Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Documentos relacionados
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FIS-14 Mecânica I. Ronaldo Rodrigues Pela

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

As bases da Dinâmica Molecular - 8

Teoria Cinética dos Gases

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia. Aula Interlúdio molecular

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Programa da cadeira Termodinâmica e Teoria Cinética

Neste modelo o gás é estudado de uma forma microscópica, onde a temperatura, a pressão e a. o resultado do movimento dos átomos e moléculas.

Pró-Reitoria de Graduação. Plano de Ensino XX Quadrimestre de 20XX. Caracterização da disciplina Código da NHT3013 Nome da disciplina: Física Térmica

Capítulo 11 - Teoria Cinética dos Gases. O número de Avogrado é número de moléculas contido em 1 mol de qualquer substãncia

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara

A teoria Cinética dos Gases

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico)

Instituto de Física USP. Física Moderna I. Aula 4. Professora: Mazé Bechara

Física Moderna I Período: noturno

1 Termodinâmica: Modelos e Leis 1. 2 Princípio da Conservação da Energia: A 1.ª Lei da Termodinâmica 13

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal

Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica

Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases

Instituto de Física USP. Física Moderna I. Aula 03. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 03. Professora: Mazé Bechara

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1605B - Bacharelado em Física de Materiais. Ênfase. Disciplina A - Física Estatística

Física II-P1 INTRODUÇÃO 1 ENTROPIA

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi

Instituto de Física USP Física V - Aula 04

Tópico I A Estrutura da Matéria no contexto da Física Clássica

4. Propriedades dos gases experimentos e modelo microscópico simples para a temperatura

Teoria Cinética dos Gases. Lucy V. C. Assali. Física II IO

Prefácio. Lista de Símbolos. Modelo do Gás Perfeito 2 Mistura de Gases Perfeitos. Lei de Dalton 4 Problemas 6

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal

Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940

Física Estatística. Introdução. Vitor Oguri

AULA 8 Teoria Cinética dos Gases II

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético

ÍNDICE. INTRODUÇÃO À FÍSICA ESTATÍSTICA xiii 1 PASSEIO ALEATÓRIO 1

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN

FIS-14 Mecânica I. Ronaldo Rodrigues Pela

POSTULADOS DA MECÂNICA QUÂNTICA

= 6, mol de moléculas de um gás possui aproximadamente 6, moléculas deste gás, ou seja, seiscentos e dois sextilhões de moléculas;

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Resolução das questões objetivas* da 1ª e da 2ª Prova de Física II Unificada do Período UFRJ

Fundamentos da Termodinâmica

Física 3. Cap 18: Conexão Micro-Macro (Teoria Cinética dos gases)

O que é um transição de fase?

Física Estatística ??? Representação macroscópica. Representação microscópica. sistema U (S, V, N) S (U, V, N)

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 7: Capacidades caloríficas de gases ideais, processos adiabáticos, equipartição da energia.

Ciência e Tecnologia de Filmes Finos. Aula Cinética dos Gases (Cap.2/Smith) (detalhes)

25/Fev/2015 Aula 2. 20/Fev/2015 Aula 1

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

Aula: 28 Temática: Efeito da Temperatura na Velocidade de Reação

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Calor Específico Molar, Transformações Adiabáticas e Expansão Livre

FIS-14 Prova 02 Novembro/2013

TERMODINÂMICA QUÍMICA. Espontaneidade e Equilíbrio

P L A N O D E E N S I N O. DISCIPLINA: Física Geral B SIGLA: FIS-B CARGA HORÁRIA TOTAL : 60 TEORIA: 60 PRÁTICA: 0

Disciplina: FGE5748 Simulação Computacional de Líquidos Moleculares 1

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Física. Ênfase. Disciplina A - Termodinâmica

Representação grande

Teoria Cinética dos gases

As bases da Dinâmica Molecular - 9

Interpretação Molecular da Temperatura de um Gás Ideal

BC 0303: Fenômenos Térmicos 2 a Lista de Exercícios

GASES. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education

Licenciatura em Física

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Termodinâmica II - FMT 259

19.2 Número de Avogadro mol número de átomos em uma amostra de 12g do carbono-12. Num mol de qualquer substância existem

Campus de Botucatu PLANO DE ENSINO. DISCIPLINA: Termodinâmica e Mecânica Estatística. DOCENTE RESPONSÁVEL: Prof. Dr. José Luiz Rybarczyk Filho

Problemas de Física Estatística e Termodinâmica

Fenômenos Térmicos : segundo conjunto de problemas. Velocidade quadrática média, livre caminho médio, distribuição de velocidades.

Unidade A: Introdução À Termologia Capítulo 1: Conceitos fundamentais de termologia Controlar as variações de temperatura no ambiente onde vivem é

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 5: Livre caminho médio, distribuição de Maxwell-Boltzmann

Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução

Termodinâmica Olímpica. João C. Carvalho 2018

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

dv = (v dt) da cosθvolume do cilindro oblíquo que contém todas as moléculas que atingem a porção da de

Capítulo 21 Temperatura

Universidade de São Paulo Instituto de Física

EUF. Exame Unificado

Introdução à Termodinâmica

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Terceira série de exercícios Mecânica Estatística - IFUSP - 13/9/ ensemble canônico -

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Instituto de Física USP. Física V - Aula 17. Professora: Mazé Bechara

Geralmente, fazemos simplificações e desenvolvemos modelos. A matéria é composta por átomos e moléculas

UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE GRADUAÇÃO Concurso Público Aplicação: 23/3/2002 INSTRUÇÕES

6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais

Física Teórica 3. =4186 J/(kg K) L f-água =(9/5)T C. =6, mol -1 1 u =1, kg R=8,314 J/mol K k B = 1, J/K = R/N A

Transcrição:

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela

Journal Club Teoria do funcional da densidade A energia do estado fundamental é um funcional exato da densidade

Journal Club Energia de um sistema de elétrons Autovalores do operador Espaço de Hilbert com dimensão 3N

Journal Club Dado um Vnucl, as autofunções do estado fundamental ficam definidas Dado Encontro o estado fundamental Encontro a energia fundamental

Mecânica Mecânica: estuda o estado de movimento (ou repouso) de corpos sujeitos à ação de forças Estática: estado de equilíbrio (repouso ou movimento uniforme) Dinâmica: movimento acelerado Cinemática: descrição do movimento (aspectos geométricos e temporais) Cinética: análise das forças que causam o movimento

6 Teoria Cinética dos Gases Teoria cinética dos gases Ramo da Mecânica Estatística Mecânica Estatística Ponte entre as leis fundamentais da Mecânica (Clássica e Quântica) e a Termodinâmica Aplica teoria de probabilidade para um número grande de partículas Ligação entre a descrição microscópica do sistema (Mecânica, Eletromagnética) e Macroscópica (Termodinâmica)

6 Teoria Cinética dos Gases Historicamente, a Termodinâmica se desenvolveu como uma ciência autônoma no esforço de produzir máquinas térmicas

6 Teoria Cinética dos Gases Carnot chegou à segunda lei da Termodinâmica antes de conhecer o caráter cinético do calor Havia uma desvincunlação entre a Termodinâmica e a sua fundamentação em termos das leis gerais que regem o movimento das partículas (as quais compõem os sistemas macroscópicos)

6 Teoria Cinética dos Gases A investigação pioneira em Mecânica Estatística foi o cálculo da distribuição das velocidades moleculares Maxwell, 1859 Boltzmann: trabalho seminal para o desenvolvimento da Mecânica Estatística Caráter estatístico da irreversibilidade Conexão entre entropia e desordem

6 Teoria Cinética dos Gases Gibbs: sistematizou esta ciência em termos mais próximos da forma encontrada nos textos modernos Entretanto no fim do século XIX, descobriu-se que a capacidade térmica dos sólidos tende a zero quando T tende a zero Incompatível com a Mecânica Estatística baseada na Mecânica Clássica Com isso, Gibbs e outros físicos notáveis perderam suas convicções sobre a validade da Mecânica Estatística

6 Teoria Cinética dos Gases Coube a Einstein, em 1907, mostrar que a diminuição da capacidade térmica de sólidos com a Temperatura é decorrência da Mecânica Quântica Em 1912, Debye detalhou a proposta de Einstein e conseguiu obter um excelente acordo entre as previsões da Mecânica Estatística e os resultados experimentais

6 Teoria Cinética dos Gases Extensões da Mecânica Estatística para incluir corretamente os fenômenos foram feitas em 1924 por Bose, cujo trabalho foi generalizado em 1925 por Einstein e em 1926 por Fermi A fundamentação do trabalho de Fermi em termos da Mecânica Quântica foi feita em 1926 por Dirac.

6.1 Introdução Neste capítulo, veremos: Modelo do gás ideal Equipartição da Energia Distribuição de Maxwell-Boltzmann Verificação experimental Livre percurso médio das moléculas

6.1 Introdução Alguns problemas que vamos resolver

6.1 Introdução Nosso roteiro ao longo deste capítulo Modelo do gás ideal Equipartição da Energia Distribuição de Maxwell-Boltzmann Verificação experimental Livre percurso médio das moléculas

6.2 Modelo do gás ideal Gás ideal Partículas sólidas que só interagem através de colisões elásticas (supostas instantâneas) Num gás real, as interações intermoleculares podem ser desprezadas? 6,0x1023 moléculas em 0,0224 m3 CNTP Uma molécula a cada 3,7x10-26 m3 Distância média entre as moléculas 33 Angstrons ~ 10 vezes o diâmetro molecular Está bem longe do mínimo e a curva tende a zero muito rapidamente

6.2 Modelo do gás ideal Gás ideal Uma molécula colide com a parede e sofre um impulso Durante um intervalo de tempo t, a molécula colide com a parede sombreada um número de vezes igual a: Força média

6.2 Modelo do gás ideal Como Gás ideal Força média na parede Pressão sobre a parede

6.2 Modelo do gás ideal Gás ideal Energia cinética translacional Comparando com

6.2 Modelo do gás ideal Gás ideal Energia cinética translacional Velocidade média quadrática

6.2 Modelo do gás ideal Gás ideal Gás monoatômico Capacidade térmica

6.2 Modelo do gás ideal Exemplo: Um cubo de volume 1,0 cm3 tem gás nitrogênio a 1,0 atm e 22 C. Estime o número de colisões moleculares sobre cada face do cubo a cada segundo.

6.2 Modelo do gás ideal Solução: A caixa contém N moléculas de nitrogênio Número de colisões com a parede Velocidade rms

6.2 Modelo do gás ideal Solução: Velocidade média (componente x) Aproximação Número de colisões com a parede

6.3 Equipartição da Energia Isto significa que a cada grau de liberdade de translação do gás corresponde estatisticamente uma energia térmica de kbt/2 Este resultado é denominado equipartição da energia Na verdade, este é um caso particular da lei da equipartição da energia, que vamos expor a seguir

6.3 Equipartição da Energia Consideremos a molécula diatômica como exemplo Formas de energia Translação em x Translação em y Translação em z Rotação em torno de E1 Rotação em torno de E2 En. cinética de vibração En. potencial de vibração Pela Física Clássica

6.3 Equipartição da Energia A lei da equipartição da energia afirma que a cada mecanismo de acúmulo de energia de um sistema termodinâmico está associada uma energia térmica igual a kbt/2, desde que a energia varie de forma quadrática com a variável que descreve este grau de liberdade

6.3 Equipartição da Energia A Física Clássica falha para descrever a contribuição da vibração e rotação para a energia interna Devido a fenômenos quânticos, o modo de vibração (p. ex.) pode ficar congelado, não sendo efetivamente excitado Energia de um oscilador Para baixas temperaturas kbt << hf, o caráter discreto da energia do oscilador se torna relevante Para altas temperaturas kbt >> hf, as energias de vibração formarão um contínuo e então a previsão da Física Clássica será válida

6.3 Equipartição da Energia Calor específico molar a volume constante da molécula de hidrogênio

6.3 Equipartição da Energia Contribuição da vibração para o calor específico molar a volume constante Muito importante para sólidos sendo

6.3 Equipartição da Energia Por curiosidade, este teorema pode ser demonstrado dentro do formalismo da Mecânica Estatísitica Sendo H a função hamiltoniana de um sistema físico com muitas partículas, pode-se mostrar que A função hamiltoniana em muitos casos coincide com a energia total Coordenadas generalizadas ou momentos generalizados Delta de Kronecker

6.3 Equipartição da Energia Por exemplo, se H varia de forma quadrática com uma variável x Termo de energia associado a x Média do termo de energia associado a x

6.3 Equipartição da Energia Exemplo: Calcule, no limite clássico, os calores específicos molares a volume constante e a pressão constante dos gases CO2 Álcool etílico H3CCH2OH

6.3 Equipartição da Energia Exemplo: CO2 Molécula linear Energia cinética translação: 3 Energia de rotação: 2 Energia cinética de vibração: 3 Energia potencial de vibração: 3

6.3 Equipartição da Energia Exemplo: Álcool etílico H3CCH2OH Em geral, moléculas de m átomos não planas apresentam 3m graus de liberdade, sendo 3 de translação 3 de rotação 3m-6 de vibração

6.4 Distribuição de MaxwellBoltzmann O que é uma distribuição? Para variáveis discretas: um histograma Por exemplo: idade

6.4 Distribuição de MaxwellBoltzmann Seja x a idade (em anos) Qual o valor médio de x? Qual o valor mais provável de x? Qual o valor médio de x2?

6.4 Distribuição de MaxwellBoltzmann Seja x a idade (em anos) Qual o valor médio de x?

6.4 Distribuição de MaxwellBoltzmann Seja x a idade (em anos) Qual o valor mais provável de x?

6.4 Distribuição de MaxwellBoltzmann Seja x a idade (em anos) Qual o valor médio de x2?

6.4 Distribuição de MaxwellBoltzmann Vamos agora obter a distribuição de velocidades para as moléculas de um gás Estaremos tratando de um caso contínuo: as velocidades Neste caso, definimos uma função densidade de probabilidade p, de modo que p é sempre não negativa A probabilidade de encontrar uma partícula com velocidade entre v e v+dv é

6.4 Distribuição de MaxwellBoltzmann No caso contínuo, temos Caso discreto Caso contínuo

6.4 Distribuição de MaxwellBoltzmann A distribuição de Maxwell-Boltzmann é dada por f(v) é uma função densidade de probabilidade? Para ser exato, não f(v)dv mede a quantidade de partículas com velocidade entre v e v+dv f(v)/n é uma função densidade de probabilidade

6.4 Distribuição de MaxwellBoltzmann Vamos tentar obter f(v) de forma aproximada Para tanto, considere um gás formado por N moléculas e com energia total E E e N são fixos Por simplicidade, vamos considerar que cada molécula pode ocupar um conjunto discreto de níveis de energia (estados) Por simplicidade, para facilitar a dedução, vamos tomar k = 3 O caso genérico nos leva essencialmente ao mesmo resultado final, mas é mais complicado =)