q é subcorpo de Q( 2) = {a + b 2 a, b Q}. (3) Em geral, Q( p) = {a + b p a, b Q} onde p é um primo, é uma extensão de Q. Questão: Podemos identificar as extensões Q( 2) e Q( 3) de Q?

12 Isomorfismos de Corpos Uma aplicacão ψ : K L entre dois corpos K e L é dita um homomorfismo se ψ(a + b) = ψ(a) + ψ(b) e ψ(a.b) = ψ(a).ψ(b) para todo a, b K. Se um homomorfismo ψ for bijetor, dizemos que ψ é um isomorfismo de K em L e denotamos por K = L. Um isomorfismo ψ : K K é dito um automorfismo de K. Exemplos: (1) Considerando o corpo K = temos K = R. {( a 0 0 a ) } a R, (2) Considerando o corpo R R com as operações (a, b)+ (c, d) = (a + c, b + d) e (a, b) (c, d) = (ac bd, ad + bc), temos R R = C. (3) ϕ : Q( 2) Q( 2) tal que ϕ(a + b 2) = a b 2 é um automorfismo. Agora, responda a questão...

13 F -automorfismos Note que ϕ : Q( 2) Q( 2) definida por ϕ(a + b 2) = a b 2 é tal que ϕ(c) = c, c Q. Também temos que φ : C C definida por φ(a + bi) = a bi é um automorfismo tal que φ(c) = c, c R. Se K é uma extensão de F e ψ : K K é um automorfismo que fixa pontualmente os elementos de F (isto é, ψ(c) = c, c F ) então dizemos que ψ é um F -automorfismo de K. Denotamos por Gal F K o conjunto de todos os F - automorfismos de K. Gal F K é um grupo sob a operação de composição de funções dito grupo de Galois de K sobre F. Exemplo: Gal R C = {Id, φ}.

14 O grupo Gal F K e raízes de polinômios F [x] Anel dos polinômios na indeterminada x com coeficientes no corpo F Dado um elemento u F é uma raiz de um polinômio f(x) = α 0 + α 1 x + + α n x n em F [x], se a função polinomial induzida f : F F se anula em u, ou seja, α 0 + α 1 u + + α n u n = 0. Teorema: Seja f(x) um polinômio não constante em F [x]. Então existe uma extensão K de F que contém uma raiz de f(x). Teorema: Seja K uma extensão de F e f(x) F [x]. Se u K é uma raiz de f(x) e ψ Gal F K então ψ(u) também é uma raiz de f(x).

15 Corpos intermediários Se K é uma extensão de F e L é um corpo tal que F L K então L é dito um corpo intermediário da extensão. Exemplos: (1) R é um corpo intermediário da extensão C de Q. (2) Q( 2) = {a + b 2 a, b Q} é um corpo intermediário da extensão R de Q. Teorema: Seja K uma extensão de F e seja H um subgrupo de Gal F K. Considere E H = {a K σ(a) = a, para todo σ H}. Então, E H é um corpo intermediário da extensão. E H é dito o corpo fixado do subgrupo H.

16 Exemplos Já vimos que Gal R C = {Id, φ}, onde φ(a + bi) = a bi. Portanto, os únicos subgrupos de G = Gal R C são G e H = {Id}. Deste modo, E H = C e E G = R. Apesar do exemplo anterior, não é sempre verdade que para G = Gal F K temos E G = F (quer dizer, o corpo fixado por Gal F K nem sempre é F ). Exemplo: Considere a extensão de Q: Q( 3 2) = {a + b c( 3 2) 2 a, b, c Q}. Note que todo elemento do grupo de Galois de Q( 3 2) sobre Q deve levar 3 2 em uma raiz de f(x) = x 3 2. Mas 3 2 é a única raiz real de f(x). Assim, se σ Gal Q Q( 3 2) então σ( 3 2) = 3 2 e com isso, σ(u) = u para todo u Q( 3 2), ou seja, Gal Q Q( 3 2) = {Id}. Logo, o corpo fixado de Gal Q Q( 3 2) é Q( 3 2).

MAT5728 Álgebra Lista 1

MAT5728 Álgebra Lista 1 MAT5728 Álgebra Lista 1 2009 1. (a) Se G é um grupo no qual (ab) i = a i b i, para três inteiros consecutivos i e para quaisquer a, b G, demonstre que G é abeliano. (b) Vale o mesmo resultado se (ab) i

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

1 Noções preliminares

1 Noções preliminares Álgebras, subálgebras e endomorfirsmos Ana Cristina - MAT/UFMG Durante este texto, vamos considerar F um corpo de característica zero. Iniciaremos com algumas definições da teoria de anéis que serão importantes

Leia mais

Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3.

Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. 1. Seja x um elemento de ordem 24. Calcule a ordem de x 22, x 201, x 402, x 611 e x 1000. 2. Faça

Leia mais

MAT0313 Álgebra III Lista 5

MAT0313 Álgebra III Lista 5 MAT0313 Álgebra III Lista 5 2008 1. (a) Se G é um grupo no qual (ab) i = a i b i, para três inteiros consecutivos i e para quaisquer a, b G, demonstre que G é abeliano. (b) Vale o mesmo resultado se (ab)

Leia mais

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função UMA INTRODUÇÃO A ÁLGEBRAS TIAGO MACEDO Resumo. Neste seminário vamos introduzir uma nova estrutura algébrica, álgebras. Começaremos recapitulando estruturas definidas em seminários anteriores. Em seguida,

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Alguns Teoremas Básicos de Grupos e Suas Aplicações. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível U. Alguns Teoremas Básicos de Grupos e Suas Aplicações. Samuel Feitosa XIX Semana Olímpica de Matemática Nível U Alguns Teoremas Básicos de Grupos e Suas Aplicações Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Alguns

Leia mais

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos

Leia mais

1 Grupos (23/04) Sim(R 2 ) T T

1 Grupos (23/04) Sim(R 2 ) T T 1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.

Leia mais

LISTA CLASSES LATERAIS, TEOREMA DE LAGRANGE 17. Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas.

LISTA CLASSES LATERAIS, TEOREMA DE LAGRANGE 17. Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas. MAT5728 - Álgebra 2o. semestre/2008 LISTA 1 1. GRUPOS 1. Seja G um grupo. Mostre que se ab 2 = a 2 b 2, para quaisquer a, b G, então G é abeliano. 2. a Se G é um grupo no qual ab i = a i b i, para três

Leia mais

f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn).

f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn). Teoremas de isomorfismo. Teorema (Teorema de Isomorfismo). Seja f : A B um homomorfismo de grupos. Então A/ ker(f) = Im(f). Demonstração. Seja N := ker(f) e seja f : A/N Im(f), f(xn) := f(x). Mostramos

Leia mais

ANÉIS. Professora: Elisandra Bär de Figueiredo

ANÉIS. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo ANÉIS DEFINIÇÃO 1 Um sistema matemático (A,, ) constituído de um conjunto não vazio A e duas leis de composição interna sobre A, uma adição: (x, y) x y e uma multiplicação

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

correspondência entre extensões intermédias de K M e subgrupos de Gal(M, K) chama-se correspondência de Galois.

correspondência entre extensões intermédias de K M e subgrupos de Gal(M, K) chama-se correspondência de Galois. Aula 21 - Álgebra II Estamos finalmente em condições de explicar como é que a teoria de Galois permite substituir problemas sobre polinómios por um problema em princípio mais simples de teoria dos grupos.

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

Corpos Finitos Parte I

Corpos Finitos Parte I Corpos Finitos Parte I IC-UNICAMP/2006-1s 1 Roteiro Introdução Aritmética em corpos primos Aritmética em corpos binários Aritmética em corpos de extensão IC-UNICAMP/2006-1s 2 Introdução aos corpos finitos

Leia mais

Uma introdução à Teoria da Galois. Aurélio Fred Macena dos Santos e Daniani Souza Oliveira Orientador: Flaulles Boone Bergamaschi

Uma introdução à Teoria da Galois. Aurélio Fred Macena dos Santos e Daniani Souza Oliveira Orientador: Flaulles Boone Bergamaschi Monografia de Especialização: Uma introdução à Teoria da Galois. Aurélio Fred Macena dos Santos e Daniani Souza Oliveira Orientador: Flaulles Boone Bergamaschi Universidade Estadual do Sudoeste da Bahia

Leia mais

GRUPOS Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Revisto em dezembro de 2008

GRUPOS Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Revisto em dezembro de 2008 GRUPOS Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Revisto em dezembro de 2008 Sumário Introdução... 3 Parte 1 - Conceitos fundamentais... 5 Seção 1 - O conceito

Leia mais

Notas de Aula de Algebra Avan cada ver ao de 2019

Notas de Aula de Algebra Avan cada ver ao de 2019 Notas de Aula de Álgebra Avançada verão de 2019 Sumário 1 Grupos 4 1.1 Definições e exemplos.......................................... 4 1.2 Subgrupos................................................. 5

Leia mais

Reticulados e Álgebras de Boole

Reticulados e Álgebras de Boole Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 = b 2 = e e ba = a 2 b.

1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 = b 2 = e e ba = a 2 b. Problema 1 1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 b 2 e e ba a 2 b. (a) Indique, justificando, se: i. a é sempre igual a b; ii. a nunca é igual a b; iii. a pode

Leia mais

Extensão de um Isomorfismo

Extensão de um Isomorfismo META: Obter uma condição suficiente para duas extensões simples serem isomorfas e elaborar um método para construir automorfismos de uma extensão fixando o corpo base. OBJETIVOS: Ao final da aula o aluno

Leia mais

Slides de apoio: Fundamentos

Slides de apoio: Fundamentos Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos

Leia mais

(g) (G, +, ) sendo G = {a + ib a, b Z}, o conjunto dos inteiros de Gauss, + e a adição e a multiplicação usuais de números complexos.

(g) (G, +, ) sendo G = {a + ib a, b Z}, o conjunto dos inteiros de Gauss, + e a adição e a multiplicação usuais de números complexos. Álgebra II Departamento de Matemática da Universidade de Coimbra Ano lectivo 2004/05 1 ō semestre Anéis e corpos 1. Averigúe se os seguintes conjuntos têm estrutura de anel para as operações indicadas.

Leia mais

2007/2008 Resolução do 1 o exame

2007/2008 Resolução do 1 o exame Introdução à Álgebra 2007/2008 Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão,

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ CURSO DE LICENCIATURA PLENA EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO AMAPÁ CURSO DE LICENCIATURA PLENA EM MATEMÁTICA UNIVERSIDADE FEDERAL DO AMAPÁ CURSO DE LICENCIATURA PLENA EM MATEMÁTICA EVERALDO DE ARAÚJO FERREIRA EVERTON WILLIAN SOUZA MARTINS HELIVALDO DA SILVA NUNES INTRODUÇÃO À TEORIA DE GALOIS E EXTENSÃO DE CORPOS

Leia mais

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas. Aula 05 GRUPOS QUOCIENTES METAS Estabelecer o conceito de grupo quociente. OBJETIVOS Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Leia mais

Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos

Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos Bárbara Lopes Amaral Professora Ana Cristina Vieira Tópicos Especiais em Teoria de Grupos Belo orizonte Dezembro de 2010 Grupos

Leia mais

Grupos: Resumo. Definição 1.1 Um grupo é um conjunto G juntamente com uma operação binária. G G G (a, b) a b. (a b) c = a (b c) a e = e a = a

Grupos: Resumo. Definição 1.1 Um grupo é um conjunto G juntamente com uma operação binária. G G G (a, b) a b. (a b) c = a (b c) a e = e a = a 1 Grupos: Resumo 1 Definições básicas Definição 1.1 Um grupo é um conjunto G juntamente com uma operação binária que satisfaz os seguintes três axiomas: 1. (Associatividade) Para quaisquer a, b, c G, G

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

Aula 20 - Álgebra II. Como os corpos de decomposição de um polinómio, como vimos, são isomorfos

Aula 20 - Álgebra II. Como os corpos de decomposição de um polinómio, como vimos, são isomorfos Do trabalho de Vandermonde (1735-96), Lagrange (1736-1813), Gauss (1777-1855), Ruffini (1765-1822), Abel (1802-29) e, principalmente, de Galois (1811-32), sobre a existência de fórmulas resolventes de

Leia mais

GRUPOS ALGUNS GRUPOS IMPORTANTES. Professora: Elisandra Bär de Figueiredo

GRUPOS ALGUNS GRUPOS IMPORTANTES. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo GRUPOS DEFINIÇÃO 1 Sejam G um conjunto não vazio e (x, y) x y uma lei de composição interna em G. Dizemos que G é um grupo em relação a essa lei se (a) a operação

Leia mais

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A.

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A. 1. Ideais, quocientes, teorema de isomorfismo Seja A um anel comutativo unitário. Em particular A é um grupo abeliano com +; seja I um subgrupo aditivo de A. Como visto no primeiro modulo, sabemos fazer

Leia mais

Produto semidireto. Demonstração. (1, 1) é o elemento neutro pois

Produto semidireto. Demonstração. (1, 1) é o elemento neutro pois Produto semidireto. Produto semidireto interno. Seja G um grupo e sejam N G, H G. Se NH = G e H N = {1} dizemos que G é o produto semidireto interno entre N e H. No grupo G todo elemento pode ser escrito

Leia mais

BOA PROVA! Respostas da Parte II

BOA PROVA! Respostas da Parte II Nome: Identidade (Passaporte: Assinatura: Instruções (i O tempo destinado a esta prova é de 5 horas. (ii 5 porcento da pontuação total é da parte I (Perguntas dissertativas. BOA PROVA! Respostas da Parte

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

O teorema fundamental da teoria de Galois

O teorema fundamental da teoria de Galois META: Demonstrar o teorema fundamental. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Enunciar o teorema fundamental. Determinar e exibir a correspondência de Galois de certas extensões. PRÉ-REQUISITOS

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho

Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho QUESTÃO 1 (2,5 pts) - Seja G um grupo e considere seu centro Z(G) = {a G ab = ba para todo b G}. (a) Seja H um subgrupo de

Leia mais

Prova Extramuro BOA PROVA! Respostas da Parte II

Prova Extramuro BOA PROVA! Respostas da Parte II Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann LISTA DE EXERCÍCIOS Introdução às superfícies de Riemann 1. Mostre que toda curva plana é uma superfície de Riemann não-compacta. 2. Seja F : C 3 C um polinômio homogêneo de grau d, isto é, cada monômio

Leia mais

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas.

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas. Aula 04 O CONCEITO DE GRUPO META Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. OBJETIVOS Definir e exemplificar grupos e subgrupos. Aplicar as propriedades dos grupos na

Leia mais

SUMÁRIO. Álgebra I 3 1. Grupos Exercícios Subgrupos Exercícios Homomorfismo de Grupos e Aplicações 35 3.

SUMÁRIO. Álgebra I 3 1. Grupos Exercícios Subgrupos Exercícios Homomorfismo de Grupos e Aplicações 35 3. SUMÁRIO 3 1. Grupos 4 1.1 Exercícios 20 2. Subgrupos 23 2.1 Exercícios 31 3. Homomorfismo de Grupos e Aplicações 35 3.1 Exercícios 43 ÁLGEBRA I Grupos, Subgrupos e Homomorfismos de Grupos André Luiz Galdino

Leia mais

Introdução à Algebra para Criptografia de Curvas Elipticas

Introdução à Algebra para Criptografia de Curvas Elipticas Introdução à Algebra para Criptografia de Curvas Elipticas Pedro Antonio Dourado de Rezende Departamento de Ciência da Computação Universidade de Brasilia Abril 2003 ECC Introdução: Grupos 1 Simbologia:

Leia mais

Aplicar as propriedades imediatas dos homomorfismos de grupos. Aplicar os teoremas dos homomorfismos na relação de problemas.

Aplicar as propriedades imediatas dos homomorfismos de grupos. Aplicar os teoremas dos homomorfismos na relação de problemas. Aula 06 HOMOMORFISMOS DE GRUPOS META Apresentar o conceito de homomorfismo de grupos OBJETIVOS Reconhecer e classificar os homomorfismos. Aplicar as propriedades imediatas dos homomorfismos de grupos.

Leia mais

MAT Resumo II. Andrew Kurauchi Henrique Stagni Igor Montagner. 25 de Setembro de s k gij X,s k = + 1} g ik

MAT Resumo II. Andrew Kurauchi Henrique Stagni Igor Montagner. 25 de Setembro de s k gij X,s k = + 1} g ik MAT0213 - Resumo II Andrew Kurauchi Henrique Stagni Igor Montagner 25 de Setembro de 2008 1 Geradores Seja G um grupo e X G um subconjunto. O grupo gerado por X é {H H < G,X H} e é denotado por (menor

Leia mais

Grupos Aditivos e Multiplicativos de Anéis e Corpos

Grupos Aditivos e Multiplicativos de Anéis e Corpos Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Curso de Graduação em Matemática Grupos Aditivos e Multiplicativos de Anéis e Corpos por Felipe Barbosa

Leia mais

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.

Leia mais

Corpos estendidos no espaço em grupos

Corpos estendidos no espaço em grupos Corpos estendidos no espaço em grupos Carlos Shine Vamos ver como conceitos de teoria dos números (especialmente números mod p) podem ser generalizados com conceitos de Álgebra. 1 Corpos Em termos simples,

Leia mais

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os

Leia mais

Resolução do 1 o exame

Resolução do 1 o exame 2013-14 Introdução à Álgebra Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão, G

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/42 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

Geradores e relações

Geradores e relações Geradores e relações Recordamos a tabela de Cayley de D 4 (simetrias do quadrado): ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 0 ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 90 ρ 90 ρ 180 ρ 270 ρ 0 d 2 d 1 h v ρ 180 ρ 180

Leia mais

Solubilidade por Radicais

Solubilidade por Radicais META: Apresentar o critério de solubilidade por radicais de Galois para equações algébricas. AULA 15 OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Enunciar o critério de Galois. Exibir uma quíntica

Leia mais

Lista 2 - Álgebra I para Computação - IME -USP -2011

Lista 2 - Álgebra I para Computação - IME -USP -2011 Lista 2 - Álgebra I para Computação - IME -USP -2011 (A) Relações de Equivalência e Quocientes 1. Seja N = {0, 1, 2,...} o conjunto dos números naturais e considere em X = N N a seguinte relação: (a, b)

Leia mais

Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Tecnológicas. Teoria Elementar de Galois

Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Tecnológicas. Teoria Elementar de Galois Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Tecnológicas Teoria Elementar de Galois Vitória da Conquista - Bahia 016 Kaique Ribeiro Prates Santos Teoria Elementar de Galois

Leia mais

ÁLGEBRA I. 1 o período de 2005 (Noturno)

ÁLGEBRA I. 1 o período de 2005 (Noturno) UNIVERSIDADE DE BRASÍLIA Brasília, março de 2005 DEPARTAMENTO DE MATEMÁTICA -IE ÁLGEBRA I 1 o período de 2005 Noturno Exercícios de treinamento Observação : Os problemas que se seguem, marcados por *,

Leia mais

Notas de Aula de Álgebra 2 Segundo semestre de 2010 Prof. Juan Carlos

Notas de Aula de Álgebra 2 Segundo semestre de 2010 Prof. Juan Carlos Notas de Aula de Álgebra 2 Segundo semestre de 2010 Prof. Juan Carlos J.P. Kerr Catunda, aka Yoshi 17 de setembro de 2010 Sumário 1 Aula 1 - Introdução 4 2 05/08/2010 Aula 2 - Grupos 4 2.1 Operação Binária

Leia mais

Lista 1 MAT5734/MAT SEMESTRE DE Seja R um anel com 1 0. Exercício 5. Mostre que ( 1) 2 = 1 em R.

Lista 1 MAT5734/MAT SEMESTRE DE Seja R um anel com 1 0. Exercício 5. Mostre que ( 1) 2 = 1 em R. Lista 1 MAT5734/MAT0501 2 SEMESTRE DE 2017 Seja R um anel com 1 0. Exercício 1. Mostre que ( 1) 2 = 1 em R. Exercício 2. Seja u unidade em R. Mostre que u é unidade também. Exercício 3. Mostre que a interseção

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática Nome: Exame de Qualificação Banca Examinadora: Romildo (Pres.), Mário e Ronaldo. Observação: Das 7 questões propostas

Leia mais

Notas de Aula Álgebra 3. Martino Garonzi. Universidade de Brasília. Segundo semestre 2018

Notas de Aula Álgebra 3. Martino Garonzi. Universidade de Brasília. Segundo semestre 2018 Notas de Aula Álgebra 3 Martino Garonzi Universidade de Brasília Segundo semestre 018 1 As pessoas que as pessoas que as pessoas amam amam amam. Conteúdo Capítulo 1. Grupos 5 1. Ação de um grupo sobre

Leia mais

Fundamentos de Teoria de Grupos e Aplicações ao Jogo Resta Um

Fundamentos de Teoria de Grupos e Aplicações ao Jogo Resta Um UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS GRADUAÇÃO E PESQUISA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL-PROFMAT Fundamentos de Teoria de Grupos

Leia mais

Um pouco da História da Álgebra parte 2. Antonio Carlos Brolezzi

Um pouco da História da Álgebra parte 2. Antonio Carlos Brolezzi Um pouco da História da Álgebra parte 2 Antonio Carlos Brolezzi O caso irredutível da cúbica, em que a fórmula de Cardano leva a uma raiz quadrada de número negativo, foi resolvido por Rafael Bombelli

Leia mais

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008

ALGEBRA I Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Junho de 2007 Revis ao em Fevereiro de 2008 ÁLGEBRA I Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Junho de 2007 Revisão em Fevereiro de 2008 Sumário Introdução... 3 Parte 1 - Preliminares... 5 Seção 1 - Noções

Leia mais

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos 2 Espaços Vetoriais 2.1 Espaços Vetoriais Euclidianos Definição: Dado n N, considere-se o conjunto de todos os n-uplos ordenados de elementos reais, isto é o conjunto de elementos da forma x = (x 1,, x

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings Criptografia e Segurança de Rede Capítulo 4 Quarta Edição por William Stallings Capítulo 4 Corpos Finitos Na manhã seguinte, ao nascer o dia, Star entrou em casa, aparentemente ávida por uma lição. Eu

Leia mais

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas. PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE CASTANHAL FACULDADE DE MATEMÁTICA CURSO DE LICENCIATURA PLENA EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE CASTANHAL FACULDADE DE MATEMÁTICA CURSO DE LICENCIATURA PLENA EM MATEMÁTICA UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE CASTANHAL FACULDADE DE MATEMÁTICA CURSO DE LICENCIATURA PLENA EM MATEMÁTICA Josué Augusto Gonçalves da Silva EXTENSÕES ALGÉBRICAS DE CORPOS CASTANHAL-PA

Leia mais

Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos

Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos Introdução à Chave Pública Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos Troca de Chaves de Diffie-Hellman Parâmetros públicos p, α Alice: 1 Sorteia a = K pra {2, 3,..., p 2} 3 Envia para

Leia mais

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) ! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja

Leia mais

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula

Leia mais

Notas de Aula de Fundamentos de Matemática

Notas de Aula de Fundamentos de Matemática Universidade Estadual de Montes Claros Centro de Ciências Exatas e Tecnológicas Departamento de Ciências Exatas Notas de Aula de Fundamentos de Matemática Rosivaldo Antonio Gonçalves Notas de aulas que

Leia mais

Soluções de exercícios seleccionados (capítulos 3 e 4)

Soluções de exercícios seleccionados (capítulos 3 e 4) Soluções de exercícios seleccionados (capítulos 3 e 4) 3.6. (d) Determine o inverso de θ 2 6θ + 8 na extensão simples Q(θ), onde θ 0 é tal que θ 4 6θ 3 + 9θ 2 + 3θ = 0. O polinómio x 4 6x 3 + 9x 2 + 3x

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/23 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

MAT ÁLGEBRAS DE OPERADORES 2 SEMESTRE DE 2017 LISTA DE PROBLEMAS

MAT ÁLGEBRAS DE OPERADORES 2 SEMESTRE DE 2017 LISTA DE PROBLEMAS MAT 5818 - ÁLGEBRAS DE OPERADORES 2 SEMESTRE DE 2017 LISTA DE PROBLEMAS 1) Mostre que M n (C) munida da norma ((a jk )) 1 j,k n = k=1 2) Defina na álgebra C[X] dos polinômios complexos na variável X a

Leia mais

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r Matemática Discreta September 18, 2018 1 1 Divisão de inteiros Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r {0,..., d 1} tal que n = qd + r Dizemos que a

Leia mais

UMA INTRODUÇÃO À EXTENSÕES DE CORPOS FINITAS E ALGÉBRICAS

UMA INTRODUÇÃO À EXTENSÕES DE CORPOS FINITAS E ALGÉBRICAS UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPUS VI - POETA PINTO DO MONTEIRO CENTRO DE CIÊNCIAS HUMANAS E EXATAS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA JÚLIO FERNANDES DA SILVA UMA INTRODUÇÃO À EXTENSÕES DE

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

é um grupo abeliano.

é um grupo abeliano. Notas de aulas de Álgebra Moderna Prof a Ana Paula GRUPO Definição 1: Seja G munido de uma operação: x, y x y sobre G A operação sobre G é chamada de grupo se essa operação se sujeita aos seguintes axiomas:

Leia mais

O que é Álgebra Abstrata?

O que é Álgebra Abstrata? Universidade Estadual do Sudoeste da Bahia - UESB 12 de Dezembro de 2017 O que é álgebra? Álgebra é o ramo da matemática que estuda equações. É no ensino fundamental que temos nosso primeiro contato com

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista. MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :

Leia mais

Capítulo 1 Conceitos e Resultados Básicos

Capítulo 1 Conceitos e Resultados Básicos Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 1 Conceitos e Resultados Básicos Um grafo é um par ordenado (V, A), onde V e A são conjuntos disjuntos, e cada elemento

Leia mais

Axioma dos inteiros. Sadao Massago

Axioma dos inteiros. Sadao Massago Axioma dos inteiros Sadao Massago setembro de 2018 Sumário 1 Os Números 2 1.1 Notação......................................... 2 1.2 Números naturais não nulos (inteiros positivos)................... 2

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO MATERIAL EXTRAÍDO DOS LIVROS-TEXTOS (KOLMAN/ROSEN) UFSC - CTC - INE UFSC/CTC/INE p. 1 11 - ESTRUTURAS ALGÉBRICAS 11.1) Operações Binárias 11.2)

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

Categorias, álgebra homológica, categorias derivadas

Categorias, álgebra homológica, categorias derivadas Categorias, álgebra homológica, categorias derivadas slides de aula Sasha Anan in ICMC, USP, São Carlos 17/08/2015 02/09/2015 Procurando sentido, achei somente uma forma. Um porco triste, 2015 1. Categorias,

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef (Mini) Apostila de Teoria de Grupos Dimiter Hadjimichef Porto Alegre 2012 1. Teoria de Grupos 1.1 Muitas definições... Definição 1: Grupo Um conjunto G = {a,b,c,...} é dito formar um grupo se existir uma

Leia mais

ÁLGEBRA MINIMAL PARA A GRADUAÇÃO. Teoremas e definições

ÁLGEBRA MINIMAL PARA A GRADUAÇÃO. Teoremas e definições ÁLGEBRA MINIMAL PARA A GRADUAÇÃO Teoremas e definições 1. Grupos e ações 1.1. Definição. Um conjunto G munido de uma operação binária : G G G, : (g 1, g 2 ) g 1 g 2, é dito um grupo se são válidos os axiomas

Leia mais

Extensões Algébricas dos Racionais

Extensões Algébricas dos Racionais UNIVERSIDADE ESTADUAL DA PARAÍBA - UEPB CENTRO DE CIÊNCIAS E TECNOLOGIAS- CCT CURSO DE LICENCIATURA PLENA EM MATEMÁTICA Erivaldo de Oliveira Silva Extensões Algébricas dos Racionais Campina Grande - PB

Leia mais