Elétrotécnica. Princípio de funcionamento das máquinas elétricas, rotativas e estáticas

Tamanho: px
Começar a partir da página:

Download "Elétrotécnica. Princípio de funcionamento das máquinas elétricas, rotativas e estáticas"

Transcrição

1 Elétrotécnica Princípio de funcionamento das máquinas elétricas, rotativas e estáticas

2 Princípio da Conservação de Energia O Princípio da Conservação da Energia diz que "a energia pode ser transformada ou transferida, mas nunca criada ou destruída". Em um determinado sistema mecânico, em que formas de energia relacionadas a fenômenos eletromagnéticos ou térmicos não estão presentes, pode-se dizer que a energia total do sistema é puramente mecânica. Desse modo, o Princípio da Conservação da Energia implica a conservação daenergia mecânica. Esta,porsua vez,éasoma das quantidades de energia cinética e diversas formas de energia potencial (gravitacional e elástica entre elas). Embora a energia mecânica seja sempre constante, a quantidade de cada uma de suas componentes pode sofrer variação de tal modo que a energia total permaneça constante.

3 Princípio de funcionamento de Transformadores O princípio básico de funcionamento de um transformador é o fenômeno conhecido como indução eletromagnética: quando um circuito é submetido a um campo magnético variável, aparece nele uma corrente elétrica cuja intensidade é proporcional às variações do fluxo magnético. Os transformadores, na sua forma mais simples, consistem de dois enrolamentos de fio (o primário e o secundário), que geralmente envolvem os braços de um quadro metálico (o núcleo). Uma corrente alternada aplicada ao primário produz um campo magnético proporcional à intensidade dessa corrente e ao número de espiras do enrolamento (número de voltas do fio em torno do braço metálico). Através do metal, o fluxo magnético quase não encontra resistência e, assim, concentra-se no núcleo, em grande parte, e chega ao enrolamento secundário com um mínimo de perdas. Ocorre, então, a indução eletromagnética: no secundário surge uma corrente elétrica, que variadeacordocomacorrentedoprimárioecomarazãoentreos números de espiras dos dois enrolamentos.

4 Princípio de funcionamento de Transformadores Os transformadores obedecem a Lei de Faraday e de Lenz. Devemos definir dois tipos de indutância para o Trafo: Indutância própria é a indução de uma tensão elétrica devido à corrente que circula na própria bobina

5 Princípio de funcionamento de Transformadores Indutância mútua que representa a indução de uma tensão em um dos enrolamentos devido à corrente que circula no outro enrolamento.

6 Princípio de funcionamento de Transformadores Vamos definir M 12 como sendo a indutância da bobina 2 em relação a bobina 1, assim temos: O acoplamento magnético é polarizado. As bobinas são marcadas com pontos que indicam a entrada/saída da corrente na bobina. Se a corrente entra no terminal com ponto em uma bobina, a polaridade de referência da tensão induzida (mútua) na segunda bobina é positiva no terminal com ponto da segunda bobina. Se a corrente sai no terminal marcado com ponto em uma bobina, a polaridade de referência da tensão induzida (mútua) na segunda bobina é negativa no terminal marcado com ponto da segunda bobina.

7 Princípio de funcionamento de Acoplamento mútuo: Transformadores Acoplamento série:

8 Princípio de funcionamento de Circuitos acoplados: Transformadores

9 Princípio de funcionamento de Circuitos acoplados: Transformadores

10 Princípio de funcionamento de Motores Elétricos Ação Magnética sobre uma espira: Vamos representar uma espira condutora de formato plano retangular com os vetores I1, I2, I3 e I4 indicando os respectivos lados. Pela espira circula uma corrente constante i e ela está sob ação de uma indução uniforme B ortogonal ao eixo zz'. A espira pode girar em torno de zz'. Os vetores em vermelho indicam as forças atuante em cada lado, de acordo com o produto vetorial do item anterior.

11 Princípio de funcionamento de Motores Elétricos Como lados opostos têm o mesmo comprimento mas sentidos contrários de I, ocorrem as igualdades: F 4 = -F 2 e se anulam mutuamente. F 1 = -F 3 mas não têm o mesmo alinhamento e, embora a resultante seja nula, há um conjugado que tende a girar a espira em torno de zz'. Em intensidades temos: F 1 = i I 1 B e o conjugado M mec = 2 F 1 (I 2 cos α)/2. E substituindo, M mec = i I 1 I 2 B cos α. Mas I 1 I 2 é a área S da espira. Assim, M mec = i S B cos α. Aqui não é dado mas é possível demonstrar que esta fórmula se aplica a qualquer formato de espira plana de área S e não somente ao retangular.

12 Princípio de funcionamento de Motores Elétricos Este é o princípio de funcionamento de motores e galvanômetros. Para uma bobina de N espiras, basta multiplicar o valor por N. Assim, M mec = N i S B cos α. Considerando que a máquina de corrente contínua é um dispositivo reversível, excitando tanto o enrolamento do estator como do rotor por uma fonte de corrente contínua, tem-se o motor de corrente contínua, com mostra a Figura seguinte:

13 Princípio de funcionamento de Motores Elétricos

14 Princípio de funcionamento de Motores Elétricos Pelo princípio de funcionamento, as máquinas elétricas se classificam em: 1. Máquinasdecoletor: a. Máquinas de corrente contínua: i) geradores(dínamos) Ii) motores de corrente contínua b. Máquinas de corrente alternada: i) motor série ii) motores de repulsão 2. Máquinas assíncronas(motores de indução): a. Trifásicas b. Monofásicas 3. Máquinas síncronas: a. Motores síncronos b. Geradores (alternadores)

15 Princípio de funcionamento de Motores Elétricos Nas máquinas elétricas podemos distinguir duas partes principais: o estator (parte fixa) e o rotor (a parte girante). Um conceito básico utilizado é o de repulsão/atração entre pólos magnéticos; e, um outro conceito importante é o da "ação dos campos magnéticos sobre as correntes". As forças magnéticas são as causas do por que o motor gira. O rotor do motor precisa de um torque para iniciar o seu giro. Este torque (momento) normalmente é produzido por forças magnéticas desenvolvidas entreospólosmagnéticosdorotoreaquelesdoestator.forçasde atração ou de repulsão, desenvolvidas entre estator e rotor, 'puxam' ou 'empurram' os pólos móveis do rotor, produzindo torques,quefazemorotorgirarmaisemaisrapidamente,atéque os atritos ou cargas ligadas ao eixo reduzam o torque resultante ao valor 'zero'. Após esse ponto, o rotor passa a girar com velocidade angular constante. Tanto o rotor, como o estator do motor devem ser magnéticos, pois são essas forças entre pólos que produzem o torque necessário para fazer o rotor girar.

16 Princípio de funcionamento de Motores Elétricos É condição necessária que algum pólo altere sua polaridade para garantir a rotação do rotor. Vamos entender melhor isso, através da ilustração abaixo. Um motor simples consiste de uma bobina que gira entre dois ímãs permanentes. (a) Os pólos magnéticos da bobina (representados como ímã) são atraídos pelos pólos opostos dos ímãs fixos. (b) A bobina gira para levar esses pólos magnéticos o mais perto possível um do outro, mas, (c) ao chegar nessa posição o sentido da corrente é invertido e (d) agora os pólos que se defrontam se repelem, continuando a impulsionar o rotor.

17 Princípio de funcionamento de Motores Elétricos Acima esquematizamos um motor simples onde o estator é constituído por ímãs permanentes e o rotor é uma bobina de fio de cobre esmaltado por onde circula uma corrente elétrica. Uma vez que as correntes elétricas produzem campos magnéticos essa bobina se comporta como um ímã permanente, com seus pólos N (norte) e S (sul) como mostrados na figura. Comecemos a descrição pela situação ilustrada em (a) onde a bobina apresentase horizontal. Como os pólos opostos se atraem, a bobina experimenta um torque que age no sentido de girar a bobina para a esquerda. A bobina sofre aceleração angular e continua seu giro para a esquerda, como se ilustra em (b). Esse torque continua até que os pólos da bobina alcancem os pólos opostos dos ímãs fixos (estator). Nessa situação (c) a bobina girou de 90º. Não há torque algum, uma vez que os braços de alavanca são nulos (a direção das forças passa pelo centro de rotação); o rotor está em equilíbrio estável (força resultante nula e torque resultante nulo). Esse é o instante adequado para inverter o sentido da corrente na bobina.

18 Princípio de funcionamento de Motores Elétricos Agoraospólosdemesmonomeestãomuitopróximoseaforçade repulsão é intensa. Como a bobina já apresenta um momento angular para a esquerda, ela continua girando para a esquerda (algo como uma inércia de rotação ) e o novo torque (agora propiciado por forças de repulsão), como em (d), colabora para a manutenção e aceleração do movimento de rotação. Mas, mesmo após a bobina ter sido girada de 180º, não ilustrada na figura, o movimento continua, a bobina chega na vertical em um giro de 270º, o torque novamente se anula, a corrente novamente inverte seu sentido, novo torque e a bobina chega novamente á situação (a) giro de 360º. E o ciclo se repete. Essas atrações e repulsões bem coordenadas é que fazem o rotor girar, embora o modo como tais torques sejam obtidos possam variar entre os vários tipos de motores. A inversão do sentido da corrente, no momento oportuno, é condição indispensável para a manutenção dos torques favoráveis, os quais garantem o funcionamento dos motores. É por isso que um motor não pode ser feito exclusivamente com ímãs permanentes!

19 Princípio de funcionamento de Motores Elétricos Motores de indução: 1 Máquina Síncrona: Quando a frequência elétrica está sincronizada com a velocidade mecânica (velocidade do rotor em rotações por segundo). 2 Máquina de Indução: Caracteriza-se por haver correntes alternadas nos dois enrolamentos, do estator e do rotor. A máquina de indução pode ser considerada como um transformador generalizado, no qual ocorre transformação de potência elétrica entre o estator e rotor, com mudança de frequência e com fluxo de potência mecânica. Não e muito utilizada como gerador por não ter um desempenho satisfatório e pode ser empregada como um conversor de frequência.3 Atensãogeradaemmáquinasdec.a.,é calculada considerando-se uma onda de indução magnética senoidal.

20 Princípio de funcionamento de Motores Elétricos Alguns motores de corrente alternada têm rotores que não são imãs permanentes nem eletroímãs convencionais. Estes rotores são feitos de metais nãomagnéticos, como o alumínio, e não têm nenhuma conexão elétrica. Todavia, o isolamento elétrico deles não os impede de ficarem magnetizados ou imantados. Quando um rotor feito de alumínio é exposto a campos magnéticos alternados, correntes elétricas começam a fluir por ele e estas correntes induzidas tornam o rotor magnético. Esse é um fenômeno básico do eletromagnetismo denominado indução eletromagnética. Tais motores, que usam desse fenômeno para tornarem seus rotores magnetizados, são chamados de motores de indução.

21 Princípio de funcionamento de Motores Elétricos Os motores de indução são provavelmente o tipo o mais comum de motor de c. a., comparecendo em muitos eletrodomésticos (ventiladores, motores de toca-discos etc.) e aplicações industriais. Fornecem bom torque, começam facilmente a girar, e são baratos. Um motor de indução trabalha movendo um campo magnético em torno do rotor, o chamado campo magnético girante. O estator, que cerca o rotor, contem um eletroímã sofisticado. O estator não se movimenta, mas sim o campo magnético que ele produz! Com um uso inteligente de vários recursos eletromagnéticos (espiras de curto circuito, capacitores etc.), o estator pode criar pólos magnéticos que se deslocamemumcírculoesemovimentamemtornodo rotor. Na próxima ilustração, o pólo norte do estator gira no sentido anti-horário em torno do rotor.

22 Princípio de funcionamento de Motores Elétricos Nos motores de indução e síncronos trifásicos, o estator tem a mesma forma construtiva. Os enrolamentos do estator são alojados em sulcos existentes na periferia do núcleo de ferro laminado e são alimentados por uma fonte trifásica, que origina o campo girante. Entretanto, os rotores são bem diferentes. No motor de indução temos dois tipos de rotor: rotor em curto-circuito, ou gaiola de esquilo (ou simplesmente gaiola) e rotor bobinado (enrolado), e em ambos os tipos os núcleos magnéticos são laminados. No motor síncrono o rotor é constituído por bobinas enroladas convenientemente nos núcleos magnéticos (denominados de pólos) e alimentados por uma fonte de corrente contínua.

23 Princípio de funcionamento de Motores Elétricos O rotor bobinado consta de um núcleo em tambor, provido de ranhuras onde são alojados enrolamentos semelhantes ao do estator, e produzindo o mesmo número de pólos. No motor trifásico estes enrolamentos são geralmente ligados em estrela, e as três extremidades livres dos enrolamentos são ligadas a três anéis coletores montados no eixo, permitindo a inserção de resistor variável em série em cada fase. Orotortipogaiolaconstadeum núcleoemtambor, providos de ranhuras, nas quais são alojados fios ou barras de cobre curto-circuitados nos extremos por anéis.

24 Princípio de funcionamento de Motores Elétricos A potência de saída é a potência mecânica no eixo do motor, que é a potência nominal, geralmente expressa em cv ou kw (eventualmente em HP); a potência de entrada é a potência nominal dividida pelorendimento.apotênciadeentrada(elétrica)p E, pode ser dada (em kw) pelas seguintes expressões, em função da potência nominal (em cv, kwouhp)p N edorendimento:

25 Princípio de funcionamento de Motores Elétricos A corrente nominal ou corrente de plena carga de um motor(i N ),,éacorrenteconsumidapelomotorquando ele fornece a potência nominal a uma carga. Para os motores de corrente alternada as correntes podem ser determinadas pelas seguintes expressões: Monofásico Trifásico Sendo V N a tensão nominal (de linha) e cosϕo fator de potência nominal.

26 Princípio de funcionamento de Motores Elétricos A corrente consumida por um motor varia bastante com as circunstâncias. Na maioria dos motores, a corrente é muito alta na partida, caindo gradativamente (em alguns segundos) com o aumento da velocidade. Atingidas as condições de regime, isto é, motor com velocidade nominal, fornecendo potência nominal a uma carga, ela atinge o seu valor nominal; aumentando, porém, se ocorrer alguma sobrecarga.

27 Princípio de funcionamento de Motores Elétricos Na partida um motor solicita da rede elétrica uma corrente muitas vezes superior à nominal; a relação entre a corrente de partida I P, e a corrente nominal I N, varia com o tipo e o tamanho do motor, podendo atingir valores superior a 8 vezes mais. Esta relação depende também do tipo de carga acionada pelo motor. Os motores de corrente alternada de filosofia ' norte-americana e potência igual ou superior a ½ HP levam a indicação de uma letra-código, que fornece a relação aproximada dos kva consumidos por HP com rotor bloqueado; evidentemente, o motor nunca funciona nessas condições (rotor bloqueado), porém, no instante da partida ele não está girando e, portanto, essasituaçãoéválidaatéqueelecomeceagirar.

28 Princípio de funcionamento de Motores Elétricos Campo girante - Se em vez de um motor monofásico, considerarmos um trifásico, as correntes trifásicas que percorrem os enrolamentos (fases) do estator vão gerar, em cada fase, campos pulsantes, defasados de um ângulo igual ao da defasagem entre as tensões aplicadas, cujos eixos de simetria são fixos no espaço, mas cuja resultante é um campo que gira num determinado sentido, denominado campo girante. Consideremos o estator de um motor de indução trifásico. As três fases, alojadas nas ranhuras do estator, são deslocadas uma da outra de, e ligadas, (em estrela ou em triângulo), a uma fonte de alimentação trifásica. As tensões aplicadas se acham defasadas de graus elétricos, e nas três fases resultam correntes iguais, defasadas entre si de elétricos, as quais geram campos magnéticos pulsantes, que se combinam dando um campo resultante de valor constante; este campo gira com uma velocidade constante que depende da frequência da fonte e o númerodepólosparaosquaisoestatorfoienrolado.

29 Princípio de funcionamento de Motores Elétricos A velocidade de rotação do campo se denomina velocidade síncrona, cuja expressão é: Sendo: n a velocidade em rpm f a frequência da rede p o número de pares de polos

30 Princípio de funcionamento de Motores Elétricos O sentido de rotação do campo, que determina o sentido de rotação do motor, depende da sequência das tensões e das ligações das três fases, que na prática poderá ser invertido invertendo as ligações de duas fases quaisquer do estator com a linha de alimentação. Quando o motor funciona sem carga, o rotor gira com velocidade quase igual à síncrona; com carga o rotor se atrasa mais em relação ao campo girante, e correntes maiores são induzidas para desenvolver o conjugado necessário. Chama-se escorregamento, a seguinte relação: S escorregamento n velocidade síncrona nr velocidade do rotor

31 Princípio de funcionamento de Motores Elétricos O escorregamento é geralmente expresso em porcentagem, variando em plena carga, conforme o tamanhoeotipodomotor,de1a5%. A frequência da corrente no rotor é o produto do escorregamento pela frequência da corrente no estator, isto é:

32 Princípio de funcionamento de Motores Elétricos Conjugado - O enrolamento do rotor do motor trifásico é distribuído por todo o seu perímetro. Cada condutor atravessado por corrente, deste enrolamento, está sujeito a uma força de repulsão do campo magnético. Todas as forças são aplicadas perimetralmente e em direção tangencial. Produzirão, portanto, um momento tangencial. O momento devido aos pares de forças com linha de ação paralelas, de mesma intensidade e sentido opostos é chamado de binário ou conjugado (de torção).

33 Princípio de funcionamento de Motores Elétricos As correntes no rotor defasam de um ângulo θ r, em atraso, sobre as f.e.m. induzidas no rotor (Er), em virtude da impedância dos enrolamentos ou barras do rotor. O conjugado em termos de campos magnéticos que interagem pode ser descrito da seguinte forma: C = T π = 2 p 2 2 Φ er F r senδ r 2 πdl Φ = B π p = 2Dl p B

34 Princípio de funcionamento de Motores Elétricos Sendo: Φ fluxo resultante produzido pelo efeito combinado das fmmsdo estator e do rotor; p numero de pólos; F fmm resultante; δ ângulo entre os eixos magnéticos.

35 Princípio de funcionamento de Motores Elétricos No instante da partida forma-se no rotor, em virtude do escorregamento 100%, a f.e.m. mais elevada possível, e com isso, uma corrente muito elevada e um campo intenso. O motor de indução nesta situação equivale a um transformador com secundário curto-circuitado; a corrente de partida é, por isso, igual a corrente de curto-circuito e resulta assim de 3 a 8 vezes a corrente nominal. Simultaneamente, porém, o enrolamento do rotor possui alta reatância no momento da partida, pois, a frequência da f.e.m. induzida no rotor é igual à da rede. Como consequência, no momento da partida, a corrente do rotor está atrasada da f.e.m. induzida de quase Nestas condições o motor de indução tipo gaiola apresenta baixo torque de partida.

36 Princípio de funcionamento de Motores Elétricos Identificação dos motores: Os motores elétricos possuem placa identificadora, colocada pelo fabricante, na qual pelas normas, deve ser fixada em local bem visível. Para instalar adequadamente um motor, é imprescindível que o instalador saiba interpretar os dados de placa. Estes dados são: nome e dados do fabricante, modelo (MOD), potência (cv, HP, kw), número de fases (por exemplo, Trifásico ou 3FAS), tensões nominais (V), freqüência nominal (Hz), categoria (CAT), correntes nominais (A), velocidade nominal (RPM), fator de serviço (FS), classe de isolamento (ISOL. CL.), letra-código (COD), regime (REG), grau de proteção(proteção IP), ligações.

37 Princípio de funcionamento de Motores Elétricos Classe A:Conjugado de partida normal, corrente de partida normal, baixo escorregamento. Utilizado geralmente para potencias de abaixo de 7,5 HP e, acima de 200 HP. Classe B:Conjugado de partida normal, baixa corrente de partida, baixo escorregamento. Utilizado para potencias entre 7,5 e 200 HP. Acionamento de velocidades constantes tais como em ventiladores, bombas e maquinas operatrizes. Classe C:Alto conjugado de partida, baixa corrente de partida. Aplicações típicas são para compressores e transportadores. Classe D:Alto conjugado de partida, alto escorregamento. Seus principais usos são para mover cargas intermitentes envolvendo serviço de altas acelerações.

38 Princípio de funcionamento dos Geradores Elétricos Como variações podemos citar o gerador de corrente contínua, onde o enrolamento do estator(também conhecido como enrolamento de campo) é excitado por uma fonte de corrente contínua e no eixo do rotor impõe-se um torque mecânico. Quando o enrolamento do rotor (o rotor é conhecido também como armadura ou induzido) corta as linhas de força, uma f.e.m. é induzida nele, obedecendo à lei de Faraday. A f.e.m. induzida é alternada (senoidal), mas por meio de uma retificação mecânica (comutador) é transformada em corrente contínua. A Figura seguinte mostra um gerador elementar.

39 Princípio de funcionamento dos Geradores Elétricos Como variações podemos citar o gerador de corrente contínua, onde o enrolamento do estator (também conhecido como enrolamento de campo) é excitado por uma fonte de corrente contínua e no eixo do rotor impõe-se um torque mecânico. Quando o enrolamento do rotor (o rotor é conhecido também como armadura ou induzido) corta as linhas de força, uma f.e.m. é induzida nele, obedecendo à lei de Faraday. A f.e.m. induzida é alternada (senoidal), mas por meio de uma retificação mecânica (comutador) é transformada em corrente contínua.

40 Princípio de funcionamento dos Geradores Elétricos Princípio de Funcionamento dos Alternadores: Para esclarecer o principio de funcionamento dos alternadores, descrevamos inicialmente o mais simples deles (usado em faroletes de acionamento manual e de bicicleta, e em ignição de motores de explosão para motonetas).

41 Princípio de funcionamento dos Geradores Elétricos Diante de uma bobina fixa B (induzido) põe-se a girar um ímã SN (indutor), como ilustrado acima. O ímã mantém um campo do qual o fluxo concatenado com a bobina varia periodicamente, com a mesma frequência de revolução do ímã. Se a rotação do ímã for lenta, um galvanômetro sensível G indica aproximadamente a corrente instantânea no decurso do tempo; se a rotação for rápida, é necessário um osciloscópio.

42 Princípio de funcionamento dos Geradores Elétricos

43 Princípio de funcionamento dos Geradores Elétricos Nessa sequência de ilustrações acima apresentamos as fases mais representativas no funcionamento de um alternador. É a variação de fluxo que induz corrente. O fluxo varia enquanto aumenta ou diminui. Quando o fluxo é máximo, ele não varia; a FEM induzida é nula; a correnteénulaemudadesentido.ocampomagnético produzido pela corrente induzida exerce no ímã forças contrarias à sua rotação

44 Princípio de funcionamento dos Geradores Elétricos A FEM induzida não é senoidal, mas segue, a grosso modo, o gráfico posto acima, onde ilustramos no mesmo par de eixos, o fluxo de indução e a corrente induzida em um alternador, em um período (T). Enquanto o fluxo de indução diminui, a corrente é positiva; quando o fluxo aumenta, a corrente é negativa, segundo a convenção apresentada. Fluxo máximo ou mínimo corresponde a corrente induzida nula. O fluxo de indução varia mais acentuadamente quando próximo de ZERO; então a corrente tem intensidade máxima(com sinal + ou-). Mais perfeito é o sistema que examinaremos em seguida. Consideremos um a espira plana de forma qualquer, abrangendo uma área A; seja l uma reta no plano desta espira. Introduzamos a espira em um campo de indução B uniforme, dispondo a reta l perpendicularmente ao campo B. Façamos a espira girar em torno da reta l como eixo, com velocidade angular w constante. Determinemos a força eletromotriz induzida na espira girante.

45 Princípio de funcionamento dos Geradores Elétricos Adotemos como origem dos tempos um dos instantes em que a normal nà espira forma com o campo de indução Bângulo igual a um reto, passando de agudo para obtuso. Com a notação da ilustração acima, o fluxo de indução na espira em qualquer instante é dado por: f= B.A.cos(w.t + p/2) = -B.A.senw.t Sendo E = -df/dt, vem: E = w.b.a.cosw.t

46 Princípio de funcionamento dos Geradores Elétricos Se a espira for substituída por uma bobina de N espiras, a força eletromotriz induzida é: E = N.w.B.A.cos w.t Como vemos, esta força eletromotriz induzida obedece a uma lei harmônica cuja amplitude é: E máx. = N.w.B.A Em função do tempo, a força eletromotriz induzida tem a representação cartesiana dada na ilustração acima (figura da direita). A mudança de sinal da força eletromotriz significa fisicamente que ela muda de polaridade, impulsionando uma corrente elétrica ora em um sentido, ora em sentido oposto. Uma força eletromotriz que muda de polaridade periodicamente é designada como força eletromotriz alternante; no caso presente, tratase de uma força eletromotriz alternante harmônica.

47 Princípio de funcionamento dos Geradores Elétricos Aqui ilustramos as bases de um alternador de pequeno porte. O estator é constituído por um ímã permanente e opera como indutor. O sistema é conhecido como magneto', e é usado para campainha de telefone, ou para ignição em pequenos motores de explosão (motocicletas). O estator poderia ser um eletroímã abastecido com corrente contínua de uma fonte adequada.

Motores de Indução ADRIELLE DE CARVALHO SANTANA

Motores de Indução ADRIELLE DE CARVALHO SANTANA ADRIELLE DE CARVALHO SANTANA Motores CA Os motores CA são classificados em: -> Motores Síncronos; -> Motores Assíncronos (Motor de Indução) O motor de indução é o motor CA mais usado, por causa de sua

Leia mais

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA

Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA Alternadores Um gerador é qualquer máquina que transforma energia mecânica em elétrica por meio da indução magnética. Um gerador de corrente

Leia mais

Motores Síncronos ADRIELLE C SANTANA

Motores Síncronos ADRIELLE C SANTANA Motores Síncronos ADRIELLE C SANTANA Motores Síncronos Possuem velocidade fixa e são utilizados para grandes cargas, (em função do seu alto custo que faz com que ele não seja viável para aparelhos menores)

Leia mais

MOTORES ELÉTRICOS Princípios e fundamentos

MOTORES ELÉTRICOS Princípios e fundamentos MOTORES ELÉTRICOS Princípios e fundamentos 1 Classificação 2 3 Estator O estator do motor e também constituido por um núcleo ferromagnético laminado, nas cavas do qual são colocados os enrolamentos alimentados

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Monofásico 1.1 Introdução 1.1.1 Motores

Leia mais

Eletrotécnica. Comandos Elétricos

Eletrotécnica. Comandos Elétricos Eletrotécnica Comandos Elétricos Teoria e Aplicações Escola Técnica de Brasília - ETB Prof. Roberto Leal Ligação de Motores 1 Motor Elétrico Transformar energia elétrica em energia mecânica Motores de

Leia mais

Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana

Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana Geradores de Corrente Contínua UNIDADE 2 Prof. Adrielle de Carvalho Santana INTRODUÇÃO Um gerador de corrente continua é uma máquina elétrica capaz de converter energia mecânica em energia elétrica. Também

Leia mais

Técnico em Eletrotécnica

Técnico em Eletrotécnica Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças

Leia mais

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética 1 de 9 CURSO Eletroeletrônica - DATA / / COMPONENTE ALUNO DOCENTE Eletromagnetismo Prof. Romeu Corradi Júnior [www.corradi.junior.nom.br] RA: Assunto: Resumo com comentários Eletromagnetismo Indução eletromagnética

Leia mais

MANUTENÇÃO ELÉTRICA INDUSTRIAL * ENROLAMENTOS P/ MOTORES CA *

MANUTENÇÃO ELÉTRICA INDUSTRIAL * ENROLAMENTOS P/ MOTORES CA * MANUTENÇÃO ELÉTRICA INDUSTRIAL * ENROLAMENTOS P/ MOTORES CA * Vitória ES 2006 7. ENROLAMENTOS PARA MOTORES DE CORRENTE ALTERNADA A maneira mais conveniente de associar vários condutores de um enrolamento

Leia mais

Motor de Corrente Contínua e Motor Universal

Motor de Corrente Contínua e Motor Universal Capítulo 14 Motor de Corrente Contínua e Motor Universal Objetivos: Entender o princípio de funcionamento Analisar as características operacionais destes motores ONDE EXISTE ESTE TIPO DE ROTOR? ESPIRA

Leia mais

Conhecer as características de conjugado mecânico

Conhecer as características de conjugado mecânico H4- Conhecer as características da velocidade síncrona e do escorregamento em um motor trifásico; H5- Conhecer as características do fator de potência de um motor de indução; Conhecer as características

Leia mais

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Conceitos preliminares Introdução às máquinas CA e CC Força Magnetomotriz (FMM) de enrolamentos concentrados e de enrolamentos distribuídos

Leia mais

GLOSSÁRIO MÁQUINAS ELÉTRICAS

GLOSSÁRIO MÁQUINAS ELÉTRICAS GLOSSÁRIO MÁQUINAS ELÉTRICAS Motor Elétrico: É um tipo de máquina elétrica que converte energia elétrica em energia mecânica quando um grupo de bobinas que conduz corrente é obrigado a girar por um campo

Leia mais

EQUACIONAL ELÉTRICA E MECÂNICA LTDA

EQUACIONAL ELÉTRICA E MECÂNICA LTDA ELETROTÉCNICA 1. INTRODUÇÃO : Este texto foi preparado procurando uma exposição na forma mais simples, apenas com a intenção de relembrar alguns conceitos fundamentais da eletricidade e do eletromagnetismo

Leia mais

Como funciona o motor de corrente contínua

Como funciona o motor de corrente contínua Como funciona o motor de corrente contínua Escrito por Newton C. Braga Este artigo é de grande utilidade para todos que utilizam pequenos motores, principalmente os projetistas mecatrônicos. Como o artigo

Leia mais

Capítulo 8 - MOTORES ELÉTRICOS

Capítulo 8 - MOTORES ELÉTRICOS Capítulo 8 - MOTORES ELÉTRICOS 8.1 - Motores de Corrente Contínua 8.2 - Motores de Corrente Alternada 8.3 - Motores Especiais 8.4 - Exercícios Propostos Na natureza a energia se encontra distribuída sob

Leia mais

MOTORES ELÉTRICOS. Aula 1. Técnico em Eletromecânica - Julho de 2009. Prof. Dr. Emerson S. Serafim 1

MOTORES ELÉTRICOS. Aula 1. Técnico em Eletromecânica - Julho de 2009. Prof. Dr. Emerson S. Serafim 1 MOTORES ELÉTRICOS Aula 1 Técnico em Eletromecânica - Julho de 2009 Prof. Dr. Emerson S. Serafim 1 CONTEÚDO INTRODUÇÃO; 1.1 TIPOS DE MOTORES; 1.2 FATORES DE SELEÇÃO; 1.3 MOTORES DE INDUÇÃO; 1.4 MOTORES

Leia mais

Levantamento da Característica de Magnetização do Gerador de Corrente Contínua

Levantamento da Característica de Magnetização do Gerador de Corrente Contínua Experiência IV Levantamento da Característica de Magnetização do Gerador de Corrente Contínua 1. Introdução A máquina de corrente contínua de fabricação ANEL que será usada nesta experiência é a mostrada

Leia mais

CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS

CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS 2.1 INTRODUÇÃO O objetivo do presente trabalho é estudar o funcionamento em regime permanente e em regime dinâmico da Máquina Assíncrona Trifásica

Leia mais

Revisão. Gerador Síncrono Tensão induzida no enrolamento do estator

Revisão. Gerador Síncrono Tensão induzida no enrolamento do estator Revisão Gerador Síncrono Tensão induzida no enrolamento do estator Revisão Motor de Indução Geração do campo girante do estator Revisão Motor de Indução Velocidade de rotação do campo girante do estator

Leia mais

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso.

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. Luciano de Abreu São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. É um dispositivo elétrico passivo que armazena energia

Leia mais

1ª PARTE: INFORMAÇÃO TECNOLÓGICA ELETROTÉCNICA - IT

1ª PARTE: INFORMAÇÃO TECNOLÓGICA ELETROTÉCNICA - IT 1ª PARTE: INFORMAÇÃO TECNOLÓGICA ELETROTÉCNICA - IT SUMÁRIO Grandezas 01 1.1 Classificação das Grandezas 01 1.2 Grandezas Elétricas 01 2 Átomo (Estrutura Atômica) 01 2.1 Divisão do Átomo 01 3 Equilíbrio

Leia mais

MOTORES ELÉTRICOS. Princípios e fundamentos. Eng. Agríc. Luciano Vieira

MOTORES ELÉTRICOS. Princípios e fundamentos. Eng. Agríc. Luciano Vieira Universidade Estadual de Maringá Departamento de Engenharia Agrícola Campus do Arenito MOTORES ELÉTRICOS Princípios e fundamentos Eng. Agríc. Luciano Vieira CLASSIFICAÇÃO Classificação dos motores de

Leia mais

Questão 3: Três capacitores são associados em paralelo. Sabendo-se que suas capacitâncias são 50μF,100μF e 200μF, o resultado da associação é:

Questão 3: Três capacitores são associados em paralelo. Sabendo-se que suas capacitâncias são 50μF,100μF e 200μF, o resultado da associação é: Questão 1: A tensão E no circuito abaixo vale: a) 0,5 V b) 1,0 V c) 2,0 V d) 5,0 V e) 10,0 V Questão 2: A resistência equivalente entre os pontos A e B na associação abaixo é de: a) 5 Ohms b) 10 Ohms c)

Leia mais

CONHECIMENTOS TÉCNICOS DE AERONAVES

CONHECIMENTOS TÉCNICOS DE AERONAVES CONHECIMENTOS TÉCNICOS DE AERONAVES MÓDULO 2 Aula 4 Professor: Ricardo Rizzo MAGNETISMO É uma propriedade muito conhecida dos imãs, de atrair o ferro. Um imã possui dois pólos magnéticos denominados norte

Leia mais

Eletrotécnica Geral. Lista de Exercícios 2

Eletrotécnica Geral. Lista de Exercícios 2 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios 2 1. Condutores e Dispositivos de Proteção 2. Fornecimento

Leia mais

TRANSFORMADORES ADRIELLE C. SANTANA

TRANSFORMADORES ADRIELLE C. SANTANA TRANSFORMADORES ADRIELLE C. SANTANA Aplicações As três aplicações básicas dos transformadores e que os fazem indispensáveis em diversas aplicações como, sistemas de distribuição de energia elétrica, circuitos

Leia mais

PROBLEMAS DE MÁQUINAS ELÉCTRICAS

PROBLEMAS DE MÁQUINAS ELÉCTRICAS PROBLEMAS DE MÁQUINAS ELÉCTRICAS 1. Um dinamo octopolar de 600 r.p.m. com enrolamento em série de 300 condutores activos tem um fluxo por pólo de 5x10 6 Maxwell. Calcule a força electromotriz produzida.

Leia mais

Introdução à Máquina de Indução

Introdução à Máquina de Indução Introdução à Máquina de Indução 1. Introdução Nesta apostila são abordados os aspectos básicos das máquinas de indução. A abordagem tem um caráter introdutório; os conceitos abordados serão aprofundados

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

RELAÇÕES DE CORRENTE ALTERNADA

RELAÇÕES DE CORRENTE ALTERNADA RELAÇÕES DE CORRENTE ALTERNADA A tensão alternada senoidal é a qual utilizamos em nossos lares, na indústria e no comércio. Dentre as vantagens, destacamos: Facilidade de geração em larga escala; Facilidade

Leia mais

Figura 3.17: Campo girante obtido por rotação mecânica das estruturas.

Figura 3.17: Campo girante obtido por rotação mecânica das estruturas. 3.3 Motores de Indução Trifásicos. 3.3.1 Campo Girante Trifásico. A Figura 3.17 apresenta o campo girante produzido por uma estrutura de dois e quatro pólos magnéticos. A Figura também destaca um núcleo

Leia mais

Transformador. Índice. Estrutura

Transformador. Índice. Estrutura Transformador Origem: Wikipédia, a enciclopédia livre. Um transformador ou trafo é um dispositivo destinado a transmitir energia elétrica ou potência elétrica de um circuito a outro, transformando tensões,

Leia mais

AULAS 03-04 UNIDADE 1 DINÂMICA DE MÁQUINAS ELÉTRICAS (DME) Prof. Ademir Nied ademir.nied@udesc.br

AULAS 03-04 UNIDADE 1 DINÂMICA DE MÁQUINAS ELÉTRICAS (DME) Prof. Ademir Nied ademir.nied@udesc.br Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Pós-Graduação em Engenharia Elétrica AULAS 03-04 UNIDADE 1 DINÂMICA DE MÁQUINAS ELÉTRICAS (DME) Prof. Ademir Nied ademir.nied@udesc.br

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

MÁQUINAS DE CORRENTE CONTÍNUA

MÁQUINAS DE CORRENTE CONTÍNUA MÁQUINAS DE CORRENTE CONTÍNUA Geradores e motores A máquina é um motor quando transforma energia elétrica em energia mecânica. Quando transforma energia mecânica em energia elétrica, ela é um gerador.

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

Eng. Everton Moraes. Transformadores

Eng. Everton Moraes. Transformadores Eng. Everton Moraes Eng. Everton Moraes Transformadores 1 Transformadores Sumário INTRODUÇÃO... 3 1. Máquinas Elétricas... 3 1.1. Magnetismo... 3 1.2. Eletromagnetismo... 5 1.3. Solenóide... 5 2. Transformadores

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Capítulo 0 Transformadores DESTAQE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Os geradores elétricos, que fornecem tensões relativamente baixas (da ordem de 5 a 5 kv), são ligados

Leia mais

Geradores CC Parte 2 Adrielle C. Santana

Geradores CC Parte 2 Adrielle C. Santana Geradores CC Parte 2 Adrielle C. Santana Aplicações dos Geradores CC Atualmente com o uso de inversores de frequência e transformadores, tornou-se fácil a manipulação da Corrente Alternada. Como os geradores

Leia mais

Universidade Estadual de Campinas UNICAMP Instituto de Física Gleb Wataghin IFGW INSTRUMENTAÇÃO PARA ENSINO F-809. Relatório Final.

Universidade Estadual de Campinas UNICAMP Instituto de Física Gleb Wataghin IFGW INSTRUMENTAÇÃO PARA ENSINO F-809. Relatório Final. Universidade Estadual de Campinas UNICAMP Instituto de Física Gleb Wataghin IFGW INSTRUMENTAÇÃO PARA ENSINO F-809 MOTOR DE BOBINA FIXA Relatório Final 1º Semestre/2006 Aluno: Gustavo Brunetto Orientador:

Leia mais

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA GERADORES MECÂNICOS DE ENERGIA ELÉTRICA Todo dispositivo cuja finalidade é produzir energia elétrica à custa de energia mecânica constitui uma máquina geradora de energia elétrica. O funcionamento do

Leia mais

DIRETORIA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA. Disciplina: Máquinas e Automação Elétrica. Prof.

DIRETORIA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA. Disciplina: Máquinas e Automação Elétrica. Prof. DIRETORIA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA Disciplina: Máquinas e Automação Elétrica Prof.: Hélio Henrique INTRODUÇÃO IFRN - Campus Mossoró 2 MOTORES TRIFÁSICOS CA Os motores

Leia mais

Como funciona o Reed-Switches (MEC089)

Como funciona o Reed-Switches (MEC089) Como funciona o Reed-Switches (MEC089) Escrito por Newton C. Braga Um componente de grande utilidade que pode ser usado como sensor em muitas aplicações mecatrônicas, robóticas e de automação é o reed-switch

Leia mais

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

TRANSFORMADOR. A figura 1 mostra o esquema de um transformador básico.

TRANSFORMADOR. A figura 1 mostra o esquema de um transformador básico. TRAFORMADOR O transformador é constituído basicamente por dois enrolamentos que, utilizando um núcleo em comum, converte primeiramente e- nergia elétrica em magnética e a seguir energia magnética em elétrica.

Leia mais

Transformadores trifásicos

Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica

Leia mais

CAPÍTULO III MOTORES ELÉTRICOS PRINCÍPIOS DE FUNCIONAMENTO

CAPÍTULO III MOTORES ELÉTRICOS PRINCÍPIOS DE FUNCIONAMENTO CAPÍTULO III MOTORES ELÉTRICOS PRINCÍPIOS DE FUNCIONAMENTO 3.1 Introdução. 3.1.1 Estator e Rotor. As máquinas elétricas girantes normalmente são constituídas por duas partes básicas: o estator e o rotor.

Leia mais

Aula 7 Reatância e Impedância Prof. Marcio Kimpara

Aula 7 Reatância e Impedância Prof. Marcio Kimpara ELETRIIDADE Aula 7 Reatância e Impedância Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Parâmetros da forma de onda senoidal Vp iclo Vpp omo representar o gráfico por uma equação matemática?

Leia mais

Eletricidade: acionamento de motores elétricos

Eletricidade: acionamento de motores elétricos Eletricidade: acionamento de motores elétricos A UU L AL A Como se pode converter energia elétrica em energia mecânica? Considere a situação descrita a seguir. Tic-tac, blamp-blump, zuuuummmm... São as

Leia mais

MOTORES DE INDUÇÃO MONOFÁSICOS CAPÍTULO 05

MOTORES DE INDUÇÃO MONOFÁSICOS CAPÍTULO 05 MOTORES DE INDUÇÃO MONOFÁSICOS CAPÍTULO 05 2 5.1 Introdução Os motores elétricos pertencem a dois grandes grupos: os de corrente contínua e os de corrente alternada. Os motores de indução se enquadram

Leia mais

TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA

TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA TEMA DA AULA TRANSFORMADORES DE POTÊNCIA PROFESSOR: RONIMACK TRAJANO DE SOUZA TRANSFORMADORES - PERDAS EM VAZIO Potência absorvida pelo transformador quando alimentado em tensão e frequência nominais,

Leia mais

Acionamento de Motores CA

Acionamento de Motores CA Fundação Universidade Federal ACIONAMENTOS de Mato Grosso do CA Sul 1 Acionamentos Eletrônicos de Motores Acionamento de Motores CA Prof. Márcio Kimpara Prof. João Onofre. P. Pinto Universidade Federal

Leia mais

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo.

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo. EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO 11.1 OBJETIVOS Observar, descrever e explicar algumas demonstrações de eletromagnetismo. 11.2 INTRODUÇÃO Força de Lorentz Do ponto de vista formal,

Leia mais

Corrente alternada. Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor.

Corrente alternada. Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor. Corrente alternada Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor. A corrente elétrica pode ser contínua (quando movimento é em uma única direçaõ e sentido) ou

Leia mais

Nota Técnica 003/2010

Nota Técnica 003/2010 Nota Técnica 003/2010 Produto: Crowbar Aplicação: Acionamento da resistência de descarga em motores síncronos Serão discutidos os tópicos a seguir: 1) Conceito de Motores Síncronos 2) Determinação da Resistência

Leia mais

Física: Eletromagnetismo

Física: Eletromagnetismo Física: Eletromagnetismo Questões de treinamento para a banca Cesgranrio elaborada pelo prof. Alex Regis Questão 01 Está(ão) correta(s): Considere as afirmações a seguir a respeito de ímãs. I. Convencionou-se

Leia mais

Efeito magnético da corrente elétrica

Efeito magnético da corrente elétrica Efeito magnético da corrente elétrica Descoberta Um condutor percorrido por uma corrente elétrica faz desviar uma agulha magnética - efeito magnético da corrente elétrica. Observação Um condutor percorrido

Leia mais

Circuitos Elétricos Circuitos Magneticamente Acoplados

Circuitos Elétricos Circuitos Magneticamente Acoplados Introdução Circuitos Elétricos Circuitos Magneticamente Acoplados Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Os circuitos que estudamos até o momento

Leia mais

PROVA ESPECÍFICA Cargo 18

PROVA ESPECÍFICA Cargo 18 27 PROVA ESPECÍFICA Cargo 18 QUESTÃO 41 De acordo com a NBR 5410, em algumas situações é recomendada a omissão da proteção contra sobrecargas. Dentre estas situações estão, EXCETO: a) Circuitos de comando.

Leia mais

PARALELO DE TRANSFORMADORES TRIFÁSICOS

PARALELO DE TRANSFORMADORES TRIFÁSICOS PARALELO DE TRANSFORMADORES TRIFÁSICOS Quando temos por exemplo um transformador ligado a um barramento que alimenta um receptor de 50 KVA, se este receptor aumentar a procura de potência para 100KVA,

Leia mais

Eletromecânicos de Manutenção Industrial

Eletromecânicos de Manutenção Industrial Eletromecânicos de Manutenção Industrial Motor de passo a passo 2013/ 2014 1 Motores passo a passo Os motores de passo são dispositivos eletromecânicos que convertem pulsos elétricos em movimentos mecânicos

Leia mais

Física Unidade VI Série 1

Física Unidade VI Série 1 01 a) Os polos sul e norte encontram-se próximos, por isso ocorre atração. b) Polos iguais encontram-se próximos, resultando em repulsão. c) Polos iguais encontram-se próximos, resultando em repulsão.

Leia mais

Fig. 13 Como um movimento de um passo se desenvolve quando a excitação é chaveada de Ph1 para Ph2.

Fig. 13 Como um movimento de um passo se desenvolve quando a excitação é chaveada de Ph1 para Ph2. Como visto na Fig. 12, quando os dentes do rotor e do estator estão fora do alinhamento na fase excitada, a relutância magnética é grande. O motor RV trabalha para minimizar a relutância magnética. Vamos

Leia mais

LINHA DE EQUIPAMENTOS DIDÁTICOS PARA ÁREA DE ELETROTÉCNICA: DESCRIÇÃO ETC S

LINHA DE EQUIPAMENTOS DIDÁTICOS PARA ÁREA DE ELETROTÉCNICA: DESCRIÇÃO ETC S EQUACIONAL ELÉTRICA E MECÂNICA LTDA. RUA SECUNDINO DOMINGUES 787, JARDIM INDEPENDÊNCIA, SÃO PAULO, SP TELEFONE (011) 2100-0777 - FAX (011) 2100-0779 - CEP 03223-110 INTERNET: http://www.equacional.com.br

Leia mais

Eletromecânicos de Manutenção Industrial

Eletromecânicos de Manutenção Industrial Eletromecânicos de Manutenção Industrial 2013/ 2014 1 Motor de indução trifásico Máquina capaz de transformar energia elétrica em energia mecânica 2 Motor elétrico Noções fundamentais Máquina destinada

Leia mais

Fundamentos de Máquinas Elétricas

Fundamentos de Máquinas Elétricas Universidade Federal do C Engenharia de nstrumentação, utomação e Robótica Fundamentos de Máquinas Elétricas rof. Dr. José Luis zcue uma Regulação de tensão Rendimento Ensaios de curto-circuito e circuito

Leia mais

Lei dos transformadores e seu princípio de funcionamento

Lei dos transformadores e seu princípio de funcionamento Lei dos transformadores e seu princípio de funcionamento Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo. Primeira lei do eletromagnetismo Uma corrente elétrica é

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

Introdução à Máquina Síncrona

Introdução à Máquina Síncrona Apostila 2 Disciplina de Conversão de Energia B 1. Introdução Introdução à Máquina Síncrona Esta apostila descreve resumidamente as principais características construtivas e tecnológicas das máquinas síncronas.

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Trifásico A verificação do desempenho,

Leia mais

TRABALHO LABORATORIAL Nº 3

TRABALHO LABORATORIAL Nº 3 ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE ENGENHARIA MARÍTIMA M422 - SISTEMAS E INSTALAÇÕES ELÉCTRICAS DE NAVIOS TRABALHO LABORATORIAL Nº 3 ENSAIO DE UMA MÁQUINA ASSÍNCRONA TRIFÁSICA

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas

Leia mais

3º Bimestre. Física I. Autor: Geraldo Velazquez

3º Bimestre. Física I. Autor: Geraldo Velazquez 3º Bimestre Autor: Geraldo Velazquez SUMÁRIO UNIDADE III... 4 Capítulo 3: Eletromagnetismo... 4 3.1 Introdução... 4 3.2 Campo Magnético (B)... 6 3.3 Campo Magnético Gerado Por Corrente... 7 3.4 Campo

Leia mais

Motores CA. CFP Eliezer Vitorino Costa

Motores CA. CFP Eliezer Vitorino Costa Motores CA Motor Elétrico Definição: É uma máquina destinada a transformar energia elétrica em mecânica. Os motores elétricos em geral são divididos em dois grupos: Motores de Corrente contínua Motores

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Capítulo 9 TRANSFORMADORES

Capítulo 9 TRANSFORMADORES Capítulo 9 TRANSFORMADORES Esta aula apresenta o princípio de funcionamento dos transformadores com base nas leis de Faraday e Lenz, mostra o papel dos transformadores em um sistema elétrico de corrente

Leia mais

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul DETERMINAÇÃO DE CONDIÇÃO DE ACIONAMENTO DE FREIO DE EMERGÊNCIA TIPO "VIGA FLUTUANTE" DE ELEVADOR DE OBRAS EM CASO DE QUEDA DA CABINE SEM RUPTURA DO CABO Miguel C. Branchtein, Delegacia Regional do Trabalho

Leia mais

3 Faltas Desbalanceadas

3 Faltas Desbalanceadas UFSM Prof. Ghendy Cardoso Junior 2012 1 3 Faltas Desbalanceadas 3.1 Introdução Neste capítulo são estudados os curtos-circuitos do tipo monofásico, bifásico e bifase-terra. Durante o estudo será utilizado

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

1.1- DIVISÃO DOS TRANSFORMADORES

1.1- DIVISÃO DOS TRANSFORMADORES Quanto a Finalidade: TRANSFORMADORES 1.1- DIVISÃO DOS TRANSFORMADORES a)transformadores de Corrente; b)transformadores de Potencial; c)transformadores de Distribuição; d)transformadores de Força. Quanto

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

Aula 19. Modelagem de geradores síncronos trifásicos

Aula 19. Modelagem de geradores síncronos trifásicos Aula 19 Modelagem de geradores síncronos trifásicos Geradores Em problemas de fluxo de potência normalmente são especificadas as tensões desejadas para a operação do gerador e calculadas as injeções de

Leia mais

EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA

EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA 1. INTRODUÇÃO TEÓRICA 1.1 CAPACITOR O capacitor é um dispositivo utilizado nos circuitos elétricos que apresenta um comportamento em corrente

Leia mais

Corrente Alternada Trifásica

Corrente Alternada Trifásica Corrente Alternada Trifásica 1- Sistemas trifásicos A utilização dos sistemas trifásicos em toda a cadeia de energia tem um carácter praticamente exclusivo. Somente a nível da utilização vamos encontrar

Leia mais

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro. SENSORES Introdução Criar um sistema capaz de interagir com o ambiente. Num circuito eletrônico o sensor é o componente que sente diretamente alguma característica física do meio em que esta inserido,

Leia mais

Descrição dos pinos do Módulo Driver Motor com Dupla Ponte-H - L298N:

Descrição dos pinos do Módulo Driver Motor com Dupla Ponte-H - L298N: O MÓDULO DRIVER MOTOR COM DUPLA PONTEH - L298N é baseado no chip L298N com dupla Ponte- H, podendo controlar a velocidade e o sentido de giro de até dois motores de 3-30V DC ou um motor de passo com 2

Leia mais

Figura 7.1 Fluxo de energia em motores elétricos.

Figura 7.1 Fluxo de energia em motores elétricos. CAPÍTULO 7 MOTORES DE INDUÇÃO 7.1 INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos: a) geradores, que transformam energia mecânica oriunda de uma fonte externa

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

-Transformadores Corrente de energização - inrush

-Transformadores Corrente de energização - inrush -Transformadores Corrente de energização - inrush Definição Corrente de magnetização (corrente de inrush) durante a energização do transformador Estas correntes aparecem durante a energização do transformador,

Leia mais