Mario de Andrade Lira Junior
|
|
|
- Luiza Mendonça
- 6 Há anos
- Visualizações:
Transcrição
1 Mario de Andrade Lira Junior 1
2 Item da avaliação Média avaliações semanais 2 Condução e análise do trabalho prático 2 Apresentação e artigo do trabalho prático 3 Prova teórica 4 Prova prática 4 A média das avaliações semanais descarta a menor nota. Todas serão efetuadas usando que vai estar na página. A sabatina será postada no domingo subsequente à aula Vocês têm até o sábado para mandar qualquer dúvidas. Prazo final para resposta é a terça-feira Com alguma sorte discuto os resultados no início da aula seguinte A prova teórica será em 21 de julho, pela manhã, e no máximo até as 17:00, com consulta aberta. Esta prova é exclusivamente teórica. A prova prática será em 28 de julho, com o mesmo horário, também de consulta, e constando de interpretação de análises já feitas, e planejamento de pesquisa
3 Em duplas definidas por vocês até a semana que vem no máximo Temas pré-definidos em conjunto para as três disciplinas obrigatórias Temas serão distribuídos por sorteio entre as duplas Cada professor terá sua avaliação individual, mas material de entrega será conjunto Apenas para Técnicas, será entregue um memorial descrevendo o procedimento de análise de dados (primeira parte desta nota) As duplas deverão apresentar um artigo científico e um seminário (segunda parte da nota) 3
4 Data 17/mar 24/mar 31/mar 07/abr 14/abr 21/abr 28/abr 05/mai 12/mai 19/mai 26/mai 02/jun 09/jun 16/jun 23/jun 30/jun a 14/jul 21/jul 28/jul Assunto Variação do acaso, medidas de tendência central e de variação, nível de significância, teste de hipóteses Regressão Regressão Modelo Linear Generalizado Modelo Linear Generalizado Tiradentes e Páscoa Delineamentos Experimentais Arranjo fatorial Arranjo fatorial Parcela Sub-dividida Medições repetidas Análise multivariada Amostragem Amostragem Feriado de Corpus Christi Margem para seminários e imprevistos Prova teórica Prova prática
5 A cada tópico será feita uma recomendação específica Embora não haja obrigatoriedade de uso, o curso será mais direcionado ao uso e entendimento do SAS, devido ao poder de fogo, à flexibilidade, e à minha fluência A cada semana a apresentação da semana seguinte será disponibilizada.
6 Variação do acaso, parcela experimental, parâmetro, estimador, medidas de tendência central, medidas de dispersão Princípios experimentais Erros tipo I e II Nível de significância Alguns testes de hipóteses 6 direitos autorais.
7 População Todo o universo Após medida, não muda mais Qualquer conclusão só vale para esta população Qualquer medida é um parâmetro Amostra Uma parte do universo, que o representa Outra amostra da mesma população terá resultados diferentes A conclusão feita com base na amostra deve representar toda a população Toda medida é uma estimativa - Reservados todos os 7
8 Conseqüência direta de trabalhar com amostra É o número de pontos completamente independentes Calculado como o número de pontos da amostra (n) subtraindo o número de valores calculados com esta amostra antes deste ponto Normalmente n-1, já que sempre precisamos calcular a média 8
9 Moda Mediana Média Moda Mediana Média Vantagem Simples Não é sensível a valores extremos Adequada para dados qualitativos Sempre existe Reflete os valores no centro da distribuição Não é sensível a valores extremos Ponto de equilíbrio para distribuição de freqüências Leva todos os valores em consideração Desvantagem Pode existir ou não Não leva os demais valores em consideração Não reflete todos os valores Sensível a valores extremos 9
10 Amplitude Variância Desvio-Padrão s 2 = s 2 = 2 ( ponto média) 1 = n 1 X 2 n ( X ) 2 n 1 n ( x i n 1 x) 2 10
11 Desvio padrão Corresponde ao valor médio dos desvios de cada ponto em relação à média Geralmente a maioria dos pontos fica a um desviopadrão da média s = s 2 Coeficiente de variação CV 100 = mˆ s 11
12 Vantagem Desvantagem Amplitude Simples Muito sensível a valores extremos Depende do tamanho da amostra Não leva os demais valores em consideração Variância Leva todos os valores em consideração Unidades sem lógica Desvio-padrão Variância com unidades mais lógicas Geralmente um pouco superior (10-20%) à média dos desvios em absoluto Coeficiente de variação Independente das unidades Deve-se ter cuidado com generalizações 12
13 Erro padrão da média Expressa a variação levando em conta o tamanho da amostra s n Intervalo de confiança É uma faixa de valores em que espera-se encontrar a média da população, com base na média, na variabilidade e no tamanho da amostra Leva em consideração uma margem de erro, ou intervalo de confiança s mˆ ± t o n 13
14 Graus de liberdade Chance de errar 0,10 0,05 0,01 1 6,314 12,706 63, ,920 4,303 9, ,353 3,182 5, ,132 2,776 4, ,015 2,571 4, ,943 2,447 3, ,895 2,365 3, ,860 2,306 3, ,833 2,262 3, ,812 2,228 3, ,753 2,131 2, ,725 2,086 2, ,697 2,042 2, ,684 2,021 2, ,676 2,009 2, ,660 1,984 2, ,646 1,962 2,581 Quantos mais pontos (maior grau de liberdade) menor a faixa de valores em torno da média Menor chance de erro, maior faixa de valores em torno da média 14
15 Unidade experimental É a menor unidade a receber um tratamento Depende essencialmente do objetivo do experimento Afeta variabilidade e custo Variável Independente que faz o tratamento, como dose de adubo, etc Dependente medição que indica o efeito do tratamento 15
16 Repetição Se um dado só é coletado uma vez, como separar acaso e tratamento? Casualização Se o pesquisador decide onde cada tratamento fica, como separar acaso de tratamento? Controle local Se as condições não são completamente homogêneas, como reduzir o efeito desta variação? 16
17 Várzea Ladeira suave Ladeira pesada Chã 17
18 Hipótese científica A idéia por trás do experimento Deve ficar clara pela revisão da literatura Sempre útil explicitar (no projeto ou para você e seu orientador) Hipótese estatística Duas hipóteses antagônicas, a nula (H 0 ) e alternativa (H a ou H 1 ) Nula é a hipótese testada, normalmente de igualdade entre todos os tratamentos 18
19 H 0 Verdadeira Rejeição H 0 Erro tipo I H 0 Falsa Decisão Correta Aceitação H 0 Decisão Correta Erro tipo II 19
20 Critério de escolha Função da hipótese a testar Função do material e tipo de dados Opções mais comuns Chi-quadrado - observado com esperado F - existência de efeito t - comparação de dois tratamentos ou regressão Tukey - comparação de vários tratamentos 20
21 F Comparar variação dos tratamentos com o acaso Variância do tratamento F = Variância do acaso Comparar valor com conhecido Em programas de estatística, já aparece a probabilidade do valor encontrado ser devido ao acaso No Excel a fórmula =distf(valor F; GLtrat;GLres) indica a probabilidade de um valor de F ser devido ao acaso - Reservados todos os 21
22 Graus de liberdade para os tratamentos Graus de liberdade para o resíduo ,45 199,50 215,71 224,58 230,16 233,99 236,77 238,88 240,54 241,88 245,95 248,01 249,26 251, ,51 19,00 19,16 19,25 19,3 19,33 19,35 19,37 19,38 19,40 19,43 19,45 19,46 19, ,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,70 8,66 8,63 8,58 4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,86 5,80 5,77 5,70 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,62 4,56 4,52 4,44 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 3,94 3,87 3,83 3,75 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,51 3,44 3,40 3,32 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,22 3,15 3,11 3,02 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,01 2,94 2,89 2, ,96 4,1 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,85 2,77 2,73 2, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,40 2,33 2,28 2, ,35 3,49 3,10 2,87 2,71 2,6 2,51 2,45 2,39 2,35 2,20 2,12 2,07 1, ,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,09 2,01 1,96 1, ,03 3,18 2,79 2,56 2,40 2,29 2,20 2,13 2,07 2,03 1,87 1,78 1,73 1,60 22
23 Calcula a menor diferença entre dois tratamentos que pode ser considerada como não devida ao acaso Diferença Mínima Significativa ou Diferença entre duas médias maior ou igual a DMS, tratamentos diferentes Caso contrário, não diferentes = q tabela VariânciaAcaso Número repetições - Reservados todos os 23
24 24
25 Casella,G. Basics. IN: Casella, G. Statistical Design. New York:Springer, p 1-42 Hoshmand, A.R. The nature of agricultural research. IN: Hoshmand, A.R. Design of experiments for agriculture and the natural sciences. Boca Raton: Chapman & Hill/CRC, p Steel, R. G. D. ; Torrie, J. H. Principles of experimental design. IN: Steel, R. G. D. ; Torrie, J. H. New York: McGraw Hill, p LeClerg,E.L.; Leonard, W.H.; Clark,A.G. Tests of significance. IN: LeClerg,E.L.; Leonard, W.H.; Clark,A.G. Field plot technique. Minneapolis:Burgess Publishing Company, p O Rourke,N.; Hatcher,L.; Stepanski,E.J. Basic concepts in research and data analysis. IN: O Rourke,N.; Hatcher,L.; Stepanski,E.J. Using SAS for univariate & multivariate statistics. Cary: SAS Institute/Wiley Interscience, p
Testes de hipóteses. Estatística Aplicada à Agricultura Mario Andrade Lira Junior, /10/2017
Testes de hipóteses Mario Andrade Lira Junior WhatsApp da turma https://chat.whatsapp.com/b8phpubnimql7dyful9wtw AVA da turma http://ava.ufrpe.br/course/view.php?id=21036 Todo o material oficial será distribuído
DISCIPLINA. Magno Antonio Patto Ramalho
U N I V E R S I D A D E F E D E R A L D E L A V R A S P R Ó - R E I T O R I A D E P Ó S - G R A D U A Ç Ã O COORDENADORIA DE PÓS-GRADUAÇÃO STRICTO SENSU DISCIPLINA Código PGM522 / II Denominação ANAL.
Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas
Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo
DELINEAMENTO INTEIRAMENTE CASUALIZADO. Profª. Sheila Regina Oro
DELINEAMENTO INTEIRAMENTE CASUALIZADO Profª. Sheila Regina Oro Delineamento experimental Para planejar um experimento é preciso definir os tratamentos em comparação e a maneira de designar os tratamentos
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CARACTERIZAÇÃO o Em alguns experimentos pode-se ter fatores que estão interferindo na variável resposta,
UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE BOTUCATU PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA ENERGIA NA AGRICULTURA PLANO DE ENSINO
PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA ENERGIA NA AGRICULTURA PLANO DE ENSINO DISCIPLINA: ANÁLISE DE EXPERIMENTOS EM FITOTECNIA ÁREA: DOMÍNIO ESPECÍFICO ( ) NÍVEL: MESTRADO ( X ) DOMÍNIO CONEXO (X ) DOUTORADO
EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CARACTERIZAÇÃO o Em alguns experimentos pode-se ter fatores que estão interferindo na variável resposta,
Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO
Medidas de Dispersão para uma Amostra Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Para entender o que é dispersão, imagine que quatro alunos
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
Planejamento da pesquisa científica: incerteza e estatística. Edilson Batista de Oliveira Embrapa Florestas
Planejamento da pesquisa científica: incerteza e estatística Edilson Batista de Oliveira Embrapa Florestas Pesquisa em laboratórios na Embrapa Anos 70 Anos 80 Anos 90 Século 21 Precisão em Laboratórios:
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
ESTATÍSTICA EXPERIMENTAL. Delineamento experimental. Aula 04
ESTATÍSTICA EXPERIMENTAL Delineamento experimental. Aula 04 Conceito Delineamento experimental É o plano utilizado para realizar o experimento. Esse plano implica na maneira como os diferentes tratamentos
EXPERIMENTAÇÃO AGRÍCOLA
EXPERIMENTAÇÃO AGRÍCOLA DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) Eng. Agrônomo: Francisco Bruno Ferreira de Sousa [email protected]/ [email protected] Contato: (99) 99199460 Objetivos: Estudar
UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE ILHA SOLTEIRA FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA
Nível: Histórico: Mestrado/Doutorado Disciplina aprovada em 24.08.94 Código Capes: ASP01005 Docente(s) Responsável(eis): Prof. Dr. EVARISTO BIANCHINI SOBRINHO Prof. Dr. WALTER VERIANO VALERIO FILHO Situação
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL ESTUDO DE VARIABILIDADE DOS DADOS EXPERIMENTAIS Prof. Miguel Toledo del Pino, Eng. Agrícola (Dr.) INTRODUÇÃO Realizamos experimentos para compararmos os efeitos de tratamentos
i j i i Y X X X i j i i i
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida do grau de ligação entre duas variáveis Usos Regressão
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Profª Railene Hérica Carlos Rocha 1. Introdução
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL Delineamento Inteiramente Casualizado - DIC Prof. Miguel Toledo del Pino, Dr. INTRODUÇÃO No DIC a distribuição dos tratamentos às unidades experimentais é feita inteiramente ao
ESTATÍSTICA EXPERIMENTAL. ANOVA. Aula 05
ESTATÍSTICA EXPERIMENTAL ANOVA. Aula 05 Introdução A ANOVA ou Análise de Variância é um procedimento usado para comparar a distribuição de três ou mais grupos em amostras independentes. A análise de variância
Experimentos em Parcelas Subdivididas
Experimentos em Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 08 de novembro de 2018 Londrina Tal como no caso de fatorial, o termo parcelas subdivididas não se refere a um tipo de delineamento
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE BOTUCATU FACULDADE DE CIÊNCIAS AGRONÔMICAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - IRRIGAÇÃO E DRENAGEM
PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA - IRRIGAÇÃO E DRENAGEM PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA DISCIPLINA: Estatística Experimental CURSO: Mestrado ( X ) Doutorado ( X ) DEPARTAMENTO RESPONSÁVEL:
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Introdução o Os ensaios em quadrados latinos levam em conta o controle local, aplicado em dois destinos:
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 29 de julho de 2017 Parcelas Subdivididas Tal
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
1 TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br/wordpress os direitos autorais. ANÁLISE DA VARIÂNCIA Desdobramento da variância total em seus componentes
TEAZ Técnicas Experimentais Aplicadas à Zootecnia PLANO DE ENSINO
TEAZ Técnicas Experimentais Aplicadas à Zootecnia PLANO DE ENSINO II EMENTA Principais delineamentos experimentais usados em pesquisas zootécnicas. Condução de pesquisas e análises estatísticas mais utilizadas.
Planejamento de instalação de experimentos no campo
Planejamento de instalação de experimentos no campo Antonio Williams Moita Embrapa Hortaliças Goiânia, 28 de novembro de 2012 Experimentação Agrícola Histórico John Bennet Lawes - após prolongadas experimentações
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 22 de outubro de 2018 Londrina 1 / 24 Obtenção de uma amostra Princípios básicos da experimentação Há basicamente duas
PRINCÍPIOS BÁSICOS DE EXPERIMENTAÇÃO. Profª. Sheila Regina Oro
PRINCÍPIOS BÁSICOS DE EXPERIMENTAÇÃO Livro: Curso de estatística experimental Autor: Frederico PIMENTEL-GOMES Capítulo: 2 Livro: Estatística experimental Autor: Sonia VIEIRA Capítulo: 1 Profª. Sheila Regina
Prova de Estatística
Prova de Estatística 1. Para um número-índice ser considerado um índice ideal, ele precisa atender duas propriedades: reversão no tempo e o critério da decomposição das causas. Desta forma, é correto afirmar
UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS GABARITO
UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS Programa de Pós-Graduação em Estatística e Experimentação Agropecuária Prova do Processo Seletivo para Mestrado 16- GABARITO N o de inscrição
SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
Delineamento e Análise Experimental Aula 5
Aula 5 Castro Soares de Oliveira Delineamentos Experimentais Delineamento experimental ou desenhos experimentais é o plano utilizado para realizar o experimento. Esse plano implica na maneira como os diferentes
H 0 : m 1 = m 2 =... = m I = 0 H a : pelo menos m u m k, para algum u k (u,k=1,2,...,i)
Em um experimento ao se comparar as médias de tratamentos ou dos níveis de um fator de tratamentos, inicialmente, formula-se a seguintes hipóteses: H 0 : m = m =... = m = 0 H a : pelo menos m u m k, para
Métodos Quantitativos em Biotecnologia (220124)
Plano de aulas: Métodos Quantitativos em Biotecnologia (220124) Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Curso: Biotecnologia(4. perfil) - 2017 Professora responsável: Simone Daniela
Bioexperimentação. Prof. Dr. Iron Macêdo Dantas
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação
Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 17 de outubro de 2018 Londrina 1 / 31 Obtenção de uma amostra Há basicamente duas formas de se obter dados para uma pesquisa
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
Especialização em Engenharia de Processos e de Sistemas de Produção
Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente
Lucas Santana da Cunha 27 de novembro de 2017
EXPERIMENTAÇÃO E ANÁLISE DE VARIÂNCIA Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 27 de novembro de 2017 Experimentação A experimentação se difundiu como
Experimentação Agrícola (220124)
Plano de aulas: Experimentação Agrícola (220124) Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Objetivo Estudar o planejamento, a execução, a análise estatística de dados experimentais
COMPARAÇÕES MÚLTIPLAS
ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ COMPARAÇÕES MÚLTIPLAS Josiane Rodrigues Lilian Emerick Fernandes 2009 INTRODUÇÃO Comparação entre médias de tratamentos ou dos níveis de um fator de tratamentos;
PLANEJAMENTO E ANÁLISE ESTATÍSTICA DE EXPERIMENTOS AGRONÔMICOS
PLANEJAMENTO E ANÁLISE ESTATÍSTICA DE EXPERIMENTOS AGRONÔMICOS DÉCIO BARBIN PLANEJAMENTO E ANÁLISE ESTATÍSTICA DE EXPERIMENTOS AGRONÔMICOS EDITORA MECENAS LTDA. LONDRINA - PARANÁ - BRASIL 2013 Planejamento
Concurso Público para provimento de cargo efetivo de Docentes
Questão 01 Os dados, a seguir, são referentes às notas de cinco alunos de uma turma para as provas P 1 e P 2. P 1 = {2, 3, 4, 5, 6} P 2 = {2, 2, 4, 5, 7} Analisando os resultados, é possível afirmar que:
H 0 : m 1 = m 2 =... = m I = 0 H a : pelo menos m u m k, para algum u k (u,k=1,2,...,i)
Em um experimento ao se comparar as médias de tratamentos ou dos níveis de um fator de tratamentos, inicialmente, formula-se a seguintes hipóteses: H 0 : m = m =... = m I = 0 H a : pelo menos m u m k,
DELINEAMENTO EM BLOCOS AO ACASO
DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.
MEDIDAS DE POSIÇÃO E DE DISPERSÃO. Profª Andréa H Dâmaso
MEDIDAS DE POSIÇÃO E DE DISPERSÃO Profª Andréa H Dâmaso Bioestatística e Delineamento Experimental - 2012 Tópicos da aula Medidas de tendência central e dispersão Variáveis contínuas: distribuição normal
QUI 154/150 Química Analítica V Análise Instrumental. Aula 1 Estatística (parte 1)
Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas Depto. de Química QUI 154/150 Química Analítica V Análise Instrumental Aula 1 Estatística (parte 1) Prof. Julio C. J. Silva Juiz
MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS
MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS Programa de Pós-Graduação em Estatística e Eperimentação Agropecuária Prova do Processo Seletivo para o Mestrado
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL
MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL Pedro Henrique Bragioni Las Casas [email protected] Apresentação baseada nos slides originais de Jussara Almeida e Virgílio Almeida
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Caracterização o O delineamento inteiramente casualizado (DIC) é o mais simples de todos os delineamentos
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 06 de julho de 2016 Nos experimentos fatoriais, todas
EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Muitas vezes, embora se tenha cuidado no planejamento e Ao planejar um experimento, o pesquisador
Esquema Fatorial. Lucas Santana da Cunha Universidade Estadual de Londrina
Esquema Fatorial Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de junho de 2016 Muitos experimentos envolvem o estudo dos efeitos
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br\wordpress REGRESSÃO X CORRELAÇÃO Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida
Avaliando Hipóteses. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE
Avaliando Hipóteses George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Pontos importantes Erro da Amostra e Erro Real Como Calcular Intervalo de Confiança Erros de hipóteses Estimadores Comparando
USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA
USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA F. M. A. S. COSTA 1, A. P. SILVA 1, M. R. FRANCO JÚNIOR 1 e R.
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: Experimentação Agrícola Código da Disciplina: AGR 283 Curso: Agronomia Semestre de oferta da disciplina: 4 P Faculdade responsável: Agronomia Programa em vigência a partir
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS. Capítulo 1 VARIÁVEIS E AMOSTRAS 1
PREFÁCIO VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS xiii DO EXCEL... xv Capítulo 1 VARIÁVEIS E AMOSTRAS 1 VARIÁ VEIS 4 NÚMERO DE VARIÁVEIS 5 CLASSIFICAÇÃO DAS VARIÁVEIS 6 ESCALA DE MEDIÇÃO DAS VARIÁVEIS 7 POPULAÇÃO
ESTATÍSTICA Medidas de Síntese
2.3 - Medidas de Síntese Além das tabelas e gráficos um conjunto de dados referente a uma variável QUANTITATIVA pode ser resumido (apresentado) através de Medidas de Síntese, também chamadas de Medidas
DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO
PLANO DE AULA DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO TOTAL DE SEMANAS: 20 SEMANAS TOTAL DE ENCONTROS: 40 AULAS Aulas Conteúdos/ Matéria Tipo de aula Textos, filmes e outros materiais
Química e Estatística
Revisão dos Conceitos Básicos de Química e Revisão dos Conceitos Básicos de Definições Básicas de Média Separatrizes (Quartil, Decis e Percentil) Desvio Padrão Variância Função de Distribuição de Probabilidade
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo
Estatística Estatística Descritiva Ivonete Melo de Carvalho Conteúdo Definições; Tabelas e Gráficos; Medidas de tendência central; Medidas de dispersão. Objetivos Diferenciar população e amostra. Elaborar
Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017
Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017 10/03/2016 As medidas de tendência central são uma boa forma para descrever resumidamente
Resultados possíveis do nosso estudo
Resultados possíveis do nosso estudo Interpretação de gráficos, decisão baseada nas hipóteses, interpretação. Para termos isso, precisamos fazer uma inferência estatística! Número de visitas Inferência
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] TESTES PARA COMPARAÇÃO DE MÉDIAS O teste F permite tirar conclusões muito gerais relacionadas com os
MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões
MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual
DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC)
DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 08 de julho de 2017 DBC O delineamento em
ESTATÍSTICA ECONÔMICA A 6EMA
6EMA020-2000 Lucas Santana da Cunha email: [email protected] Universidade Estadual de Londrina 13 de abril de 2016 CRONOGRAMA 1 o BIMESTRE: MÓDULO I - Estatística Descritiva Noções Básicas em estatística:
Mario de Andrade Lira Junior lira.pro.br\wordpress
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress autorais. 27/04/2009 1 Modelo simplificação da realidade Linear formato de reta Generalizado não específico Cada delineamento experimental
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB
DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores
Delineamento em Quadrado Latino (DQL)
Delineamento em Quadrado Latino () Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Na Seção anterior introduziu-se o delineamento em blocos ao acaso como um delineamento
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO. Professora Rosana da Paz Ferreira CCB1052 (2018.2)
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO Curso(s): Ciência da Computação Período: 2018.2 Professora: Rosana da Paz Ferreira Disciplina(s): INF5325 Probabilidade e Estatística
Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL
Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Experimentos (testes) são realizados por pesquisadores em todos os campos de investigação, usualmente para descobrir
ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM
ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO. Professora Rosana da Paz Ferreira CCB1052 (2018.2)
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO Curso(s): Ciência da Computação Período: 2018.2 Professora: Rosana da Paz Ferreira Disciplina(s): CCB1052 Probabilidade e Estatística
Medidas de Dispersão ou variabilidade
Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
