= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1

Tamanho: px
Começar a partir da página:

Download "= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1"

Transcrição

1 Definição 0.1. eja F : R n R n um campo de vetores (diferenciável. screva F = (F 1,..., F n. (i O divergente de F é a função div F : R n R definida por div F. = m particular, para n = temos n F i = F F n. x i=1 i x 1 x n div F = F 1 x + F 2 + F z. (ii e n =, o rotacional de F é o campo de vetores rot F : R R definido por rot F =. i j k ( x y z F 1 F 2 F = F F 2 z, F 1 z F x, F 2 x F 1, onde x, y e z são abreviações 1 para os operadores / x, etc.. Observação. Não compensa memorizar a última expressão para o rotacional de um campo vetorial. e = ( x, y, z é um vetor de operadores diferenciais, um jeito de lembrar das definições acima é pensar que div F = F (produto escalar e rot F = F (produto vetorial. ste tipo de notação é muito comum em Física, e é provavelmente o que vocês encontrar nas disciplinas específicas que usam Cálculo III como ferramenta. xemplo 0.2 (Interpretações. eja F : R R um campo de vetores. uponha que F é um campo de velocidades agindo sobre um fluido que passa por uma membrana esférica (em geral, qualquer superfície fechada. O divergente de F nos dá uma medida qualitativa do quanto o fluido entra ou sai desta esfera. e o divergente é positivo, significa que sai mais fluido do que entra, enquanto que se é negativo, entra mais fluido do que sai. e n é o campo normal unitário ao longo da superfície, a componente de F que de fato contribui para o fluxo do fluido é dada pelo produto 1 Legítimas. 1

2 escalar F n. omar isto sobre todos os infinitos pedacinhos da superfície nos dá a integral de superfície 2 F n d. e V é o volume encerrado pela superfície, o Teorema da Divergência nos diz que F n d = div F dx dy dz, V que é positivo ou negativo conforme div F tenha sinal constante. Veja a figura a seguir: F Figura 1: Interpretação para div F. Há uma outra interpretação em termos de volumes: se é dado um volume V no espaço, que é deformado pelo fluxo do campo F, obtemos para cada instante de tempo t um sólido deformado V t. O divergente de F mede a taxa de variação instantânea (= derivada deste volume. Fixe um ponto no espaço p R. Considere uma bola aberta centrada em p, com raio extremamente pequeno, e interprete F como um campo de forças. Nesta bola, podemos supor que o campo F faz os pontos próximos de p seguirem um movimento de rotação, 2 screver ao invés de nada mais é do que um lembrete de que a superfície é fechada, do mesmo modo que escrevemos ao invés de quando consideramos integrais de linha ao longo de curvas fechadas. Que nada mais é do que uma das várias facetas do Teorema Fundamental do Cálculo, veja aqui, por exemplo. 2

3 em torno de um certo eixo. A direção deste eixo de rotação infinitesimal é precisamente o vetor rot F(p. No plano perpendicular à rot F(p que passa por p, este movimento de rotação é máximo, e a sua intensidade é medida justamente pela norma rot F(p. Veja a figura a seguir: rot F(p F(p Figura 2: Interpretação para rot F. xemplo 0. (Um caso concreto. Considere o campo F : R R definido por F(x, y, z. = (x 2 + e z, cos y + 4x, ze x. Temos que e também que div F(x, y, z = x (x2 + e z + (cos y + 4x + z (zex = 2x sen y + e x, i j k rot F(x, y, z = x y z x 2 + e z cos y + 4x ze x = (0 0, e z ze x, 4 0 = (0, e z ze x, 4 Os operadores gradiente, divergente e rotacional estão relacionados entre si pela: Proposição 0.4. ejam F : R R um campo de vetores e ϕ : R R um campo escalar. ntão valem que rot ϕ = 0 e div rot F = 0.

4 Ou seja, em outras palavras, todo campo conservativo é irrotacional e todo campo rotacional é solenoidal 4. Observação. e X(R denota o conjunto dos campos de vetores em R, e C (R é o conjunto dos campos escalares em R, este resultado nos diz que dar dois passos na seguinte sequência sempre retorna zero: C (R X(R rot X(R div C (M Demonstração: Que rot ϕ = 0 é verdade porque a ordem não importa na hora de calcular derivadas segundas de ϕ. Por exemplo, para a primeira componente de rot ϕ, temos ( ϕ z z ( ϕ = 2 ϕ z 2 ϕ z = 0. Já para a segunda afirmação, teremos seis parcelas que se cancelam duas a duas: div rot F = ( F x F 2 + ( F1 z z F + ( F2 x z x F 1 = 2 F x 2 F 2 x z + 2 F 1 z 2 F x + 2 F 2 z x 2 F 1 z = 0. A última propriedade computacional que vale a pena registrar é a: Proposição 0.5 (Regra do produto. ejam F : R R um campo de vetores e ϕ : R R um campo escalar. ntão valem: (i div(ϕf = ϕ div F + ϕ F; (ii rot(ϕf = ϕ rot F + ϕ F; Observação. É exatamente como a regra do produto. ncarando div e rot como derivadas genéricas, a regra é que a derivada de um produto é a soma de duas parcelas: um vezes a derivada do outro. Use o vezes que fizer sentido (produto escalar ou vetorial, conforme o resultado final deva ser um número ou vetor (divergente ou rotacional. 4 Curiosidade: existe um resultado chamado Teorema da decomposição de Helmholtz que afirma que todo campo de vetores pode ser escrito como a soma de um campo com rotacional nulo com um campo solenoidal (divergente nulo. Vocês podem talvez se depararem com este tipo de coisa no futuro. 4

5 Demonstração: Vamos justificar (i. Pela regra do produto usual, temos ( div(ϕf = (ϕf x i = ϕ F i + ϕ F i x i x i i i=1 = ϕ i=1 F i x i + i=1 ϕ F x i = ϕ div F + ϕ F. i=1 i A regra do produto para o rotacional é um pouco mais complicada de justificar rapidamente usando um somatório, mas você pode fazer o cálculo diretamente, como um exercício pra pegar prática. Vejamos uma aplicação: xemplo 0.6. Considere o campo radial F : R \ {0} R dado por ( x F(x, y, z = (x 2 + y 2 + z 2 /2, y (x 2 + y 2 + z 2 /2, z (x 2 + y 2 + z 2 /2. Vamos verificar que div F = 0, usando a regra do produto para o divergente. e denotamos por r o campo de posições, ou seja, r = (x, y, z, temos que r 2 = x 2 + y 2 + z 2 e assim F se expressa de forma simples como Temos então que div F = div ( r r F(r = = 1 r div r + = r r 2 r 5 = 0, r r. ( 1 = div r r ( 1 r e o passo indicado em azul é justificado notando que r = r r r 5 r x (x2 + y 2 + z 2 /2 = 2 (x2 + y 2 + z 2 5/2 2x = x r 5. xemplo 0.7. ejam uma superfície fechada qualquer em R (com campo de vetores normais n apontando para fora, V o volume encerrado por, e suponha que 0. Afirmo que x dy dz + y dz dx + z dx dy (x 2 + y 2 + z 2 /2 = 5 { 0, se 0 V, 4π, se 0 V.

6 Basicamente, o valor da integral depende da posição da superfície, conforme a figura a seguir: 4π 0 Figura : As duas possibilidades: 0 V ou 0 V. Note que o integrando corresponde ao campo do exemplo anterior, que vimos que é solenoidal. Analisemos então a situação por casos: 0 V: como a única singularidade do campo não está no interior da região encerrada por, o Teorema da Divergência aplica-se diretamente: F n d = 0 div F dx dy dz = 0. V 0 V: não pode-se aplicar o Teorema da Divergência diretamente, justamente porque há uma singularidade dentro da região para a qual queremos passar a integral. endo assim, considere um raio a > 0 pequeno o suficiente para que a esfera de raio a centrada na origem esteja completamente contida em V. Considere o campo normal e unitário ao longo de apontando para fora. eja M o sólido no espaço encerrado entre e, conforme a figura abaixo: M Figura 4: Aplicando o Teorema da Divergência. 6

7 A orientação de já é compatível com a orientação do sólido M, enquanto que a orientação de não é compatível, e levaremos isto em conta na hora de aplicar o Teorema da Divergência: 0 = M div 0 F dx dy dz = F n d F n d. Agora, note que ao longo de, temos que r = a, donde F(r = r/a, e também n = r/a. Deste modo, vem que F n d = F n d = = 1 a 2 r a r a d = a 2 a 4 d d = 1 a 2 Área( = 1 a 2 4πa2 = 4π, como queríamos. 7

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

CÁLCULO II - MAT0023. F (x, y, z) =

CÁLCULO II - MAT0023. F (x, y, z) = UNIERIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da ida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO II - MAT0023 17 a Lista de exercícios 1.

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT)

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT) LISTA DE EXEÍIOS SOBE TEOEMA DE GEEN, FLUXO (ONT.), DIVEGÊNIA E OTAIONAL DE UM AMPO ESPAÇO, LAPLAIANO, FUNÇÕES HAMÔNIAS (ONT) POFESSO: IADO SÁ EAP () Sejam F (x, y, ) e G(x, y, ) campos vetoriais definidos

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

Aula 25 Teorema do Divergente

Aula 25 Teorema do Divergente Aula 25 Teorema do Divergente MA211 - Cálculo II Marcos duardo Valle Departamento de Matemática Aplicada Instituto de Matemática, statística e Computação Científica Universidade stadual de Campinas Introdução

Leia mais

equação paramêtrica/vetorial da superfície: a lei

equação paramêtrica/vetorial da superfície: a lei 1 Superfícies Definição Chamamos Superfície parametrizada em R n : uma função contínua : B R n (n 3) onde B R 2. Superfície: a imagem de, equação paramêtrica/vetorial da superfície: a lei Seja p 0 = (s

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

Exercícios resolvidos P3

Exercícios resolvidos P3 Exercícios resolvidos P3 Questão 1 Calcule a área da superfície obtida pela revolução da curva α(t) (R cos t,, R sin t + a), t [, 2π], < R < a, em torno do eixo x. Esta superfície é chamada de Toro. Resposta:

Leia mais

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x

Leia mais

Conceitos Matemáticos & Notações

Conceitos Matemáticos & Notações Conceitos Matemáticos & Notações Apêndice A: Notações - x,δx: uma pequena mudança em x - t : a derivada parcial em relação a t mantendo as outras variáveis fixadas d - : a derivada no tempo de uma quantidade

Leia mais

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Livros-Teto sugeridos para o curso: Reit-Milford e Griffiths Vamos inicialmente relembrar

Leia mais

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES LITA DE EXERCÍCIO OBRE FLUXO, TEOREMA DE GAU E DE TOKE (1) Fazer exercícios 1), 2), 3), 4) da seção 10.4.4 pgs 235, 236 do livro texto. (2) Fazer exercícios 1), 2), 3), 5) da seção 10.5.3 pgs 241, 242

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Prof. Alex G. Dias Prof. Alysson F. Ferrari Integrando Campos vetoriais Você já viu que, diferentemente de campos escalares, campos

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Coordenadas Curvilíneas Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Até agora, usamos sempre o sistema de coordenadas cartesiano, ou seja: dados três eixos

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Aula Teórica nº 2 Prof. Responsável: Mário J. Pinheiro 1. FLUXO DE UM CAMPO VECTORIAL. Problema de aplicação [nº 10 da colectânea]

Aula Teórica nº 2 Prof. Responsável: Mário J. Pinheiro 1. FLUXO DE UM CAMPO VECTORIAL. Problema de aplicação [nº 10 da colectânea] Aula Teórica nº 2 rof. Responsável: Mário J. inheiro 1. FLUXO DE UM CAMO VECTORIAL roblema de aplicação [nº 10 da colectânea] No estudo dos campos vectoriais é útil introduzir linhas de força (ou de corrente),

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de arvalho Eletromagnetismo I - Eletrostática Lei de Ampère na Forma Diferencial (apítulo 7 Páginas 195 a 203) Teorema de

Leia mais

Fluxo de Campos Vetoriais: Teorema da

Fluxo de Campos Vetoriais: Teorema da Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Fluxo de Campos Vetoriais: Teorema da Divergência Na aula anterior introduzimos o conceito de superfície paramétrica e chegamos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

A Projeção e seu Potencial

A Projeção e seu Potencial A Projeção e seu Potencial Rolci Cipolatti Departamento de Métodos Matemáticos Instituto de Matemática, Universidade Federal do Rio de Janeiro C.P. 68530, Rio de Janeiro, Brasil e-mail: cipolatti@im.ufrj.br

Leia mais

Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas

Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas Capítulo 3 Potencial Elétrico 3.1 Energia Potencial e Forças Conservativas O trabalho W realizado por uma força F ao longo de um caminho C orientado de um ponto a um ponto P é dado por W C P P F d l (3.1)

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais Lista 6: CDCI Turmas: AEMN e BEMN Prof. Alexandre Alves Universidade São Judas Tadeu Divergente e Rotacional de Campos Vetoriais Exercício : Calcule a divergência e o rotacional dos seguintes campos vetoriais:

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG INTITUTO E MATEMÁTIA epartamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/1 Prova da área I 1-8 9 10 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 018/ Prova da área I 1-6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Cálculo Diferencial e Integral de Campos Vetoriais

Cálculo Diferencial e Integral de Campos Vetoriais Capítulo 1 Cálculo Diferencial e Integral de Campos Vetoriais Conteúdo 1.1 Breve Interlúdio........................... 8 1.2 Noções básicas de campo escalar e vetorial........... 9 1.3 Divergência de um

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Capítulo 22 Lei de Gauss

Capítulo 22 Lei de Gauss Capítulo Lei de Gauss 1 Propriedades das linhas de campo elétrico A uantidade de linhas de campo associada a uma distribuição de carga elétrica é proporcional à carga da distribuição Quanto maior a carga,

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente. Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

2.4 Interpretação vetorial do Teorema de Green

2.4 Interpretação vetorial do Teorema de Green 2.4. INTERPRETAÇÃO VETORIAL DO TEOREMA DE GREEN 55 2.4 Interpretação vetorial do Teorema de Green Para vermos a interpretação vetorial do Teorema de Green e algumas aplicações, precisamos definir os operadores

Leia mais

Lista 2. Cálculo Vetorial. Gradiente, Divergente e Rotacional. onde x, y e z são medido em metros. Ele está atualmente

Lista 2. Cálculo Vetorial. Gradiente, Divergente e Rotacional. onde x, y e z são medido em metros. Ele está atualmente Lista 2 Cálculo Vetorial Gradiente, Divergente e Rotacional 1 Desenhe os seguintes campos vetoriais: a) yi + xj b) xi + yj c) d) 2 Calcule a matriz Jacobiana de f(x, y) = (e x sin x, e x cos y). 3 Desenhe

Leia mais

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada).

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada). APOIO À FICHA 7 MAGAIDA BAÍA, DM, IST (Alguns) Exemplos das aulas teóricas de 5-4-219 (revistos e com solução detalhada). 1. Calcule o volume de = {(x, y, z) 3 : x 2 + y 2 + z 2 16, z } esolução: Queremos

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

Cálculo III-A Módulo 14

Cálculo III-A Módulo 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 4 Aula 25 Teorema de tokes Objetivo Estudar um teorema famoso que generalia

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas

Leia mais

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

TÓPICOS DO CÁLCULO VETORIAL

TÓPICOS DO CÁLCULO VETORIAL TÓPICOS DO CÁLCULO VETORIAL O ramo da Matemática que estudaremos aqui preocupa-se com a análise de vários tipos de fluxos: por exemplo, o fluxo de um fluído ou o fluxo da eletricidade. Na verdade, os primeiros

Leia mais

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2 Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG - INTITUTO DE MTEMÁTIC Departamento de Matemática Pura e plicada MT1168 - Turma - 19/1 Prova da área I 1-6 7 8 Total Nome: Ponto extra: ( )Wikipédia ( )presentação ( )Nenhum Tópico: Cartão: Regras

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

Física. Campo elétrico. Parte II. Lei de Gauss

Física. Campo elétrico. Parte II. Lei de Gauss Física Campo elétrico Parte II Lei de Gauss Lei de Gauss analogia água Lei de Gauss A magnitude do campo, como já visto, estará contida na densidade de linhas de campo: será maior próxima à carga e menor

Leia mais

Cálculo IV EP13. Aula 23 Integral de Superfície de um Campo Vetorial

Cálculo IV EP13. Aula 23 Integral de Superfície de um Campo Vetorial Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP1 Aula Integral de uperfície de um Campo

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Resumo dos resumos de CDI-II

Resumo dos resumos de CDI-II Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)?

Fundamentos de Física Clássica UFCG Prof. Ricardo. Potencial Elétrico. O que é diferença de potencial (ddp)? Potencial Elétrico O que é diferença de potencial (ddp)? A diferença de potencial entre dois pontos e num campo elétrico, seja ele uniforme ou não, é, por definição, o trabalho por unidade de carga (J/C

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Questão 1. (2,5 pontos)

Questão 1. (2,5 pontos) ESCOLA DE CIÊNCIAS E TECNOLOGIA UFN POVA DE EPOSIÇÃO DE CÁLCULO ECT 11 Turma 4/1/14 Profs. onaldo e Gabriel Nome Legível: Assintatura: Instruções: Q1 1. Leia todas as instruções antes de qualquer outra

Leia mais

3.6 O Teorema de Stokes

3.6 O Teorema de Stokes 18 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.6 O Teorema de tokes Definição 3.41 eja K R um conjunto fechado e limitado, com interior não vazio, cuja fronteira K é uma curva fechada, simples e regular ou regular

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT068 - Turma - 07/ Prova da área I -6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 017/ Prova da área I 1-6 7 8 Total Nome: Cartão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 MAT2455 - Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 1. Determine uma representação paramétrica de cada uma das superfícies abaixo e calcule sua área:

Leia mais

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados. 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

FUJA DE CÁLCULO III P3

FUJA DE CÁLCULO III P3 FUJA DE CÁLCULO III P3 Roteiro/Resumo REVISÃO QUÁDRICAS: Alguns alunos me disseram que, por algum motivo, seus professores de cálculo II não passaram as quádricas em aula. Como esse conhecimento é imprescindível

Leia mais

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes.

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes. Se tima Lista de Exercı cios a lculo II - Engenharia de Produc a o extraı da do livro A LULO - vol, James Stewart a lculo Vetorial 1) Determine o campo vetorial gradiente de f. a) f (x, y) = ln(x + y)

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto

Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto Resumos de CD- 1. Topologia e Continuidade de Funções em R n 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto B r (a) = {x R n : x a < r}. 2. Seja A R n um conjunto. m ponto a A diz-se: (i)

Leia mais

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014 Cálculo 2 Cálculo Vetorial ECT1212 Prof. Ronaldo Carlotto Batista 20 de novembro de 2014 Integrais de linha Podemos integrar uma função escalar f = f (x, y, z) em um dado caminho C, esta integral é dada

Leia mais

Cálculo III-A Módulo 7

Cálculo III-A Módulo 7 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Módulo 7 Aula 13 Aplicações da Integral de Linha de ampo Escalar Objetivo Apresentar

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área I UFRGS - INSTITUTO E MATEMÁTICA epartamento de Matemática Pura e Aplicada MAT01168 - Turma A - 017/ Prova da área I 1-6 7 8 Total Nome: Cartão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 14 de Outubro de 2011 Prova 1 D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais