Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Documentos relacionados
Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006.

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

DCC008 - Cálculo Numérico

Cálculo Diferencial e Integral I

13 Fórmula de Taylor

Consequências do Teorema do Valor Médio

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA E

Equações Diferenciais Ordinárias

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

1 Máximos e mínimos. Seja f : D f R e p D f. p é ponto de mínimo global (absoluto) de f se. x D f vale f(x) f(p) f(p) é mínimo global (absoluto) de f.

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Métodos Numéricos - Notas de Aula

de Interpolação Polinomial

Diferenciabilidade de função de uma variável

Renato Martins Assunção

ANÁLISE MATEMÁTICA II

1 Séries de números reais

Derivada de algumas funções elementares

6.1.2 Derivada de ordem superior e derivação implícita

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

Integrais. ( e 12/ )

Fórmula de Taylor. Cálculo II Cálculo II Fórmula de Taylor 1 / 15

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico

Objetivos. Estudar a derivada de certas funções.

Questão 4 (2,0 pontos). Defina função convexa (0,5 pontos). Seja f : I R uma função convexa no intervalo aberto I. Dado c I (qualquer)

SMA333 8a. Lista - séries de Taylor 07/06/2013

Aula 22 O teste da derivada segunda para extremos relativos.

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Notas de curso: Séries Numéricas e Séries de Taylor

velocidade média = distância tempo = s(t 0 + t) s(t 0 )

Aula 3 11/12/2013. Integração Numérica

Análise Matemática III. Textos de Apoio. Cristina Caldeira

x exp( t 2 )dt f(x) =

Interpolação de Newton

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.)

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Laboratório de Simulação Matemática. Parte 3 2

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

1 Diferenciabilidade e derivadas direcionais

Interpolação polinomial: Diferenças divididas de Newton

Neste capítulo estamos interessados em resolver numericamente a equação

Provas de Análise Real - Noturno - 3MAT003

Concluímos esta secção apresentando alguns exemplos que constituirão importantes limites de referência. tan θ. sin θ

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

1 Geometria: Funções convexas

Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Introdução aos Métodos Numéricos

Integração Numérica. = F(b) F(a)

Interpolação polinomial: Diferenças divididas de Newton

Capítulo 6 - Integração e Diferenciação Numérica

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

Interpolação polinomial: Polinômio de Lagrange

MAT 133 Cálculo II. Prova 1 D

MAT Cálculo I - POLI Gabarito da P2 - A

Soluções dos Exercícios do Capítulo 2

Funções reais de variável real. Derivadas de funções reais de variável real e aplicações O essencial

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

Questão 3. a) (1,5 pontos). Defina i) conjunto aberto, ii) conjunto

Lista 1 - Cálculo Numérico - Zeros de funções

PUC-GOIÁS - Departamento de Computação

Interpolação polinomial

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA

Matemática I. 1 Propriedades dos números reais

Área e Teorema Fundamental do Cálculo

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

A derivada da função inversa

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Notas Sobre Sequências e Séries Alexandre Fernandes

LEEC Exame de Análise Matemática 3

Comprimento de Arco, o Número π e as Funções Trigonométricas

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

Lucia Catabriga e Andréa Maria Pedrosa Valli

Primitivas e a integral de Riemann Aula 26

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

Limites. 2.1 Limite de uma função

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

= f(0) D2 f 0 (x, x) + o( x 2 )

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente

Exercícios de Coordenadas Polares Aula 41

Teoremas e Propriedades Operatórias

A derivada de uma função

Capítulo 6 - Equações Não-Lineares

ALGA I. Bases, coordenadas e dimensão

Transcrição:

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor 3 5 Fórmula de Taylor com Resto de Lagrange 4 6 Fórmula de Taylor com Resto Infinitesimal 6 7 Fórmula de Taylor com Resto Integral 8 1. INTRODUÇÃO Dada uma função real a valores reais f, suposta derivável até ordem n numa vizinhança de um ponto x pertencente ao seu domínio, o polinômio de Taylor de ordem n de f em x é definido como sendo a (única) função polinomial de grau menor ou igual a n que tem contato até ordem n com f em x, i.e. que coincide com f em x e cujas derivadas de ordens menores ou iguais a n coincidem com as de f em x. Nestas notas, mostrar-se-á que um tal polinômio existe e é único, e que, num sentido a ser precisado, é o polinômio de grau menor ou igual a n que melhor aproxima f numa vizinhança de x. Os principais resultados a serem apresentados são os teoremas relativos às fórmulas de Taylor com resto de Lagrange e com resto infinitesimal; como exemplo de aplicação, mostrar-se-á como a fórmula de Taylor com resto de Lagrange pode ser usada em cálculos numéricos aproximados. 2. NOTAÇÕES Dados n N e f uma função real a valores reais, derivável até ordem n numa vizinhança de um ponto x dom f, denotar-se-á por f (k) (x ) a derivada de ordem k de f 1

em x (para 1 k n). Por extensão, f () denotará a própria função f. 3. NOTAS PRELIMINARES SOBRE FUNÇÕES POLINOMIAIS R R Proposição 3.1. Sejam n N e P : R R uma função polinomial de grau menor ou igual a n. Então P tem derivadas de todas as ordens e P (k) para todo k n + 1. Demonstração. Faça como exercício, usando o princípio da indução finita. Proposição 3.2. Sejam n N, P : R R uma função polinomial de grau menor ou igual a n, e x R. Então, para todo x R, tem-se: P (x ) + Demonstração. Será feita por indução sobre n. P (k) (x ) (x x ) k. (1) (i) Se n =, P é uma função constante, logo ( x R ) P (x ) e a igualdade (1) está verificada. (ii) Seja n >, e suponha que (1) seja verdadeira para toda função polinomial com grau menor ou igual a n 1. Seja P uma função polinomial com grau menor ou igual a n ; queremos verificar que (1) vale para P. Como P é uma função polinomial de grau menor ou igual a n 1, pela hipótese de indução a igualdade (1) vale para P, i.e. para todo x R: P (x) = P (x ) + 1 n 1 = P (x ) + (P ) (k) (x ) P (k+1) (x ) (x x ) k (x x ) k. (2) Tome F : R R definida por: F (x) = = 1 n 1 P (k+1) (x ) P (k+1) (x ) (k + 1)! (x x ) k+1 k + 1 = (x x ) k+1 = n P (k) (x ) (x x ) k. (3) Então F = P ; portanto, pelo teorema do valor médio, existe c R tal que P = F + c. Como F (x ) =, segue-se c = P (x ), donde ( x R ) P (x ) + F (x), o que é equivalente a (1). 2

Corolário 3.3. Dados n N, x R e a, a 1,..., a n R, existe uma única função polinomial P : R R de grau menor ou igual a n tal que P (k) (x ) = a k, para k n. Demonstração. Tome P : R R definida por ( x R ) n a k (x x ) k. 4. DEFINIÇÃO DO POLINÔMIO DE TAYLOR Com base no corolário anterior, faz sentido a seguinte definição: Definição 4.1. Sejam n N, f : A R R e x R tais que f é derivável até ordem (n 1) numa vizinhança de x e f (n 1) é derivável em x. Definimos o polinômio de Taylor de ordem n de f em x como sendo a (única) função polinomial de grau menor ou igual a n tal que P (k) (x ) = f (k) (x ), para k n. Ou seja, P : R R é definida por, para todo x R: f (k) (x ) (x x ) k. (4) Conforme será demonstrado em 6, o polinômio de Taylor de ordem n de f em x é, num certo sentido, o polinômio de grau menor ou igual a n que melhor aproxima f numa vizinhança de x. Por exemplo, para n = 1, o polinômio de Taylor de ordem 1 de f em x é a função afim cujo gráfico é a reta tangente ao gráfico de f em x, portanto esta reta é a que melhor aproxima (no referido sentido) o gráfico de f numa vizinhança de x. À medida que se tomam valores de n maiores, é intuitivo esperar que a referida aproximação seja cada vez melhor. Exemplo 4.2. (1) Seja f = exp : R R. Esta função tem derivadas de todas as ordens e ( n N, x R ) exp (n) (x ) = exp(x ). Portanto, dados n N e x R, o polinômio de Taylor de ordem n de exp em x é dado por: exp(x ) (x x ) k. Em particular, para x = : 1 xk é o polinômio de Taylor de ordem n de exp em x =. Os gráficos dos polinômios de Taylor de ordens 1,2,3 de exp em x = encontram-se esboçados na figura 1. (2) Seja f = sin : R R. Esta função tem derivadas de todas as ordens e ( n N, x R ) sin (4n) (x ) = sin(x ), sin (4n+1) (x ) = cos(x ), sin (4n+2) (x ) = sin(x ), sin (4n+3) (x ) = cos(x ) (verifique, por indução sobre n). Em particular, 3

para x =, tem-se ( n N ) sin (2n) () =, sin (2n+1) () = ( 1) n. Portanto, dado n N, o polinômio de Taylor de ordem (2n + 2) de sin em x = é dado por: 2n+1 sin (k) () x k = ( 1) k (2k + 1)! x2k+1. Os gráficos dos polinômios de Taylor de ordens 1,3,5 de sin em x = encontram-se esboçados na figura 2. (3) Seja f = cos : R R. Esta função tem derivadas de todas as ordens e ( n N, x R ) cos (4n) (x ) = cos(x ), cos (4n+1) (x ) = sin(x ), cos (4n+2) (x ) = cos(x ), cos (4n+3) (x ) = sin(x ) (verifique, por indução sobre n). Em particular, para x =, tem-se ( n N ) cos (2n+1) () =, cos (2n) () = ( 1) n. Portanto, dado n N, o polinômio de Taylor de ordem (2n + 1) de cos em x = é dado por: 2 cos (k) () x k = ( 1) k (2k)! x2k. Figura 1: Gráfico de f(x) = e x 2(verde), 3(azul) em x =. e seus polinômios de Taylor de ordens 1(vermelho), 5. FÓRMULA DE TAYLOR COM RESTO DE LAGRANGE Dada uma função f definida num intervalo I, derivável até ordem (n + 1), o teorema a seguir fornece uma fórmula para o resto da aproximação de f pelo seu polinômio de Taylor de ordem n, em termos da derivada (n + 1)-ésima de f. Assim, se for possível estimar superiormente o módulo de tal derivada em I, o teorema pode ser aplicado para se obter uma estimativa superior do módulo do referido resto, o que é freqüentemente útil em cálculos aproximados. 4

Figura 2: Gráfico de f(x) = sin x e seus polinômios de Taylor de ordens 1(vermelho), 3(verde), 5(azul) em x =. Teorema 5.1 (Fórmula de Taylor de ordem n, com resto de Lagrange). Sejam n N, I R um intervalo, f : I R derivável até ordem n + 1 1 e x, x I. Então existe c entre x e x (i.e. x < c < x ou x < c < x ) tal que: f(x) = f (k) (x ) (x x ) k + f (n+1) (c) (n + 1)! (x x ) n+1. (5) Demonstração. Suponha x < x (se x < x, o argumento é análogo). Tome F : [x, x] R definida por ( y [x, x] ) F (y) = f(x) f(y) n f (k) (y) (x y) k A(x y) n+1, onde A R é escolhido de forma que F (x ) =. Tem-se: F é contínua em [x, x] (pois todas as derivadas de ordem menor ou igual a n de f são contínuas em I, por hipótese), derivável em ]x, x[ (pois todas as derivadas de ordem menor ou igual a n de f são deriváveis no interior de I, por hipótese), e F (x) = F (x ) =. Então, pelo teorema de Rolle, existe c ]x, x[ tal que F (c) =. Mas, ( y ]x, x[ ) F (y) = f (y) n ( f (k+1) (y) (x y) k f (k) (y) (k 1)! (x y)k 1) + (n + 1)A(x y) n = f (n+1) (y) n! (x y) n + (n + 1)A(x y) n ; como c x (pois c ]x, x[), da última igualdade segue-se que F (c) = é equivalente a A = f (n+1) (c) (n+1)!, portanto (5) segue-se de F (x ) =. Exemplo 5.2. (i) Aplicando o teorema anterior ao exemplo 4.2.1, com x =, seguese que n N, x R, c R, < c < x tal que: exp(x) = x k + exp(c) (n + 1)! xn+1. (6) 1 na verdade, basta supor f derivável até ordem n, f (n) contínua em I e derivável no interior de I. 5

Vamos usar esta última igualdade para calcular a representação decimal do número e até a décima casa. Pondo P n (x) =. n 1. xk e R n = exp Pn, segue-se de (6) que, para x = 1, existe c (, 1) tal que R n (1) = exp(c). Encontremos n tal (n+1)! que R n (1) < 1 11. Como R n (1) = exp(c) 3, basta tomarmos n tal que (n+1)! (n+1)! 3 < 1 11, i.e. (n + 1)! > 3 1 11 n 14. Portanto, para n = 14, (n+1)! P 14 (1) = 4739532961 1743565824 é um número racional e exp(1) P 14 (1) < 1 11. Representando-se a referida fração na forma decimal e truncando-se na décima primeira casa, obtém-se P 14 (1) = 2, 71828182845... Conclui-se, portanto, que a representação decimal do número e coincide, até a décima casa, com: 2, 7182818284 (ii) Aplicando o teorema anterior ao exemplo 4.2.2, com x =, segue-se que n N, x R, c R, < c < x tal que: sin(x) = ( 1) k (2k + 1)! x2k+1 + sin(2n+3) (c) x 2n+3. (7) (2n + 3)! Vamos usar esta última igualdade para representar sin(1) até a décima casa decimal. Pondo P 2n+2 (x) =. n ( 1) k. (2k+1)! x2k+1 e R 2n+2 = sin P2n+2, segue-se de (7) que, para x = 1, existe c (, 1) tal que R 2n+2 (1) = sin(2n+3) (c). Encontremos n tal que (2n+3)! R 2n+2 (1) < 1 11. Como R 2n+2 (1) = sin(2n+3) (c) 1, basta tomarmos n (2n+3)! (2n+3)! 1 tal que < 1 11, i.e. (2n + 3)! > 1 11 2n + 3 15 n 6. Mais (2n+3)! precisamente, para n = 6, tem-se (2n + 3)! = 15! > 1 12. Portanto, P 14 (1) é um número racional e sin(1) P 14 (1) < 1 12. Como P 14 (1) = 29594293 2498832 = =, 8414798488658419769538864199175312864213975325864361975473 conclui-se que sin 1 coincide, até a décima casa decimal, com, 841479848 6. FÓRMULA DE TAYLOR COM RESTO INFINITESIMAL Nos teoremas abaixo, será mostrado que, dada uma função real a valores reais f derivável até ordem n numa vizinhança de um ponto x pertencente ao seu domínio, o polinômio de Taylor de ordem n de f em x é a única função polinomial P, de grau 6

menor ou igual a n, tal que o resto R =. f P tem a propriedade de tender a zero mais rapidamente do que (x x ) n R(x) quando x tende a x (ou seja, tal que lim ( = ). ) n É neste sentido que dissemos, na introdução, que o polinômio de Taylor de ordem n de f em x é o polinômio de grau menor ou igual a n que melhor aproxima f numa vizinhança de x. Proposição 6.1 (Fórmula de Taylor de ordem 1, com resto infinitesimal). Sejam A R, x A e f : A R contínua em x. (i) Se f for derivável em x e R 1 for a diferença entre f e o seu polinômio de Taylor R de ordem 1 em x, então lim 1 (x) = ; (ii) Reciprocamente, se P for uma função polinomial de grau menor ou igual a 1 e R =. R(x) f P satisfizer lim =, então f é derivável em x e P é o polinômio de Taylor de ordem 1 de f em x. Demonstração. (i) Com efeito, suponha que f seja derivável em x, i.e. existe f f(x) f(x (x ) = lim ). Então, como ( x A \ {x } ) R 1 (x) = f(x) f(x ) f (x ), segue-se lim R 1 (x) =. (ii) Reciprocamente, seja: P : R R x a(x x ) + b, a, b R, uma função polinomial tal que, se R = f P, então lim R(x) =. Em particular, isto implica lim R(x) = ; como f é contínua, segue-se b = f(x ). Logo, ( x A \ {x } ) R(x) = f(x) f(x ) a. Como lim R(x) =, conclui-se que f é derivável em x e f (x ) = a, portanto P é o polinômio de Taylor de ordem 1 de f em x. Teorema 6.2 (Fórmula de Taylor de ordem n, com resto infinitesimal). Sejam n N, A R, x A e f : A R. Suponha que f seja derivável até ordem (n 1) e que f (n 1) seja derivável em x. Então: (i) Se R n é a diferença entre f e o seu polinômio de Taylor de ordem n em x, então R n(x) ( = ; ) n lim x x (ii) Reciprocamente, se P for uma função polinomial de grau menor ou igual a n e R =. R(x) f P satisfizer lim ( =, então P é o polinômio de Taylor de ordem ) n n de f em x. 7

Demonstração. Será feita por indução sobre n. (1) Para n = 1, vide proposição anterior. (2) Seja k 2, e suponha que (i) e (ii) sejam verdadeiras para n k 1. Provemos que também serão verdadeiras para n = k. Com efeito: (i) Se ( x A ) R k (x) = f(x) k e ( x A ) R k (x) = f (x) k j=1 f (j) (x ) j= f (j) (x ) (j 1)! Portanto, pela hipótese de indução, lim e lim (x x ) k =, a regra de l Hôpital implica lim (x x j! ) j, então R k : A R é derivável ( ) j 1 = f (x) k 1 (f ) (m) m= (x x m! ) m. R k (x) ( =. Assim, como lim R ) k 1 k (x) = R k (x) ( =. ) k (ii) Suponha ( x A ) f(x) = P (x) + R k (x), com grau P k e lim Isto implica lim R k (x) ( ) m R k (x) ( ) k =. =, para m k. Sejam a,..., a k R tais que ( x R ) k 1 n= a n(x x ) n + a k (x x ) k. Definamos k 1 n= a n(x x ) n, de forma que, para todo x R: a k ( ) k +R(x) ( ) k 1 f(x) = P (x) + a k (x x ) k + R(x). (8) Como lim = e grau P k 1, pela hipótese de indução conclui-se que P é o polinômio de Taylor de ordem (k 1) de f em x, i.e. a n = f (n) (x ) para n! n k 1. Resta mostrar a k = f (k) (x ) f(x). Afirmo que lim P (x) ( = f (k)(x ). ) k d Com efeito, para cada j {,..., k 2}, lim j [(x dx j [f (j) (x) P (j) (x)] = e lim x ) k ] = lim k(k 1) (k j+1)( ) k j =. Como f (k 1) é derivável em x (por hipótese) e P (k 1) (x) = cte. = f (k 1) f (x ), temos lim (k 1) (x) P (k 1) (x) ( = f (k)(x ) ; ) logo, aplicando-se (k 1) vezes a regra de l Hôpital, prova-se a afirmação. Por f(x) P (x) ( ) k outro lado, de (8) segue-se lim pela unicidade do limite, conclui-se a k = f (k)(x ) ordem k de f em x. = lim [a k + R k(x) ( ) k ] = a k ; portanto,, logo P é o polinômio de Taylor de 7. FÓRMULA DE TAYLOR COM RESTO INTEGRAL Deduziremos, nesta seção, uma fórmula integral para o resto da fórmula de Taylor de ordem n de uma função derivável até ordem n + 1, cuja derivada de ordem n + 1 seja Riemann-integrável. 8

Seja φ : [, 1] R derivável até 2a. ordem, com φ : [, 1] R Riemann-integrável. Pelo Teorema Fundamental do Cálculo: φ(1) φ() = 1 φ (t)dt Faremos uma integração por partes da seguinte maneira: pomos f = φ, g(t) =. 1 t, de modo que fg = φ; assim, 1 φ (t)dt = 1 f(t)g (t)dt = f(t)g(t)] 1 + 1 f (t)g(t)dt, ou seja: φ(1) φ() = φ () + 1 (1 t)φ (t)dt Se φ tiver derivada Riemann-integrável, continuamos a integrar por partes... suponha, assim, que φ : [, 1] R derivável até ordem n + 1 (dado n N), e que φ (n+1) : [, 1] R seja Riemann-integrável. Mostraremos, por indução em n, que: Com efeito: φ(1) = φ (k) () + 1 1. Para n =, (9) é o Teorema Fundamental do Cálculo. (1 t) n φ (n+1) (t)dt (9) n! 2. Admita que (9) seja válida para n = p N. Seja φ : [, 1] R derivável até ordem p + 2 e suponha que φ (p+2) : [, 1] R seja Riemann-integrável. Em particular, φ (p+1) é contínua, portanto Riemann-integrável; pela hipótese de indução, tem-se: (1 t) p+1 (p+1)! 1 φ(1) = p φ (k) () + 1. Então f(t)g (t) = (1 t)p (1 t) p p! φ (p+1) (t)dt. Tome f. = φ (p+1) e g(t) p! φ (p+1) (t). Logo, integrando por partes, obtemos: (1 t) p φ (p+1) (t)dt = f(t)g(t)] 1 p! + 1 f (t)g(t)dt = φ(p+1) () + 1 (p+1)! donde se conclui que (9) vale para n = p + 1. Como consequência imediata de (9), obtém-se o seguinte teorema: (1 t) p+1 (p+1)!. = φ (p+2) (t)dt, Teorema 7.1 (Fórmula de Taylor de Ordem n, com Resto Integral). Sejam a, h R, h >, n N e f : [a, a+h] R derivável até ordem n+1, com f (n+1) Riemann-integrável no intervalo [a, a + h]. Então: f(a + h) = f (k) (a) [ 1 h k (1 t) n + n! ] f (n+1) (a + th)dt h n+1 (1) Demonstração. Definamos φ : [, 1] R por φ(t). = f(a + th). Então, aplicando-se a regra da cadeia sucessivas vezes, conclui-se que φ é derivável até ordem n + 1 e, para k n, φ (k) (t) = f (k) (a + th)h k. Em particular, φ (n+1) (t) = f (n+1) (a + th)h n+1 é Riemman-integrável. Assim, por (9), demonstrada acima, obtém-se (1). 9