CLASSIFICAÇÃO DE IMAGENS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CLASSIFICAÇÃO DE IMAGENS"

Transcrição

1 CLASSIFICAÇÃO DE IMAGENS SIG Profa.. Dra. Maria Isabel Castreghini de Freitas Profa. Dra. Andréia Medinilha Pancher

2 O que é classificação? É o processo de extração de informações em imagens para reconhecer padrões e objetos homogêneos que são utilizados para mapear áreas da superfície terrestre as quais correspondam aos temas de interesse. Associa cada pixel da imagem a um rótulo descrevendo um objeto real. Dessa forma, obteremos um mapa temático, o qual mostrará a distribuição geográfica de um tema, por exemplo a vegetação e uso da terra.

3 Classificação de Imagens Apesar da técnica de interpretação visual ser muito utilizada, há uma tendência de utilização da classificação computacional, devido a rapidez e facilidade em obter resultados (CROSTA, 1992). No processo de classificação de dados digitais, os elementos presentes na superfície terrestre são conhecidos por classes temáticas. Quando uma imagem é classificada, os pixels são rotulados de acordo com a ocupação do solo. Para o propósito, utilizam-se os classificadores. A rotulação dos valores dos níveis de cinza é efetuada utilizando-se algoritmos estatísticos (programas computacionais) de reconhecimento de padrões espectrais. A classificação subdivide-se em supervisionada e não-supervisionada, dependendo do algoritmo que será aplicado. Ambos os casos demandam duas fases: a do treinamento e a da classificação. (MOREIRA, 2003)

4 Classificação de imagens Procedimentos prévios para a realização da classificação: Levantamento de campo, a fim de coletar amostras para o treinamento dos classificadores. Interpretação das imagens em tela do computador, selecionando-se uma parte da área de estudo, a fim de se conhecer as características físicas e antrópicas de uma área piloto, servindo de padrão de comparação (verdade terrestre) para a posterior classificação supervisionada dos alvos urbanos.

5 Resultado da Classificação Digital É apresentado por classes espectrais (áreas que possuem características espectrais semelhantes), uma vez que um alvo dificilmente é caracterizado por uma única assinatura espectral. É constituído por um mapa de "pixels" classificados, representados por símbolos gráficos ou cores. O processo de classificação digital transforma um grande número de níveis de cinza de cada banda espectral em um pequeno número de classes em uma única imagem.

6 Técnicas de Classificação classificações unidimensionais: técnicas aplicadas a um canal espectral (uma banda da imagem) classificação multiespectral: o critério de decisão depende da distribuição de níveis digitais (ou níveis de cinza) em vários canais espectrais (várias bandas) Regra Geral: No geral, quanto maior o número de bandas espectrais, maior será a precisão da classificação

7 Classificadores Classificadores "pixel a pixel : usam de forma individual a informação espectral de cada pixel na busca por regiões homegêneas. Ex: Máxima Verossimilhança (MAXVER), MAXVER ICM, Distância Mínima (distância euclidiana) e Paralelepípedo. Classificadores por regiões: utilizam a informação espectral de cada pixel e a relação espacial de vizinhança entre pixels (áreas homogêneas espectrais e espaciais da imagem) O SPRING usa os classificadores: ISOSEG, Battacharya e ClaTex (não supervisionados) para classificar as regiões de uma imagem segmentada.

8 Tipos de Classificação SUPERVISIONADA (Pixel a Pixel) Paralelepípedo Distância Mínima MAXVER MAXVER-ICM (considera a vizinhança) NÃO SUPERVISIONADA (por regiões) ISOSEG SUPERVISIONADA (por regiões) Bhattacharya ClaTex

9 Classificação Supervisionada Tipo de classificação que demanda o conhecimento prévio de alguns aspectos da área verdade terrestre. Tais áreas são padrão de comparação com as quais todos os pixels desconhecidos serão comparados e, posteriormente, classificados. Nessa classificação, o treinamento diz respeito ao reconhecimento da assinatura espectral de cada uma das classes de uso do solo da área da imagem. Para alguns classificadores (algoritmos), esse reconhecimento abrange a obtenção de parâmetros estatísticos (média, matriz de covariância, etc.) de cada classe presente na área. Para outros necessita-se somente do nível mínimo e máximo de níveis de cinza. (CROSTA, 1992)

10 Treinamento Área de treinamento: a área da imagem que o usuário identifica como representante de uma das classes em estudo. Os limites da área de treinamento são traçados diretamente sobre a imagem, no monitor de vídeo do sistema de processamento de imagens. (Crosta, 1992) Treinamento é o reconhecimento da assinatura espectral das classes. Formas de treinamento: supervisionado e nãosupervisionado. Área de treinamento = amostra homogênea da classe com toda a variabilidade dos níveis de cinza. Recomenda-se que o usuário adquira mais de uma área de treinamento, utilizando o maior número de informações disponíveis, como trabalhos de campo, mapas, etc. O número de "pixels" de treinamento de uma classe aumenta com a complexidade da área e do tema em estudo.

11 Métodos de Classificação Supervisionada

12 Limite de aceitação de uma classificação, no ponto onde as duas distribuições se cruzam. Desta forma, um "pixel" localizado na região sombreada, apesar de pertencer à classe 2, será classificado como classe 1, pelo limite de aceitação estabelecido. Fonte: Jensen, 1996

13 Métodos de Classificação Supervisionada: Paralelepípedo Considera uma área, na forma de quadrado ou paralelepípedo, no espaço de atributos ao redor do conjunto de treinamento; O algoritmo considera um intervalo de valores (nível de cinza) dentro de cada categoria na área de treinamento, definidos como valores mínimo e máximo para cada banda espectral.

14 Métodos de Classificação Supervisionada: Distância Mínima O classificador examina as distâncias entre um pixel e as médias das classes e atribui o pixel à classe que apresentar a menor distância; Se a distância do pixel é maior do que a distância de qualquer categoria definida pelo analista, o pixel permanecerá como não classificado ou desconhecido.

15 Métodos de Classificação Supervisionada: MAXVER Considera a ponderação das distâncias entre médias dos níveis de cinza das classes, utilizando parâmetros estatísticos. Utiliza estatísticas de treinamento para calcular a probabilidade de um pixel pertencer a uma determinada classe. Examina a função de probabilidade de um pixel para cada classe e atribui o pixel à classe com a maior probabilidade. Geralmente fornece classificações com as melhores precisões. Para que a classificação por máxima verossimilhança seja precisa o suficiente, é necessário um número elevado de "pixels", para conjunto de treinamento.

16 MAXVER Este método parte do princípio que o usuário conhece bem a temática e a região da imagem a ser classificada para poder definir classes representativas. Fonte: CORREIA et al., 2004

17 Classificador MAXVER-ICM Enquanto o classificador MAXVER associa classes considerando pontos individuais da imagem, o classificador MAXVER-ICM (Interated Conditional Modes) considera também a dependência espacial na classificação. Em uma primeira fase, a imagem é classificada pelo algoritmo MAXVER atribuindo classes aos "pixels", considerando os valores de níveis digitais. O algoritmo atribui classes a um determinado "pixel", considerando a vizinhança interativamente. Este processo é finalizado quando a % de mudança (porcentagem de "pixels" que são reclassificados) definida pelo usuário é satisfeita. O SPRING fornece 5%, 1% e 0.5% para valores de porcentagem de mudanças. Um valor 5% significa que a reatribuição de classes aos "pixels" é interrompida quando até 5% do total de "pixels" da imagem foi alterado.

18 Classificação Não-Supervisionada Quando o usuário utiliza algoritmos para reconhecer as classes presentes na imagem, a classificação é dita nãosupervisionada. Ao definir áreas para a classificação não-supervisionada, o usuário não deve se preocupar com a homogeneidade das classes. As áreas escolhidas devem ser heterogêneas para assegurar que todas as possíveis classes e suas variabilidades sejam incluídas. Os "pixels" dentro de uma área são submetidos a um algoritmo de agrupamento ("clustering") que determina o agrupamento do dado, numa feição espacial de dimensão igual ao número de bandas presentes. Este algoritmo assume que cada grupo ("cluster") representa a distribuição de probabilidade de uma classe.

19 Classificação Supervisionada e não-supervisionada Os dois tipos de classificação possuem regras de decisão para que o classificador associe certo pixel a certa classe ou regiões de similaridade de níveis de cinza. Essas regiões consideram as características espectrais do pixel (classificação pixel-a-pixel) ou do pixel e seus vizinhos (classificação por região). Se por um lado, na classificação pixel-a-pixel o pixel é considerado de forma isolada, na classificação por região considera-se tanto a informação espectral do pixel, como também a de seus vizinhos. Este último classificador procura simular o comportamento de um fotointérprete ao reconhecer áreas homogêneas dentro da imagem. O algoritmo mais utilizado é o de máxima verossimilhança (MAXVER) (MOREIRA, 2003)

20 Segmentação da Imagem É o processo de divisão de uma imagem em regiões uniformes - conjuntos de pixels contíguos - que devem corresponder às áreas de interesse. A segmentação pode ser feita por: crescimento de regiões, através de detecção de bordas: O crescimento de regiões utiliza medidas estatísticas de similaridade e agregação para realizar o agrupamento de dados. por detecção de bacias: A classificação por detecção de bacias deve ser feita sobre uma imagem resultante da extração de bordas (filtro de Sobel) e pressupõe uma certa representação topográfica para a imagem. A imagem rotulada resultante da segmentação deve ser classificada através de classificadores por regiões.

21 Segmentação da Imagem A técnica da segmentação multi-resolução baseia-se na fusão de regiões que extrai objetos de contraste local, sendo que, no início, cada pixel é considerado como um único objeto de imagem e em cada iteração os objetos são unidos para formar objetos maiores de acordo com o critério de homogeneidade que descreve a semelhança entre objetos adjacentes. (Machado e Caetano, 2004)

22 Segmentação da Imagem A estratégia da segmentação seguida da classificação aproxima-se muito do procedimento de interpretação visual, pois primeiramente delimitamse unidades homogêneas da paisagem e depois atribuí-se um código. Além disso, o mapa resultante não apresenta um aspecto salpicado como ocorre na classificação pixel-a-pixel, evitando-se operações de pósprocessamento ou generalização. (CAETANO, SOUZA e GONÇALVES, 2007).

23 Segmentações sobrepostas à imagem Segmentador com parâmetros de similaridade = 8 e área = 20. Segmentador com parâmetros de similaridade = 12 e área = 50. Fonte: CORREIA et al., 2004

24 Classificadores Por Regiões ISOSEG (automático) É um algoritmo de agrupamento de dados nãosupervisionado, aplicado sobre o conjunto de regiões, que por sua vez são caracterizadas por seus atributos estatísticos de média, matriz de covariância, e a área. Fonte: CORREIA et al., 2004

25 Classificadores Por Regiões K-médias É um classificador não supervisionado que utiliza uma abordagem de agrupamento. O espaço de atributos da imagem é partido em K grupos. A partir dessa situação inicial, cada pixel da imagem é alocado ao centro mais próximo segundo a distância euclidiana. Fonte: CORREIA et al., 2004

26 Classificadores Por Regiões Battacharya (requer treinamento) A medida da distância de Battacharya mede a separabilidade estatística entre um par de classes espectrais. Ou seja, mede a distância média entre as distribuições de probabilidades de classes espectrais. Fonte: CORREIA et al., 2004 Fonte: CORREIA et al., 2004

27 Classificadores por Regiões ClaTex (requer treinamento) É um algoritmo supervisionado que utiliza atributos texturais das regiões de uma imagem segmentada. A classificação é realizada pela técnica de agrupamento de regiões a partir de uma medida de similaridade entre elas.

28 Classificadores por Regiões Orientada a Objetos Integra as informações de pixels vizinhos, deixando-se de analisar cada pixel isoladamente para trabalhar-se com regiões relativamente homogêneas, através da classificação orientada a segmentos. (Alves e Vergara, 2005) Considera a análise da relação de um objeto com seus objetos vizinhos. O objeto é o elemento da imagem constituído de relações espaciais, os quais podem ser agregados à objetos maiores, criando-se níveis de segmentação. A lógica de orientação a objeto considera as características semânticas dos objetos, que podem ser analisadas segundo seus aspectos geométricos (topologia, forma e posição) e temáticos (atributos não espaciais dos objetos). (ANTUNES e STURM, 2005)

29 Classificadores por Regiões Orientada a Objetos Permite o conhecimento do analista e a utilização de parâmetros de cor, forma, textura e relações de vizinhança na classificação de imagens. Antes de realizar este tipo de classificação, é necessário realizar a segmentação das imagens, pois permite a delimitação dos objetos que serão classificados em seus níveis de detalhes, considerando-se tanto a dimensão espectral quanto a espacial. Para isto, o processo de segmentação deve ser moldado em função da resolução da imagem e da escala esperada para os objetos. (Pinho, Feitosa e Kux, 2005)

30 Classificação MAXVER pixel a pixel X Orientada a Objetos A classificação MAXVER pixel-a-pixel detecta melhor as classes de vegetação e de água, porém há grande confusão entre as classes que apresentam comportamento espectral semelhantes: cobertura cerâmica X solo exposto; pavimentação X concreto/amianto escuro. Já na classificação orientada a objetos, esta confusão é minimizada devido à introdução de parâmetros espaciais (forma e topologia) e da utilização do dado auxiliar eixo das ruas durante os processos de segmentação e classificação. A classificação orientada também demonstra melhor identificação da classe sombra, permitindo uma definição visual dos objetos mais refinada. Entre os dois métodos, há maior preservação das formas dos alvos de interesse na classificação orientada a objetos, ao passo que o resultado da classificação MAXVER pixel-a-pixel denota uma aparência granulada. (CAETANO, SOUZA e GONÇALVES, 2007)

31 Considerações Gerais Estudos urbanos - as cidades apresentam uma variedade de cobertura num reduzido espaço, ocorrendo alterações significativas inter e intrapixel. Nessa área, há diversos alvos, como: concreto das construções, asfalto que recobre as ruas e avenidas, telhados de vários materiais, solo exposto, grama, árvores, dentre outros. Grande parte dessas superfícies é menor do que a resolução de um pixel de alguns sensores orbitais como: LANDSAT, TM, ETM, SPOT-PAN. (Freitas e Costa, 2003) No meio urbano, a baixa resolução espectral, pode ser superada pelo maior aproveitamento da resolução espacial, considerando-se que os objetos existentes na cidade são mais distinguíveis pela resolução espacial. Nessa realidade, novos métodos de classificação aparecem como alternativas aos métodos tradicionais. Os novos algoritmos de classificação se baseiam não somente na informação espectral de cada pixel, mas também na informação espacial que envolve a relação entre os pixels e seus vizinhos (contexto). (Souza et al., 2003)

32 Referências Bibliográficas ANTUNES, A. F. B.; STURM, U. Segmentação orientada a objeto aplicado ao monitoramento de ocupações irregulares em áreas de preservação ambiental. In.: Simpósio Brasileiro de Sensoriamento Remoto, vol. 12, Anais. Goiânia, INPE, 15 a 21 abr., p , CAETANO, M.; SANTOS, T.; GONÇALVES, L. Cartografia de ocupação do solo com imagens de satélite: estado da arte. Disponível em: Acessado em: 10 mar., CORREIA, V. R. de M. Uma aplicação dopsensoriamento Remoto para a investigação de endemias urbanas. Disponível em: Acessado em: 04/05/2009. CROSTA, A. P. Processamento Digital de Imagens de Sensoriamento Remoto. Campinas: IG/UNICAMP, ISBN , FREITAS, R.N.; COSTA, S.M.F. da. A utilização de fotografias aéreas na avaliação das transformações sócio-espaciais ocorridas na zona sul da cidade de São José dos Campos/SP, de In.: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, n Belo Horizonte. INPE. Anais. 05 a 10 de abril de 2003, p

33 Referências Bibliográficas MACHADO, F.; CAETANO, M. Detecção de alterações de ocupação do solo com uma abordagem orientada por objetos. Disponível em: ESIG_2004.pdf. Acessado em: 10 mar MOREIRA, M.A. Fundamentos de Sensoriamento Remoto e Metodologias de Aplicação. 2ª ed. Viçosa, UFV, 2003 PINHO, C.M.D. de; FEITOSA, F. da F.; KUX, H. Classificação automática de cobertura do solo urbano em imagem IKONOS: comparação entre a abordagem pixel-a-pixel e orientada a objetos. In.: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, n. 12. Goiânia. Anais. INPE, p , 2005 SOUZA, I.M. e, et al. Mapeamento do uso do solo urbano através da classificação por regiões baseada em medidas texturais. In.: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, n. 11. Belo Horizonte. Anais. INPE, p , 2003.

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Classificação de imagens de Sensoriamento Remoto. Disciplina: Geoprocessamento Profª. Agnes Silva de Araujo

Classificação de imagens de Sensoriamento Remoto. Disciplina: Geoprocessamento Profª. Agnes Silva de Araujo Classificação de imagens de Sensoriamento Remoto Disciplina: Geoprocessamento Profª. Agnes Silva de Araujo Conteúdo programático e Objetivos Conceito de classificação e fotointerpretação Classificações

Leia mais

Aula 5 - Classificação

Aula 5 - Classificação AULA 5 - Aula 5-1. por Pixel é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos. Os Classificadores "pixel a pixel" utilizam apenas a informação espectral isoladamente

Leia mais

Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³. ²Universidade do Estado do Rio de Janeiro / Faculdade de Formação de Professores - rfariageo@hotmail.

Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³. ²Universidade do Estado do Rio de Janeiro / Faculdade de Formação de Professores - rfariageo@hotmail. GERAÇÃO DE MAPA DE USO E COBERTURA DE SOLO UTILIZANDO IMAGENS DE SATÉLITE LANDSAT 8 PARA O SUPORTE AO PLANEJAMENTO MUNICIPAL DO MUNICÍPIO DE NITERÓI RJ. Costa, B.L. 1 ; Faria, R.A.M²; Marins, L.S.³ 1 Universidade

Leia mais

Sensoriamento Remoto

Sensoriamento Remoto Sensoriamento Remoto É a utilização conjunta de modernos sensores, equipamentos para processamento de dados, equipamentos de transmissão de dados, aeronaves, espaçonaves etc, com o objetivo de estudar

Leia mais

CLASSIFICAÇÃO DE IMAGEM

CLASSIFICAÇÃO DE IMAGEM DISCIPLINA SIG OFICINA: Classificação de Imagens de Sensoriamento Remoto Responsável: MARIA ISABEL C DE FREITAS Colaboração: BRUNO ZUCHERATO E KATIA CRISTINA BORTOLETTO CLASSIFICAÇÃO DE IMAGEM Para realizar

Leia mais

I ENCONTRO PAULISTA DE BIODIVERSIDADE

I ENCONTRO PAULISTA DE BIODIVERSIDADE I ENCONTRO PAULISTA DE BIODIVERSIDADE 16 a 18 de novembro de 2009 Fundação Mokiti Okada Palestrante: Mônica Pavão Pesquisadora do Instituto Florestal INVENTÁRIO FLORESTAL DO ESTADO DE SÃO PAULO INVENTÁRIO

Leia mais

3 Estado da arte em classificação de imagens de alta resolução

3 Estado da arte em classificação de imagens de alta resolução 37 3 Estado da arte em classificação de imagens de alta resolução Com a recente disponibilidade de imagens de alta resolução produzidas por sensores orbitais como IKONOS e QUICKBIRD se tornou-se possível

Leia mais

10 FÓRUM DE EXTENSÃO E CULTURA DA UEM COMPARAÇÃO DE FUSÃO ENTRE AS IMAGENS DO SATÉLITE RAPID EYE, CBERS E SPOT.

10 FÓRUM DE EXTENSÃO E CULTURA DA UEM COMPARAÇÃO DE FUSÃO ENTRE AS IMAGENS DO SATÉLITE RAPID EYE, CBERS E SPOT. 10 FÓRUM DE EXTENSÃO E CULTURA DA UEM COMPARAÇÃO DE FUSÃO ENTRE AS IMAGENS DO SATÉLITE RAPID EYE, CBERS E SPOT. Thalita Dal Santo 1 Antonio de Oliveira¹ Fernando Ricardo dos Santos² A técnica de fusão

Leia mais

15- Representação Cartográfica - Estudos Temáticos a partir de imagens de Sensoriamento Remoto

15- Representação Cartográfica - Estudos Temáticos a partir de imagens de Sensoriamento Remoto 15- Representação Cartográfica - Estudos Temáticos a partir de imagens de Sensoriamento Remoto O Sensoriamento Remoto é uma técnica que utiliza sensores, na captação e registro da energia refletida e emitida

Leia mais

FOTOINTERPRETAÇÃO. Interpretação e medidas. Dado qualitativo: lago

FOTOINTERPRETAÇÃO. Interpretação e medidas. Dado qualitativo: lago FOTOINTERPRETAÇÃO a) conceito A fotointerpretação é a técnica de examinar as imagens dos objetos na fotografia e deduzir sua significação. A fotointerpretação é bastante importante à elaboração de mapas

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

044.ASR.SRE.16 - Princípios Físicos do Sensoriamento Remoto

044.ASR.SRE.16 - Princípios Físicos do Sensoriamento Remoto Texto: PRODUTOS DE SENSORIAMENTO REMOTO Autor: BERNARDO F. T. RUDORFF Divisão de Sensoriamento Remoto - Instituto Nacional de Pesquisas Espaciais São José dos Campos-SP - bernardo@ltid.inpe.br Sensoriamento

Leia mais

Sensoriamento Remoto. Características das Imagens Orbitais

Sensoriamento Remoto. Características das Imagens Orbitais Sensoriamento Remoto Características das Imagens Orbitais 1 - RESOLUÇÃO: O termo resolução em sensoriamento remoto pode ser atribuído a quatro diferentes parâmetros: resolução espacial resolução espectral

Leia mais

Técnicas de Cartografia Digital

Técnicas de Cartografia Digital Técnicas de Cartografia Digital Maria Cecília Bonato Brandalize 2011 Aula 8 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens Como são representados

Leia mais

Dados para mapeamento

Dados para mapeamento Dados para mapeamento Existem dois aspectos com relação aos dados: 1. Aquisição dos dados para gerar os mapas 2. Uso do mapa como fonte de dados Os métodos de aquisição de dados para o mapeamento divergem,

Leia mais

USO DA TÉCNICA DE ANALISE POR COMPONENTE PRINCIPAL NA DETECÇÃO DE MUDANÇAS NA COBERTURA DO SOLO

USO DA TÉCNICA DE ANALISE POR COMPONENTE PRINCIPAL NA DETECÇÃO DE MUDANÇAS NA COBERTURA DO SOLO Samuel da Silva Farias, Graduando do curso de geografia da UFPE samuel.farias763@gmail.com Rafhael Fhelipe de Lima Farias, Mestrando do PPGEO/UFPE, rafhaelfarias@hotmail.com USO DA TÉCNICA DE ANALISE POR

Leia mais

MAPEAMENTO FLORESTAL

MAPEAMENTO FLORESTAL MAPEAMENTO FLORESTAL ELISEU ROSSATO TONIOLO Eng. Florestal Especialista em Geoprocessamento OBJETIVO Mapear e caracterizar a vegetação visando subsidiar o diagnóstico florestal FUNDAMENTOS É uma ferramenta

Leia mais

Ferramentas de sensoriamento remoto e SIG aplicadas ao novo Código Florestal

Ferramentas de sensoriamento remoto e SIG aplicadas ao novo Código Florestal 1/38 Ferramentas de sensoriamento remoto e SIG aplicadas ao novo Código Florestal Cota de Reserva Ambiental (CRA) Eng. Allan Saddi Arnesen Eng. Frederico Genofre Eng. Matheus Ferreira Eng. Marcelo Pedroso

Leia mais

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão 01 Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão Rodrigo G. Trevisan¹; José P. Molin² ¹ Eng. Agrônomo, Mestrando em Engenharia de Sistemas Agrícolas (ESALQ-USP); ² Prof. Dr. Associado

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS SPRING 5.0.6

PROCESSAMENTO DIGITAL DE IMAGENS SPRING 5.0.6 Universidade do Estado de Santa Catarina UDESC Centro de Ciências Humanas e da Educação CCE/FAED Deapartamento de Geografia DG Curso Mestrado em Planejamento Regional e Desenvolvimento Sócio Ambiental

Leia mais

CLASSIFICAÇÃO DA COBERTURA DA TERRA DE ANGRA DOS REIS RJ, A PARTIR DE ANÁLISE DE IMAGEM BASEADA EM OBJETO E MINERAÇÃO DE DADOS

CLASSIFICAÇÃO DA COBERTURA DA TERRA DE ANGRA DOS REIS RJ, A PARTIR DE ANÁLISE DE IMAGEM BASEADA EM OBJETO E MINERAÇÃO DE DADOS CLASSIFICAÇÃO DA COBERTURA DA TERRA DE ANGRA DOS REIS RJ, A PARTIR DE ANÁLISE DE IMAGEM BASEADA EM OBJETO E MINERAÇÃO DE DADOS Eduardo Gustavo Soares Pereira 1 Monika Richter 2 1 - Universidade Federal

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

GEOTECNOLOGIAS PARA MAPEAMENTO DE ALVOS URBANOS: contribuição metodológica

GEOTECNOLOGIAS PARA MAPEAMENTO DE ALVOS URBANOS: contribuição metodológica GEOTECNOLOGIAS PARA MAPEAMENTO DE ALVOS URBANOS: contribuição metodológica Andréia Medinilha Pancher Universidade Estadual Paulista UNESP Departamento de Planejamento - DEPLAN e-mail: medinilha@linkway.com.br

Leia mais

Utilização de imagem CBERS-2 na análise e avaliação dos impactos ambientais da cultura da cana-de-açúcar da região de Ribeirão Preto SP

Utilização de imagem CBERS-2 na análise e avaliação dos impactos ambientais da cultura da cana-de-açúcar da região de Ribeirão Preto SP Utilização de imagem CBERS-2 na análise e avaliação dos impactos ambientais da cultura da cana-de-açúcar da região de Ribeirão Preto SP Valéria de Souza Assunção 1 Elizabete Cristina Kono 1 Rafael Frigerio

Leia mais

MODELAGEM DIGITAL DE SUPERFÍCIES

MODELAGEM DIGITAL DE SUPERFÍCIES MODELAGEM DIGITAL DE SUPERFÍCIES Prof. Luciene Delazari Grupo de Pesquisa em Cartografia e SIG da UFPR SIG 2012 Introdução Os modelo digitais de superficie (Digital Surface Model - DSM) são fundamentais

Leia mais

Renzo Joel Flores Ortiz e Ilka Afonso Reis

Renzo Joel Flores Ortiz e Ilka Afonso Reis ESTIMAÇÃO DE POPULAÇÕES HUMANAS VIA IMAGENS DE SATÉLITE: COMPARANDO ABORDAGENS E MODELOS Renzo Joel Flores Ortiz e Ilka Afonso Reis Laboratório de Estatística Espacial (LESTE) Departamento de Estatística

Leia mais

Introdução ao Processamento de Imagens

Introdução ao Processamento de Imagens Introdução ao PID Processamento de Imagens Digitais Introdução ao Processamento de Imagens Glaucius Décio Duarte Instituto Federal Sul-rio-grandense Engenharia Elétrica 2013 1 de 7 1. Introdução ao Processamento

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA - UFBA

UNIVERSIDADE FEDERAL DA BAHIA - UFBA UNIVERSIDADE FEDERAL DA BAHIA - UFBA Instituto de Ciências Ambientais e Desenvolvimento Sustentável Prof. Pablo Santos 4 a Aula SISTEMA DE INFORMAÇÃO GEOGRÁFICA - SIG Introdução Definições Necessárias

Leia mais

APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO

APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO ESTÁGIO DOCÊNCIA ALUNA: ADRIANA AFFONSO (PROGRAMA DE PÓS- GRADUAÇÃO NO INPE MESTRADO EM SENSORIAMENTO REMOTO) ORIENTADOR: PROF. DR.

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

ANÁLISE DA TRANSFORMAÇÃO DA PAISAGEM NA REGIÃO DE MACHADO (MG) POR MEIO DE COMPOSIÇÕES COLORIDAS MULTITEMPORAIS

ANÁLISE DA TRANSFORMAÇÃO DA PAISAGEM NA REGIÃO DE MACHADO (MG) POR MEIO DE COMPOSIÇÕES COLORIDAS MULTITEMPORAIS ANÁLISE DA TRANSFORMAÇÃO DA PAISAGEM NA REGIÃO DE MACHADO (MG) POR MEIO DE COMPOSIÇÕES COLORIDAS MULTITEMPORAIS ALENCAR SANTOS PAIXÃO 1 ; ÉLIDA LOPES SOUZA ROCHA2 e FERNANDO SHINJI KAWAKUBO 3 alencarspgeo@gmail.com,

Leia mais

CLASSIFICAÇÃO DE IMAGENS DE ALTA RESOLUÇÃO

CLASSIFICAÇÃO DE IMAGENS DE ALTA RESOLUÇÃO AULA 6 Segmentação: Introdução e Conceitos CLASSIFICAÇÃO DE IMAGENS DE ALTA RESOLUÇÃO A- Segmentação B- Contexto e topologia C- Métodos Mínima Distância e Lógica Fuzzy D- Trabalho Prático: e-cogntition

Leia mais

CLASSIFICAÇÃO ORIENTADA A OBJETOS PELO ALGORITMO SUPPORT VECTOR MACHINE DE IMAGEM RAPIDEYE

CLASSIFICAÇÃO ORIENTADA A OBJETOS PELO ALGORITMO SUPPORT VECTOR MACHINE DE IMAGEM RAPIDEYE CLASSIFICAÇÃO ORIENTADA A OBJETOS PELO ALGORITMO SUPPORT VECTOR MACHINE DE IMAGEM RAPIDEYE Dinameres Aparecida Antunes 1, Kelly Lais Wiggers 2, Selma Regina Aranha Ribeiro 3 1 Geógrafo, Mestranda do Programa

Leia mais

SIG - Sistemas de Informação Geográfica

SIG - Sistemas de Informação Geográfica SIG - Sistemas de Informação Geográfica Gestão da Informação Para gestão das informações relativas ao desenvolvimento e implantação dos Planos Municipais de Conservação e Recuperação da Mata Atlântica

Leia mais

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 ANÁLISE DE TÉCNICAS PARA DETECÇÃO DE MUDANÇA UTILIZANDO IMAGENS DO SENSORIAMENTO REMOTO DESLIZAMENTOS EM NOVA FRIBURGO/RJ EM 2011 Trabalho

Leia mais

Geomática e SIGDR aula teórica 23 17/05/11. Sistemas de Detecção Remota Resolução de imagens

Geomática e SIGDR aula teórica 23 17/05/11. Sistemas de Detecção Remota Resolução de imagens Geomática e SIGDR aula teórica 23 17/05/11 Sistemas de Detecção Remota Resolução de imagens Manuel Campagnolo ISA Manuel Campagnolo (ISA) Geomática e SIGDR 2010-2011 17/05/11 1 / 16 Tipos de resolução

Leia mais

C A P Í T U L O 1 4. M a u r i c i o A l v e s M o r e i r a I n s t i t u t o N a c i o n a l d e P e s q u i s a s E s p a c i a i s

C A P Í T U L O 1 4. M a u r i c i o A l v e s M o r e i r a I n s t i t u t o N a c i o n a l d e P e s q u i s a s E s p a c i a i s C A P Í T U L O 1 4 I N F O R M A Ç Õ E S Ú T E I S P A R A A U X I L I A R A I N T E R P R E T A Ç Ã O V I S U A L D E I M A G E N S D E S A T É L I T E S M a u r i c i o A l v e s M o r e i r a I n s

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS Executar as principais técnicas utilizadas em processamento de imagens, como contraste, leitura de pixels, transformação IHS, operações aritméticas

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

SPRING 3.6.03 - Apresentação

SPRING 3.6.03 - Apresentação SPRING 3.6.03 - Apresentação GEOPROCESSAMENTO Conjunto de ferramentas usadas para coleta e tratamento de informações espaciais, geração de saídas na forma de mapas, relatórios, arquivos digitais, etc;

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS UNICAMP. vi.unicamp2010@gmail.com

UNIVERSIDADE ESTADUAL DE CAMPINAS UNICAMP. vi.unicamp2010@gmail.com UNIVERSIDADE ESTADUAL DE CAMPINAS UNICAMP e-mail: vi.unicamp2010@gmail.com ANÁLISE DOS CONFLITOS ENTRE ÁREAS DE USO E OCUPAÇÃO DOS SOLOS E ÁREAS DE CONSERVAÇÃO NO MUNICÍPIO DE ILHA COMPRIDA (SP). Viviane

Leia mais

MAPA DE USO E OCUPAÇÃO DO SOLO URBANO: Análise comparativa entre os métodos de classificação manual e digital

MAPA DE USO E OCUPAÇÃO DO SOLO URBANO: Análise comparativa entre os métodos de classificação manual e digital MAPA DE USO E OCUPAÇÃO DO SOLO URBANO: Análise comparativa entre os métodos de classificação manual e digital Andréia Medinilha Pancher 1 Lucimari Aparecida Franco Garcia Rossetti 2 1 Universidade Estadual

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO ENGENHARIA DE AMBIENTAL MATRIZ 519

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO ENGENHARIA DE AMBIENTAL MATRIZ 519 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO ENGENHARIA DE AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL - Abertura e aprovação do projeto do curso:

Leia mais

Aula 1 Professor Waterloo Pereira Filho Docentes orientados: Daniela Barbieri Felipe Correa

Aula 1 Professor Waterloo Pereira Filho Docentes orientados: Daniela Barbieri Felipe Correa Princípios Físicos do Sensoriamento Remoto Aula 1 Professor Waterloo Pereira Filho Docentes orientados: Daniela Barbieri Felipe Correa O que é Sensoriamento Remoto? Utilização conjunta de sensores, equipamentos

Leia mais

Processamento digital de imagens. introdução

Processamento digital de imagens. introdução Processamento digital de imagens introdução Imagem digital Imagem digital pode ser descrita como uma matriz bidimensional de números inteiros que corresponde a medidas discretas da energia eletromagnética

Leia mais

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático:

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático: Universidade do Estado de Santa Catarina UDESC Centro de ciências Humanas e da Educação FAED Mestrado em Planejamento Territorial e Desenvolvimento Socio- Ambiental - MPPT Disciplina: Geoprocessamento

Leia mais

Sistemas Sensores. Introdução

Sistemas Sensores. Introdução Sistemas Sensores 5ª Aulas Introdução O sol foi citado como sendo uma fonte de energia ou radiação. O sol é uma fonte muito consistente de energia para o sensoriamento remoto (REM). REM interage com os

Leia mais

Programa Integrado de Monitoria Remota de Fragmentos Florestais e Crescimento Urbano no Rio de Janeiro

Programa Integrado de Monitoria Remota de Fragmentos Florestais e Crescimento Urbano no Rio de Janeiro Programa Integrado de Monitoria Remota de Fragmentos Florestais e Crescimento Urbano no Rio de Janeiro Relatório Trimestral de Atividades Abril / Maio / Junho de 2010 Índice 1. Apresentação...3 2. Fotogrametria...4

Leia mais

Aplicações CBERS na Universidade Federal do Rio Grande do Sul

Aplicações CBERS na Universidade Federal do Rio Grande do Sul Aplicações CBERS na Universidade Federal do Rio Grande do Sul Pesquisas CBERS - UFRGS 2001: Início do projeto Participantes: - PPG-SR / CEPSRM - Instituto de Geociências Geodésia Geografia Geologia - Faculdade

Leia mais

Sistema de Informações Geográficas

Sistema de Informações Geográficas UNIVERSIDADE DO EXTREMO SUL CATARINENSE Pós Graduação Ecologia e Manejo de Recursos Naturais Sistema de Informações Geográficas Prof. Fabiano Luiz Neris Criciúma, Março de 2011. A IMPORTÂNCIA DO ONDE "Tudo

Leia mais

C a p í t u l o I V. P r o c e s s a m e n t o d a s I m a g e n s O r b i t a i s d o s S e n s o r e s T M e E T M

C a p í t u l o I V. P r o c e s s a m e n t o d a s I m a g e n s O r b i t a i s d o s S e n s o r e s T M e E T M C a p í t u l o I V P r o c e s s a m e n t o d a s I m a g e n s O r b i t a i s d o s S e n s o r e s T M e E T M IV.1 Processamento Digital das Imagens Orbitais dos Sensores TM e ETM + IV.1.1 Introdução

Leia mais

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

UTILIZAÇÃO DE ÍNDICES DE VARIAÇÃO TEXTURAL EM IMAGENS PANCROMÁTICAS HRV-SPOT NA CLASSIFICAÇÃO DO USO DO SOLO

UTILIZAÇÃO DE ÍNDICES DE VARIAÇÃO TEXTURAL EM IMAGENS PANCROMÁTICAS HRV-SPOT NA CLASSIFICAÇÃO DO USO DO SOLO 1 UTILIZAÇÃO DE ÍNDICES DE VARIAÇÃO TEXTURAL EM IMAGENS PANCROMÁTICAS HRV-SPOT NA CLASSIFICAÇÃO DO USO DO SOLO URBANO E ANÁLISE DA QUALIDADE DE VIDA URBANA NA CIDADE DE LIMEIRA-SP, BRASIL. FORESTI, Celina

Leia mais

Flavio Marcelo CONEGLIAN, Rodrigo Antonio LA SCALEA e Selma Regina Aranha RIBEIRO. Universidade Estadual de Ponta Grossa

Flavio Marcelo CONEGLIAN, Rodrigo Antonio LA SCALEA e Selma Regina Aranha RIBEIRO. Universidade Estadual de Ponta Grossa Comparação entre Classificações Supervisionadas em uma Imagem CBERS CCD com Bandas Multiespectrais e em uma Imagem Fusão da Mesma Imagem CBERS CCD Com uma Banda Pancromática HRC Flavio Marcelo CONEGLIAN,

Leia mais

Segmentação e Classificação. Prof. Herondino

Segmentação e Classificação. Prof. Herondino Segmentação e Classificação Prof. Herondino Segmentação Neste processo, divide-se a imagem em regiões que devem corresponder às áreas de interesse da aplicação. Entende-se por regiões um conjunto de "pixels"

Leia mais

Classificação automática de cobertura do solo urbano em imagem IKONOS: Comparação entre a abordagem pixel-a-pixel e orientada a objetos

Classificação automática de cobertura do solo urbano em imagem IKONOS: Comparação entre a abordagem pixel-a-pixel e orientada a objetos Classificação automática de cobertura do solo urbano em imagem IKONOS: Comparação entre a abordagem pixel-a-pixel e orientada a objetos Carolina Moutinho Duque de Pinho Flávia da Fonseca Feitosa Hermann

Leia mais

Diagnóstico Ambiental do Município de Alta Floresta - MT

Diagnóstico Ambiental do Município de Alta Floresta - MT Diagnóstico Ambiental do Município de Alta Floresta - MT Paula Bernasconi Ricardo Abad Laurent Micol Maio de 2008 Introdução O município de Alta Floresta está localizado na região norte do estado de Mato

Leia mais

Grupo: Irmandade Bruna Hinojosa de Sousa Marina Schiave Rodrigues Raquel Bressanini Thaís Foffano Rocha

Grupo: Irmandade Bruna Hinojosa de Sousa Marina Schiave Rodrigues Raquel Bressanini Thaís Foffano Rocha Projeto de Engenharia Ambiental Sensoriamento remoto e Sistema de Informação Geográfica Grupo: Irmandade Bruna Hinojosa de Sousa Marina Schiave Rodrigues Raquel Bressanini Thaís Foffano Rocha Sensoriamento

Leia mais

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy.

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Marcelo Musci Baseado no artigo: Change detection assessment using fuzzy sets and remotely sensed data: an application

Leia mais

PROCESSAMENTO DE IMAGENS LANDSAT-5 TM NO MAPEAMENTO DO USO DA TERRA NA REGIÃO DE GUAXUPÉ (MG)

PROCESSAMENTO DE IMAGENS LANDSAT-5 TM NO MAPEAMENTO DO USO DA TERRA NA REGIÃO DE GUAXUPÉ (MG) PROCESSAMENTO DE IMAGENS LANDSAT-5 TM NO MAPEAMENTO DO USO DA TERRA NA REGIÃO DE GUAXUPÉ (MG) LYNEKER PEREIRA DA SILVEIRA¹ e FERNANDO SHINJI KAWAKUBO² Palavras chaves: Sensoriamento Remoto; Café; Cana-de-açúcar;

Leia mais

MNT: Modelagem Numérica de Terreno

MNT: Modelagem Numérica de Terreno MNT: Modelagem Numérica de Terreno I. 1ntrodução MODELO : Representação da realidade sob a forma material (representação tangível) ou sob a forma simbólica (representação abstrata). MODELO DO TERRENO:

Leia mais

Os mapas são a tradução da realidade numa superfície plana.

Os mapas são a tradução da realidade numa superfície plana. Cartografia Desde os primórdios o homem tentou compreender a forma e as características do nosso planeta, bem como representar os seus diferentes aspectos através de croquis, plantas e mapas. Desenhar

Leia mais

Modelagem Digital do Terreno

Modelagem Digital do Terreno Geoprocessamento: Geração de dados 3D Modelagem Digital do Terreno Conceito Um Modelo Digital de Terreno (MDT) representa o comportamento de um fenômeno que ocorre em uma região da superfície terrestre

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO - UFES CENTRO DE CIÊNCIAS HUMANAS E NATURAIS CCHN DEPARTAMENTO DE GEOGRAFIA DEFESA DE MONOGRAFIA

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO - UFES CENTRO DE CIÊNCIAS HUMANAS E NATURAIS CCHN DEPARTAMENTO DE GEOGRAFIA DEFESA DE MONOGRAFIA UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO - UFES CENTRO DE CIÊNCIAS HUMANAS E NATURAIS CCHN DEPARTAMENTO DE GEOGRAFIA DEFESA DE MONOGRAFIA Evolução temporal e espacial do uso e ocupação do solo para os anos

Leia mais

SISTEMAS DE INFORMAÇÃO GEOGRÁFICA (I)

SISTEMAS DE INFORMAÇÃO GEOGRÁFICA (I) UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS DISCIPLINA: LEB450 TOPOGRAFIA E GEOPROCESSAMENTO II PROF. DR. CARLOS ALBERTO VETTORAZZI

Leia mais

Aula 3 - Registro de Imagem

Aula 3 - Registro de Imagem Aula 3 - Registro de Imagem 1. Registro de Imagens Registro é uma transformação geométrica que relaciona coordenadas da imagem (linha e coluna) com coordenadas geográficas (latitude e longitude) de um

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS Laboratório de Ensino, Pesquisa e Projetos em Análise Espacial TUTORIAL DE SPRING Alexandro Medeiros

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS Laboratório de Ensino, Pesquisa e Projetos em Análise Espacial TUTORIAL DE SPRING Alexandro Medeiros

Leia mais

Introdução ao SIG. Objetivos Específicos 18/11/2010. Competência: Apresentar: Utilidade de um SIG

Introdução ao SIG. Objetivos Específicos 18/11/2010. Competência: Apresentar: Utilidade de um SIG MINISTÉRIO DO MEIO AMBIENTE - MMA INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE - ICMBio DIRETORIA DE PLANEJAMENTO, ADMINISTRAÇÃO E LOGÍSTICA - DIPLAN COORDENAÇÃO GERAL DE GESTÃO DE PESSOAS -

Leia mais

IMAGENS DE SATÉLITE PROF. MAURO NORMANDO M. BARROS FILHO

IMAGENS DE SATÉLITE PROF. MAURO NORMANDO M. BARROS FILHO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE TECNOLOGIA E RECURSOS HUMANOS UNIDADE ACADÊMICA DE ENGENHARIA CIVIL IMAGENS DE SATÉLITE PROF. MAURO NORMANDO M. BARROS FILHO Sumário 1. Conceitos básicos

Leia mais

ANÁLISE ESPACIAL INTEGRADA NO BONFIM, PETROPÓLIS, RJ, APLICADO AO USO DA TERRA E COBERTURA VEGETAL, COM SUPORTE DE GEOTECNOLOGIAS

ANÁLISE ESPACIAL INTEGRADA NO BONFIM, PETROPÓLIS, RJ, APLICADO AO USO DA TERRA E COBERTURA VEGETAL, COM SUPORTE DE GEOTECNOLOGIAS RELATÓRIO TÉCNICO PROJETO DE PESQUISA FAPERJ AUXÍLIO À PESQUISA APQ1 PROCESSO E-26/111.893/2012 RESPONSÁVEL: GILBERTO PESSANHA RIBEIRO ANÁLISE ESPACIAL INTEGRADA NO BONFIM, PETROPÓLIS, RJ, APLICADO AO

Leia mais

Segmentação de Imagens

Segmentação de Imagens Segmentação de Imagens (Processamento Digital de Imagens) 1 / 36 Fundamentos A segmentação subdivide uma imagem em regiões ou objetos que a compõem; nível de detalhe depende do problema segmentação para

Leia mais

SENRORIAMENTO REMOTO E SIG. Aula 1. Prof. Guttemberg Silvino Prof. Francisco das Chagas

SENRORIAMENTO REMOTO E SIG. Aula 1. Prof. Guttemberg Silvino Prof. Francisco das Chagas SENRORIAMENTO REMOTO E SIG Aula 1 Programa da Disciplina 1 CONCEITOS, HISTÓRICO E FUNDAMENTOS (8 aulas) 2 Sensoriamento remoto. Histórico e definições 3 Domínios do Sensoriamento Remoto 4 Níveis de Coleta

Leia mais

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS André Zuconelli 1 ; Manassés Ribeiro 2 1. Aluno do Curso Técnico em Informática, turma 2010, Instituto Federal Catarinense, Câmpus Videira, andre_zuconelli@hotmail.com

Leia mais

GEOPROCESSAMENTO. Herondino Filho

GEOPROCESSAMENTO. Herondino Filho GEOPROCESSAMENTO Herondino Filho Sumário 1. Introdução 1.1 Orientações Avaliação Referência 1.2 Dados Espaciais 1.2.1 Exemplo de Dados Espaciais 1.2.2 Aplicações sobre os Dados Espaciais 1.3 Categoria

Leia mais

GEOPROCESSAMENTO. Conjunto de ferramentas usadas para coleta e tratamento de informaçõ. ções espaciais, geraçã

GEOPROCESSAMENTO. Conjunto de ferramentas usadas para coleta e tratamento de informaçõ. ções espaciais, geraçã GEOPROCESSAMENTO Conjunto de ferramentas usadas para coleta e tratamento de informaçõ ções espaciais, geraçã ção o de saídas na forma de mapas, relatórios, rios, arquivos digitais, etc; Deve prover recursos

Leia mais

METODOLOGIA PARA O GEORREFERENCIAMENTO DE ILHAS COSTEIRAS COMO SUBSÍDIO AO MONITORAMENTO AMBIENTAL

METODOLOGIA PARA O GEORREFERENCIAMENTO DE ILHAS COSTEIRAS COMO SUBSÍDIO AO MONITORAMENTO AMBIENTAL METODOLOGIA PARA O GEORREFERENCIAMENTO DE ILHAS COSTEIRAS COMO SUBSÍDIO AO MONITORAMENTO AMBIENTAL Carolina Rodrigues Bio Poletto¹ & Getulio Teixeira Batista² UNITAU - Universidade de Taubaté Estrada Municipal

Leia mais

Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais

Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais Fernanda Rodrigues Fonseca 1 Thiago Duarte Pereira 1 Luciano Vieira Dutra 1 Eliana Pantaleão 1 Corina

Leia mais

2 Classificação de Imagens de Sensoriamento Remoto

2 Classificação de Imagens de Sensoriamento Remoto 2 Classificação de Imagens de Sensoriamento Remoto 2.1. Processamento Digital de Imagens Processamento Digital de Imagens entende-se como a manipulação de uma imagem por computador de modo que a entrada

Leia mais

Características das Imagens de SAR

Características das Imagens de SAR Características das Imagens de SAR Natural Resources Ressources naturelles Canada Canada Características das Imagens de SAR - Tópicos - Elementos de interpretação Tonalidade Textura Artefatos em imagens

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Sensoriamento Remoto aplicado ao Monitoramento Ambiental

Sensoriamento Remoto aplicado ao Monitoramento Ambiental Disciplina: Monitoramento e Controle Ambiental Prof.: Oscar Luiz Monteiro de Farias Sensoriamento Remoto aplicado ao Monitoramento Ambiental Andrei Olak Alves 2 espectro visível ultravioleta Sol infravermelho

Leia mais

EFICIÊNCIA NA OBTENÇÃO DE ÁREAS IMPERMEABILIZADAS ATRAVÉS DE SENSORIAMENTO REMOTO, VIA CLASSIFICAÇÃO DE IMAGENS DE ALTA E BAIXA RESOLUÇÃO

EFICIÊNCIA NA OBTENÇÃO DE ÁREAS IMPERMEABILIZADAS ATRAVÉS DE SENSORIAMENTO REMOTO, VIA CLASSIFICAÇÃO DE IMAGENS DE ALTA E BAIXA RESOLUÇÃO MORAES, G. A.; ARAUJO J. V. G.; EFICIÊNCIA NA OBTENÇÃO DE ÁREAS IMPERMEABILIZADAS ATRAVÉS DE SENSORIAMENTO REMOTO, VIA CLASSIFICAÇÃO DE IMAGENS DE ALTA E BAIXA RESOLUÇÃO. In: CONGRESSO DE PESQUISA, ENSINO

Leia mais

Uso de imagens de alta resolução espacial e análise orientada a objeto para caracterização socioeconômica do espaço residencial construído

Uso de imagens de alta resolução espacial e análise orientada a objeto para caracterização socioeconômica do espaço residencial construído Uso de imagens de alta resolução espacial e análise orientada a objeto para caracterização socioeconômica do espaço residencial construído Íris de Marcelhas e Souza 1 Cláudia Durand Alves 1 Claudia Maria

Leia mais

Sensoriamento Remoto I. José Antonio Pacheco de Almeida Paulo José de Oliveira

Sensoriamento Remoto I. José Antonio Pacheco de Almeida Paulo José de Oliveira José Antonio Pacheco de Almeida Paulo José de Oliveira São Cristóvão/SE 2010 Elaboração de Conteúdo José Antonio Pacheco de Almeida Paulo José de Oliveira Projeto Gráfico e Capa Hermeson Alves de Menezes

Leia mais

Relações mais harmoniosas de convívio com a natureza; O mundo como um modelo real que necessita de abstrações para sua descrição; Reconhecimento de

Relações mais harmoniosas de convívio com a natureza; O mundo como um modelo real que necessita de abstrações para sua descrição; Reconhecimento de Relações mais harmoniosas de convívio com a natureza; O mundo como um modelo real que necessita de abstrações para sua descrição; Reconhecimento de padrões espaciais; Controle e ordenação do espaço. Técnicas

Leia mais

MONITORAMENTO DA TEMPERATURA DE SUPERFÍCIE EM ÁREAS URBANAS UTILIZANDO GEOTECNOLOGIAS

MONITORAMENTO DA TEMPERATURA DE SUPERFÍCIE EM ÁREAS URBANAS UTILIZANDO GEOTECNOLOGIAS MONITORAMENTO DA TEMPERATURA DE SUPERFÍCIE EM ÁREAS URBANAS UTILIZANDO GEOTECNOLOGIAS Erika Gonçalves Pires 1, Manuel Eduardo Ferreira 2 1 Agrimensora, Professora do IFTO, Doutoranda em Geografia - UFG,

Leia mais

INFLUÊNCIA DA OCUPAÇÃO URBANA NO MEIO AMBIENTE DA PLANÍCIE COSTEIRA DO CAMPECHE SC, COM O USO DE GEOPROCESSAMENTO

INFLUÊNCIA DA OCUPAÇÃO URBANA NO MEIO AMBIENTE DA PLANÍCIE COSTEIRA DO CAMPECHE SC, COM O USO DE GEOPROCESSAMENTO INFLUÊNCIA DA OCUPAÇÃO URBANA NO MEIO AMBIENTE DA PLANÍCIE COSTEIRA DO CAMPECHE SC, COM O USO DE GEOPROCESSAMENTO PROFª MSC. MARIANE ALVES DAL SANTO MAURICIO SILVA Laboratório de Geoprocessamento - GeoLab

Leia mais

SISTEMA DE AVALIAÇÃO DE IMÓVEIS RURAIS. Valores utilizados conforme tabela da Secretaria de Estado da Agricultura e do Abastecimento

SISTEMA DE AVALIAÇÃO DE IMÓVEIS RURAIS. Valores utilizados conforme tabela da Secretaria de Estado da Agricultura e do Abastecimento Número de Controle: 00001/2015 Índice Geral de Preços do Mercado(IGPM) - 08/2014 à 01/01/2015 VTN (2015) Valores utilizados conforme tabela da Secretaria de Estado da Agricultura e do Abastecimento Departamento

Leia mais

Programa de Pós- Graduação em Engenharia Hidráulica e Saneamento

Programa de Pós- Graduação em Engenharia Hidráulica e Saneamento Programa de Pós- Graduação em Engenharia Hidráulica e Saneamento APLICAÇÃO DE ANALISE ORIENTADA A OBJETOS EM IMAGENS DE ALTA RESOLUÇÃO NA DETERMINAÇÃO DA COBERTURA DE SOLOS Leandro Guimarães Bais MarJns

Leia mais

AULA 5 Manipulando Dados Matriciais: Grades e Imagens. 5.1 Importando Grades e Imagens Interface Simplificada

AULA 5 Manipulando Dados Matriciais: Grades e Imagens. 5.1 Importando Grades e Imagens Interface Simplificada 5.1 AULA 5 Manipulando Dados Matriciais: Grades e Imagens Nessa aula serão apresentadas algumas funcionalidades do TerraView relativas a manipulação de dados matriciais. Como dados matriciais são entendidas

Leia mais

de Ciências do Ambiente e Sustentabilidade na Amazônia

de Ciências do Ambiente e Sustentabilidade na Amazônia Anais do I Seminário Internacional de Ciências do Ambiente e Sustentabilidade na Amazônia IMAGENS SAR-R99B APLICADAS NO MAPEAMENTO DO DESFLORESTAMENTO Bárbara Karina Barbosa do Nascimento; Marcelo Parise;

Leia mais

Geomática Aplicada à Engenharia Civil. 1 Fotogrametria

Geomática Aplicada à Engenharia Civil. 1 Fotogrametria Geomática Aplicada à Engenharia Civil 1 Fotogrametria Conceitos 2 Segundo Wolf (1983), a Fotogrametria pode ser definida como sendo a arte, a ciência e a tecnologia de se obter informações confiáveis de

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Processamento Digital de Imagens Israel Andrade Esquef a Márcio Portes de Albuquerque b Marcelo Portes de Albuquerque b a Universidade Estadual do Norte Fluminense - UENF b Centro Brasileiro de Pesquisas

Leia mais

Dado Vetorial. Características do Dado Vetorial. Usa entidades como ponto, linha e polígono para identificar localizações;

Dado Vetorial. Características do Dado Vetorial. Usa entidades como ponto, linha e polígono para identificar localizações; Estrutura dos Dados Geográficos Organização lógica dos dados para preservar sua integridade e facilitar o seu uso. Vetorial Raster ou Matricial Dado Vetorial Usa entidades como ponto, linha e polígono

Leia mais

Introdução ao Sensoriamento Remoto

Introdução ao Sensoriamento Remoto Introdução ao Sensoriamento Remoto Cachoeira Paulista, 24 a 28 novembro de 2008 Bernardo Rudorff Pesquisador da Divisão de Sensoriamento Remoto Instituto Nacional de Pesquisas Espaciais - INPE Sensoriamento

Leia mais

CARTOGRAFIA SISTEMÁTICA ESCALA

CARTOGRAFIA SISTEMÁTICA ESCALA CARTOGRAFIA SISTEMÁTICA ESCALA ESCALA Mapa representação convencional que apresenta elementos do mundo real reduzidos de acordo com uma proporção estabelecida previamente Proporção entre os elementos representados

Leia mais

SENSORIAMENTO REMOTO NO USO DO SOLO

SENSORIAMENTO REMOTO NO USO DO SOLO SENSORIAMENTO REMOTO NO USO DO SOLO Ana Luiza Bovoy Jônatas de Castro Gonçalves Thiemi Igarashi Vinicius Chequer e Silva LEVANTAMENTO DA COBERTURA VEGETAL ATRAVÉS DE PRODUTOS DE SENSORIAMENTO REMOTO NAS

Leia mais