MAT0313 Álgebra III Lista 5
|
|
|
- João Guilherme Lencastre Penha
- 7 Há anos
- Visualizações:
Transcrição
1 MAT0313 Álgebra III Lista (a) Se G é um grupo no qual (ab) i = a i b i, para três inteiros consecutivos i e para quaisquer a, b G, demonstre que G é abeliano. (b) Vale o mesmo resultado se (ab) i = a i b i, para apenas dois inteiros consecutivos i? 2. (a) Seja G um grupo tal que a 2 = e, para todo a G. Prove que G é abeliano. (b) O mesmo resultado é válido se G for um grupo tal que a 3 = e, para todo a G? 3. Mostre que todo grupo de ordem 5 é abeliano. 4. Seja G um grupo e sejam H 1, H 2 dois subgrupos de G. Mostre que a interseção H 1 H 2 é um subgrupo de G. Mais geralmente, mostre que se {H i i I} é uma família de subgrupos de G, então i I H i é um subgrupo de G. 5. Seja G um grupo e sejam H e K subgrupos de G. Mostre que H K é um subgrupo de G se e somente se H K ou K H. 6. Seja G um grupo e seja H um subconjunto finito de G tal que HH = H. Prove que H é um subgrupo de G. E se H não for finito? 7. (a) Seja S G um subconjunto de um grupo G. O centralizador de S em G é definido como sendo o conjunto Z(S) = {x G xa = ax a S}. Quando S = {a} escrevemos simplesmente Z(a). Prove que o centralizador de S em G é um subgrupo de G. (Se S = G então Z(G) é o centro de G. Veja o próximo exercício.) (b) Determine o centralizador de σ em S 3 = {e, σ, σ 2, τ, στ, σ 2 τ}; (c) Determine o centralizador de j em Q 8 = {1, 1, i, i, j, j, k, k}. 8. (a) O centro de um grupo G é definido como sendo o conjunto Prove que Z(G) é um subgrupo de G. (b) Prove que Z(G) = Z(x); x G Z(G) = {z G zx = xz, para todo x G}. (c) Encontre o centro de S 3 e de Q 8 = {1, 1, i, i, j, j, k, k}. 9. Seja G um grupo. Dados H um subgrupo de G e a G, mostre que aha 1 = {aha 1 h H} é um subgrupo de G. Se H é finito, qual é a ordem de aha 1?
2 10. Seja G um grupo. Define-se a ordem de a G como sendo o menor inteiro n tal que a n = e, se esse número existir (caso contrário, dizemos que a ordem de a é infinita). Mostre que se a G tem ordem finita, esse número coincide com a ordem do subgrupo de G gerado por a. 11. Se G é um grupo de ordem par, mostre que G contém um elemento de ordem Mostre que se G é um grupo de ordem par então existe um número ímpar de elementos de ordem Seja a um elemento de um grupo tal que a n = e. Mostre que o(a) divide n. 14. Seja G um grupo e sejam a, b G. Mostre que ab e ba têm a mesma ordem. 15. Seja G um grupo e seja a G um elemento de ordem n. Se n = km, mostre que a k tem ordem m. 16. Seja G um grupo e seja a G um elemento de ordem r. Seja m um inteiro positivo tal que mdc(m, r) = 1. Mostre que o(a m ) = r. 17. Seja G um grupo e sejam a, b G tais que a 5 = e e aba 1 = b 2. Mostre que o(b) = Seja G um grupo e sejam a, b G tais que a n = e e aba 1 = b s. Mostre que o(b) s n Mostre que o número de geradores de um grupo cíclico de ordem n é φ(n), onde φ é a função de Euler (φ(n) é igual ao número de inteiros positivos menores que n e que são relativamente primos com n). 20. Mostre que todo subgrupo de um grupo cíclico é cíclico. 21. (a) Seja G um grupo e sejam a, b G. Mostre que o(a) = o(b 1 ab). (b) Se G possui apenas um elemento a de ordem n, mostre que a Z(G) e que n = Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas. Mostre que H K = {e}. 23. Seja G um grupo e sejam a, b G tais que ab = ba. Se a tem ordem m, b tem ordem n e mdc(m, n) = 1, mostre que a ordem de ab é mn. 24. Seja G um grupo abeliano que contém um elemento de ordem n e um de ordem m. Mostre que G contém um elemento de ordem mmc(n, m). 25. Seja G um grupo e sejam H e K dois subgrupos de índice finito em G. Mostre que H K é um subgrupo de índice finito em G.
3 26. Seja G um grupo, seja H um subgrupo de G e seja K um subgrupo de H. Mostre que K tem índice finito em G se e somente se H tiver índice finito em G e K tiver índice finito em H. Neste caso, mostre que [G : K] = [G : H][H : K]. 27. Demonstre que se G é um grupo abeliano então todos os seus subgrupos são normais. A recíproca é verdadeira? 28. Neste exercício vamos construir um grupo não-abeliano, contendo 8 elementos, cujos subgrupos são todos normais. Considere o seguinte subconjunto de M 2 (C): Q 8 = {id, id, I, I, J, J, K, K}, onde id = [ 1 0 ] [, I = 1 0 ] [ 0 i, J = i 0 ] [ i 0, K = 0 i ]. (a) Verifique as seguintes identidades abaixo: I 2 = J 2 = K 2 = id, I J = K = JI, IK = J = KI, JK = I = KJ. (b) Mostre que Q 8 com o produto usual de matrizes é um grupo não-abeliano de ordem 8. (c) Encontre I 1, J 1, K 1. (d) Calcule as ordens de todos os elementos de Q 8. (e) Liste todos os subgrupos de Q 8. (São 6.) (f) Mostre que todos os subgrupos de Q 8 são normais. (g) Determine o centro Z(Q 8 ) de Q Seja GL(n, R) o grupo (com relação a multiplicação) das n n matrizes inversíveis sobre R. Mostre que SL(n, R) = {A GL(n, R) det(a) = 1} é um subgrupo normal de GL(n, R). 30. Seja N um subgrupo normal de um grupo G tal que [G : N] = m. Mostre que a m N para todo a G. 31. Sejam N 1, N 2 subgrupos normais de um grupo G. Mostre que N 1 N 2 é um subgrupo normal de G. Mais geralmente, mostre que se {N i i I} é uma família de subgrupos normais de G, então i I N i é um subgrupo normal de G. 32. Seja H um subgrupo de um grupo G tal que o produto de duas classes laterais à direita de H em G seja sempre uma classe lateral à direita de H em G. Mostre que H é normal em G. 33. Seja H um subgrupo de índice 2 em um grupo G. Mostre que H é normal em G. 34. Seja N um subgrupo normal de um grupo G e seja H um subgrupo de G. Mostre que NH é um subgrupo de G.
4 35. Mostre que a interseção de dois subgrupos normais de um grupo G é também normal em G. 36. Se N e M são subgrupos normais de um grupo G, mostre que NM também é normal em G. 37. Seja G um grupo e seja H um subgrupo de G. O normalizador de H em G é definido por N G (H) = {g G ghg 1 = H}. Mostre que (a) N G (H) é um subgrupo de G; (b) H é um subgrupo normal de N G (H); (c) se H é um subgrupo normal de um subgrupo K de G então K N G (H); (d) H é normal em G se e somente se N G (H) = G. 38. Seja G um grupo e seja N um subgrupo normal de G. Mostre que G/N é abeliano se e somente se aba 1 b 1 N, para todos a, b G. (Em particular, se G for abeliano, então o quociente G/N será também abeliano.) 39. Seja G um grupo e seja G o subgrupo de G gerado pelo seguinte conjunto: {aba 1 b 1 a, b G}. (a) Mostre que G é normal em G. (b) Mostre que G/G é abeliano. (c) Seja N um subgrupo normal de G. Mostre que se G/N for abeliano, então N G. (d) Mostre que se H é um subgrupo de G tal que H G, então H é normal em G. O subgrupo G de G definido acima chama-se subgrupo dos comutatores (ou derivado) de G. 40. Seja H um subgrupo de um grupo finito G e suponha que H seja o único subgrupo de G de ordem H. Mostre que H é normal em G. 41. Se N e M são subgrupos normais de G tais que N M = {e}, demonstre que nm = mn, para quaisquer n N e m M. 42. Seja e seja Mostre que G = {( ) } a b a, b, c R, ac = 0 0 c N = {( ) } 1 b b R.
5 (a) N é um subgrupo normal de G; (b) G/N é abeliano. 43. Seja G um grupo finito e H um subgrupo normal em G tal que mdc( H, [G : H]) = 1. Prove que H é o único subgrupo de G de ordem igual a H. 44. Seja G um grupo com centro Z(G). Mostre que se G/Z(G) é cíclico então G é abeliano. 45. Seja G um grupo e seja a um elemento fixado de G. Mostre que a função ϕ : G G, dada por ϕ(x) = axa 1, para todo x G, é um isomorfismo. 46. Mostre que um grupo G é abeliano se e somente se a aplicação ϕ : G G definida por ϕ(g) = g 1, para todo g G, for um homomorfismo. 47. Sejam G e H grupos e seja ϕ : G H um homomorfismo. Mostre que ϕ(g ) (ϕ(g)). 48. Seja G um grupo abeliano finito de ordem n, onde n é um inteiro positivo. Seja r um inteiro positivo tal que mdc(n, r) = 1. Mostre que todo elemento g G pode ser escrito na forma g = x r para algum x G. (Sugestão: Mostre que g g r é um isomorfismo de G em G.) 49. Seja G um grupo. Por automorfismo de G entende-se um isomorfismo de G em G. Seja Aut(G) o conjunto de todos os automorfismos de G. (a) Mostre que Aut(G) é um grupo com operação binária dada pela composição de funções. (b) Seja g G e defina ϕ g : G G por ϕ(a) = gag 1 para todo a G. Mostre que ϕ g Aut(G) para todo g G. O automorfismo ϕ g chama-se automorfismo interno definido por g. (c) Seja Inn(G) o subconjunto de Aut(G) formado por todos os automorfismos internos de G. Mostre que Inn(G) é um subgrupo normal de Aut(G). (d) Mostre que Inn(G) = G/Z(G). (Sugestão: Considere o homomorfismo ϕ : G Aut(G) dado por ϕ(g) = ϕ g.) (e) Determine o grupo de automorfismos de um grupo cíclico de ordem finita. (f) Determine o grupo de automorfismos do grupo cíclico de ordem infinita. (g) Determine o grupo de automorfismos de S Seja G um grupo finito e ϕ Aut(G) um automorfismo que leva mais do que 4 3 dos elementos de G em seus inversos. Mostre que G é abeliano e que ϕ(g) = g 1 para todo g G. 51. Mostre que existe um grupo não abeliano G de ordem 8 e um automorfismo ϕ de G que leva exatamente 3 4 dos elementos de G em seus inversos.
MAT5728 Álgebra Lista 1
MAT5728 Álgebra Lista 1 2009 1. (a) Se G é um grupo no qual (ab) i = a i b i, para três inteiros consecutivos i e para quaisquer a, b G, demonstre que G é abeliano. (b) Vale o mesmo resultado se (ab) i
LISTA CLASSES LATERAIS, TEOREMA DE LAGRANGE 17. Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas.
MAT5728 - Álgebra 2o. semestre/2008 LISTA 1 1. GRUPOS 1. Seja G um grupo. Mostre que se ab 2 = a 2 b 2, para quaisquer a, b G, então G é abeliano. 2. a Se G é um grupo no qual ab i = a i b i, para três
Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3.
Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. 1. Seja x um elemento de ordem 24. Calcule a ordem de x 22, x 201, x 402, x 611 e x 1000. 2. Faça
(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação
Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};
f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn).
Teoremas de isomorfismo. Teorema (Teorema de Isomorfismo). Seja f : A B um homomorfismo de grupos. Então A/ ker(f) = Im(f). Demonstração. Seja N := ker(f) e seja f : A/N Im(f), f(xn) := f(x). Mostramos
Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho
Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho QUESTÃO 1 (2,5 pts) - Seja G um grupo e considere seu centro Z(G) = {a G ab = ba para todo b G}. (a) Seja H um subgrupo de
(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef
(Mini) Apostila de Teoria de Grupos Dimiter Hadjimichef Porto Alegre 2012 1. Teoria de Grupos 1.1 Muitas definições... Definição 1: Grupo Um conjunto G = {a,b,c,...} é dito formar um grupo se existir uma
obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.
Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos
1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 = b 2 = e e ba = a 2 b.
Problema 1 1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 b 2 e e ba a 2 b. (a) Indique, justificando, se: i. a é sempre igual a b; ii. a nunca é igual a b; iii. a pode
Notas de Aula de Algebra Avan cada ver ao de 2019
Notas de Aula de Álgebra Avançada verão de 2019 Sumário 1 Grupos 4 1.1 Definições e exemplos.......................................... 4 1.2 Subgrupos................................................. 5
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II - 214.1 Professor Márcio Nascimento 1. Sejam a G com o(a) = n 1 e m Z. Se a
Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de
Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.
Grupos: Resumo. Definição 1.1 Um grupo é um conjunto G juntamente com uma operação binária. G G G (a, b) a b. (a b) c = a (b c) a e = e a = a
1 Grupos: Resumo 1 Definições básicas Definição 1.1 Um grupo é um conjunto G juntamente com uma operação binária que satisfaz os seguintes três axiomas: 1. (Associatividade) Para quaisquer a, b, c G, G
(g) (G, +, ) sendo G = {a + ib a, b Z}, o conjunto dos inteiros de Gauss, + e a adição e a multiplicação usuais de números complexos.
Álgebra II Departamento de Matemática da Universidade de Coimbra Ano lectivo 2004/05 1 ō semestre Anéis e corpos 1. Averigúe se os seguintes conjuntos têm estrutura de anel para as operações indicadas.
Notas de Aula Álgebra 3. Martino Garonzi. Universidade de Brasília. Segundo semestre 2018
Notas de Aula Álgebra 3 Martino Garonzi Universidade de Brasília Segundo semestre 018 1 As pessoas que as pessoas que as pessoas amam amam amam. Conteúdo Capítulo 1. Grupos 5 1. Ação de um grupo sobre
Primeira prova de Álgebra III - 07/05/2015 Prof. - Juliana Coelho Entregar dia 09/05/2015 até as 11h00.
Primeira prova de Álgebra III - 07/05/205 Prof. - Juliana Coelho Entregar dia 09/05/205 até as h00. Justifique suas respostas citando o resultado ou exercício da apostila (quando permitido) que está sendo
GRUPOS Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Revisto em dezembro de 2008
GRUPOS Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Revisto em dezembro de 2008 Sumário Introdução... 3 Parte 1 - Conceitos fundamentais... 5 Seção 1 - O conceito
O Teorema de P. Hall
UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA O Teorema de P. all Rafael Bezerra dos Santos Disciplina: Seminário III - Tópicos Especiais em Teoria de Grupos
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,
1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,
Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A.
1. Ideais, quocientes, teorema de isomorfismo Seja A um anel comutativo unitário. Em particular A é um grupo abeliano com +; seja I um subgrupo aditivo de A. Como visto no primeiro modulo, sabemos fazer
Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a
Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária
Usando indução pode então mostrar-se o seguinte:
Proposição Sejam G e H grupos cíclicos finitos. Então G H é cíclico se e só se ord(g) e ord(h) forem primos entre si. Exercício Faça a demonstração da proposição anterior. Usando indução pode então mostrar-se
Relações Binárias, Aplicações e Operações
Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,
1 Noções preliminares
Álgebras, subálgebras e endomorfirsmos Ana Cristina - MAT/UFMG Durante este texto, vamos considerar F um corpo de característica zero. Iniciaremos com algumas definições da teoria de anéis que serão importantes
MAT Resumo II. Andrew Kurauchi Henrique Stagni Igor Montagner. 25 de Setembro de s k gij X,s k = + 1} g ik
MAT0213 - Resumo II Andrew Kurauchi Henrique Stagni Igor Montagner 25 de Setembro de 2008 1 Geradores Seja G um grupo e X G um subconjunto. O grupo gerado por X é {H H < G,X H} e é denotado por (menor
SUMÁRIO. Álgebra I 3 1. Grupos Exercícios Subgrupos Exercícios Homomorfismo de Grupos e Aplicações 35 3.
SUMÁRIO 3 1. Grupos 4 1.1 Exercícios 20 2. Subgrupos 23 2.1 Exercícios 31 3. Homomorfismo de Grupos e Aplicações 35 3.1 Exercícios 43 ÁLGEBRA I Grupos, Subgrupos e Homomorfismos de Grupos André Luiz Galdino
Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função
UMA INTRODUÇÃO A ÁLGEBRAS TIAGO MACEDO Resumo. Neste seminário vamos introduzir uma nova estrutura algébrica, álgebras. Começaremos recapitulando estruturas definidas em seminários anteriores. Em seguida,
Universidade Federal de Goiás Regional Catalão - IMTec
Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação
1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).
1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?
Notas sobre os anéis Z m
Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis
Teorema (Teorema fundamental do homomorfismo)
Teorema (Teorema fundamental do homomorfismo) Seja ϕ : G H um homomorfismo de grupos. Então G/ ker ϕ ϕ(g). Demonstração. Vamos mostrar que a correspondência ψ : G/ ker ϕ ϕ(g) dada por ψ(g ker ϕ) = ϕ(g)
Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG
1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos
uma breve introdução a estruturas algébricas de módulos sobre anéis - generalizando o conceito de espaço vetorial
V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 uma breve introdução a estruturas algébricas de módulos sobre anéis - generalizando
1 Grupos (23/04) Sim(R 2 ) T T
1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.
Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos
Introdução à Chave Pública Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos Troca de Chaves de Diffie-Hellman Parâmetros públicos p, α Alice: 1 Sorteia a = K pra {2, 3,..., p 2} 3 Envia para
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: sequências e matrizes 05 e 06/06/14 Sequências Def.: chama-se sequência finita ou n-upla toda aplicação f do
CARACTERÍSTICA DE UM ANEL
Professora: Elisandra Bär de Figueiredo CARACTERÍSTICA DE UM ANEL PROPOSIÇÃO 1 Seja A um anel com unidade. Se m, n Z, então (mn)1 A = (m1 A )(n1 A ). Seja A um anel. Considere o seguinte subconjunto de
OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)
! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja
Anéis quocientes k[x]/i
META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:
Grupos Aditivos e Multiplicativos de Anéis e Corpos
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Curso de Graduação em Matemática Grupos Aditivos e Multiplicativos de Anéis e Corpos por Felipe Barbosa
Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos
Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos Bárbara Lopes Amaral Professora Ana Cristina Vieira Tópicos Especiais em Teoria de Grupos Belo orizonte Dezembro de 2010 Grupos
O grupo G é dito abeliano o comutativo se ab = ba para todo a, b G.
Conteúdo 1 Grupos 1 1.1 Grupo simétrico........................... 3 1.2 Ordem de um elemento e grupos cíclicos.............. 4 1.3 Subgrupos e teorema de Lagrange................. 6 1.4 Subgrupos normais
Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos
Observação Como para k > 1 se tem (a 1, a 2,..., a k ) = (a 1, a k )(a 1, a k 1 ) (a 1, a 2 ), um ciclo de comprimento par é uma permutação ímpar e um ciclo de comprimento ímpar é uma permutação par. Proposição
Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1
Exemplos (i) A adição + e a multiplicação são operações associativas e comutativas
Capítulo 1 Grupos 1.1 Grupóides, semigrupos e monóides Definição 1.1.1. Seja X um conjunto. Uma operação binária (interna) em X é uma função : X X X, (x, y) x y. Uma operação binária em X diz-se associativa
Parte I - Grupos. Sumário. 1.1 Grupos, subgrupos, ordem. Exercício Se H é um subconjunto nito de um grupo G, estável pela operação.
Estruturas Algébricas 2012-1 Mestrado Matemática UFRJ Parte I - Grupos Sumário 1 Grupos, morsmos 1 1.1 Grupos, subgrupos, ordem.................................. 1 1.2 Morsmos, subgrupos normais, grupos
GABARITO. Prova 2 (points: 112/100; bonus: 0 ; time: 90 ) FMC2, (Turma N12 do Thanos) Regras: Boas provas! Gabarito 08/11/2017
FMC2, 2017.2 (Turma N12 do Thanos) Prova 2 (points: 112/100; bonus: 0 ; time: 90 ) Nome: Θάνος Gabarito 08/11/2017 Regras: I. Não vires esta página antes do começo da prova. II. Nenhuma consulta de qualquer
Resolução do 1 o exame
Introdução à Álgebra, 2015-16 Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão,
Universidade Federal de Uberlândia Faculdade de Matemática
Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais
Notas de Fundamentos de Álgebra. Pedro F. dos Santos, Joana Ventura 2014
Notas de Fundamentos de Álgebra Pedro F. dos Santos, Joana Ventura 2014 Índice Introdução v Capítulo 1. Grupos 1 1. Grupos e monóides: definições básicas 1 Exercícios 3 2. Operações definidas por passagem
Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO
Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os
NOTAS DE AULA DE ÁLGEBRA TIAGO MACEDO
NOTAS DE AULA DE ÁLGEBRA TIAGO MACEDO 1 2 TIAGO MACEDO Avisos: Aula 1 Livro-texto: Abstract Algebra de D. Dummit e R. Foote. (Ler e entender a Seção 0.1.) Provas do curso: P1 em 19/set, P2 em 31/out, P3
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/42 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
BOA PROVA! Respostas da Parte II
Nome: Identidade (Passaporte: Assinatura: Instruções (i O tempo destinado a esta prova é de 5 horas. (ii 5 porcento da pontuação total é da parte I (Perguntas dissertativas. BOA PROVA! Respostas da Parte
Relações Binárias, Aplicações e Operações
Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,
Automorfismos coprimos de 2-grupos finitos
Universidade de Brasília Instituto de Ciências Exatas Departamento de Matemática DISSERTAÇÃO Automorfismos coprimos de 2-grupos finitos Aluna: Maria de Sousa Leite Filha Orientador: Pavel Shumyatsky Brasília
Álgebra linear A Primeira lista de exercícios
Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b
ANÉIS. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra Bär de Figueiredo ANÉIS DEFINIÇÃO 1 Um sistema matemático (A,, ) constituído de um conjunto não vazio A e duas leis de composição interna sobre A, uma adição: (x, y) x y e uma multiplicação
Lista 1 MAT5734/MAT SEMESTRE DE Seja R um anel com 1 0. Exercício 5. Mostre que ( 1) 2 = 1 em R.
Lista 1 MAT5734/MAT0501 2 SEMESTRE DE 2017 Seja R um anel com 1 0. Exercício 1. Mostre que ( 1) 2 = 1 em R. Exercício 2. Seja u unidade em R. Mostre que u é unidade também. Exercício 3. Mostre que a interseção
GRUPOS Maria L ucia Torres Villela Instituto de Matem atica Universidade Federal Fluminense Maio de 2008 Revisto em Dezembro de 2008
GRUPOS Maria Lúcia Torres Villela Instituto de Matemática Universidade Federal Fluminense Maio de 2008 Revisto em Dezembro de 2008 Sumário Parte 2 - Complementos da Teoria de Grupos... 57 Seção 1 - Subgrupo
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra
Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula
ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de
Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).
Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
Aplicar as propriedades imediatas dos homomorfismos de grupos. Aplicar os teoremas dos homomorfismos na relação de problemas.
Aula 06 HOMOMORFISMOS DE GRUPOS META Apresentar o conceito de homomorfismo de grupos OBJETIVOS Reconhecer e classificar os homomorfismos. Aplicar as propriedades imediatas dos homomorfismos de grupos.
Reticulados e Álgebras de Boole
Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente
1 Álgebra linear matricial
MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a
PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.
PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%
Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).
Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/31 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas.
Aula 04 O CONCEITO DE GRUPO META Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. OBJETIVOS Definir e exemplificar grupos e subgrupos. Aplicar as propriedades dos grupos na
2007/2008 Resolução do 1 o exame
Introdução à Álgebra 2007/2008 Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão,
Funções suaves e Variedades
a aula, 5-03-2007 Funções suaves e Variedades Os objectos de estudo da Topologia Diferencial são as variedades e as aplicações suaves, onde suave significa ser de classe C. As variedades consideradas são
Notas de aulas. álgebra abstrata
1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA
Parte I - Grupos. Sumário. 1.1 Grupos, subgrupos, ordem. Exercício Se H é um subconjunto nito de um grupo G estável pela operação, mostre que
Estruturas Algébricas Mestrado Matemática 2013-1 UFRJ Parte I - Grupos Aula inaugural: teoria elementar das categorias. Sumário 1 Grupos, morsmos 1 1.1 Grupos, subgrupos, ordem..................................
Provas de. Manuel Ricou Departamento de Matemática Instituto Superior Técnico
Provas de Introdução à Álgebra Manuel Ricou Departamento de Matemática Instituto Superior Técnico 19 de Janeiro de 2008 Conteúdo 1 Enunciados de Testes 3 1.1 1 o Teste: 12/4/2000.......................
Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx.
4 Álgebras de Lie Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx. 4.1 Álgebras de Lie Simples Definição 4.1 Uma álgebra
XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa
XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios
Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42
1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos
MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.
MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :
Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Tecnológicas. Teoria Elementar de Galois
Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Tecnológicas Teoria Elementar de Galois Vitória da Conquista - Bahia 016 Kaique Ribeiro Prates Santos Teoria Elementar de Galois
