Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira Etaa Comartilhar Ideias Atividade Caça Potências Você e seus colegas devem rocurar no Caça Potências conjuntos de três reresentações numéricas consecutivas que indicam o mesmo valor, como no exemlo. A rocura ode ser feita na horizontal, vertical ou diagonal. O jogo termina, quando o temo acabar. 1
Aós a discussão coletiva, registre em seu encarte todos os trios encontrados na sua turma. Aluno Segunda Etaa Um novo olhar... Atividade Ciclo de Valores 2
Matemática 3
Terceira Etaa Fique or dentro! Atividade Entrando no Mundo dos Gráficos A seguir, estão reresentadas as funções f ( x) = 2 x e g( x) = log2 x. Aluno 1. Verifique que o onto B 1 =(1, 2) ertence ao gráfico da função f. 2. Verifique que o onto C 2 =(4, 2) ertence ao gráfico da função g. 3. Observe as coordenadas dos ontos e. Qual a relação entre elas? 4. Agora, observe as coordenadas dos ontos B 1 e B 2 e deois dos ontos C 1 e C 2. As coordenadas dos ares de ontos aresentam a mesma relação que a dos ontos A 1 e A 2? 5. Imagine um onto D 1 no gráfico da função f(x) cuja abcissa vale 3. Mantendo-se a mesma relação observada nos itens 3 e 4, quais são as coordenadas do onto D 2 sobre o gráfico da função g(x)? Exlique como você ensou. 4
6. Observe os gráficos das funções f e g reresentados num mesmo lano cartesiano, juntamente com a reta ontilhada y = x. Matemática Pense numa maneira de obter o gráfico da função g a artir do gráfico da função f, levando-se em consideração a reta y = x. Quarta Etaa Quiz Atividade Avaliação Diagnóstica/ SAERJINHO 2011 5
Aluno 6
Quinta Etaa Análise das Resostas ao Quiz Matemática Etaa Flex Para saber + Um cuidado que se deve ter, relativamente às otências de exoente fracionário, é com sua definição. A otência é definida como roduto de fatores iguais quando o exoente é um inteiro maior ou igual a 2, ois só nesses casos faz sentido falar em número de fatores. Os demais casos de exoentes, como 0, 1 e exoentes inteiros negativos são definidos searadamente com a intenção de manter a maioria das roriedades válidas ara as otências definidas como roduto de fatores iguais. Assim é que se define: a 1 como a, a 0 como 1, semre que a 0 (o caso de 0 0 não tem uma definição 7
que se alique semre, então não se define). Também ara a 0, é ossível definir a otência com exoente negativo como n a = 1, semre que n seja um número inteiro n a (o uso da divisão é que imõe a exigência de que a seja diferente de 0). Algumas justificativas já foram aresentadas, em outra dinâmica, ara mostrar que essas são definições naturais, elo interesse em manter roriedades que valiam ara otências de exoentes naturais maiores ou iguais a 2. Esta mesma razão levou à definição dada aqui da otência com exoente racional. Senão, vejamos: Se m e n são inteiros, então: ( n ) m nm a = a.. Preste atenção que q. q não odemos concluir q q a = a q que orque não sabemos o que seja a, mas odemos dar uma definição ara de forma que essa roriedade continue valendo. Qual será essa definição? Aluno Ora,. q = ; logo, ara manter a roriedade do cálculo de otência de otência, será necessário que q q. q q q a = a seja igual a a mas, o número que elevado a q dá a é a raiz de ordem q de a, então aí está a definição que estávamos rocurando: q q a = a, q 0 ea> 0 Reare que esta não é uma demonstração dessa igualdade, mas sim, uma definição do seu 1º membro que não tinha sentido antes de ser definido. Uma outra observação que ode ser interessante é que essa definição ermite transformar raízes em otências! O que torna quase todos os cálculos com radicais mais simles. O link abaixo refere-se à Aula de número 57 do Telecurso que aborda as otências com exoentes fracionários, incluindo sua definição, uma recordação das roriedades das otências e algumas alicações: htt://www.youtube.com/watch?v=dn8onraowdw 8
Agora, é com você! 1. Comlete as exressões nas ontas de modo que o valor da exressão em cada uma delas seja igual ao número do miolo : Matemática 2. Relacione os gráficos das funções exonenciais e logarítmicas que se encontram na coluna da esquerda com o gráfico corresondente de suas inversas na coluna da direita. 9
Aluno 10