DISCIPLINA SÉRIE CAMPO CONCEITO
|
|
|
- Jonathan Quintanilha
- 6 Há anos
- Visualizações:
Transcrição
1 Reforço escolar M ate mática Direto ao Ponto Dinâmica 3 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares Aluno Primeira Etapa Compartilhar ideias Atividade Solução na interseção. Nessa etapa, observe inicialmente a representação no plano cartesiano de um sistema de duas equações e duas incógnitas para responder o que é pedido. Discuta com seu colega sempre que desejar e desenvolva a atividade no seu encarte. Observe o sistema 2x+ 4y= 10 ( r) 3x+ y= 5 () s 1
2 Cada uma das equações que compõe o sistema representa uma reta no plano cartesiano, como podemos observar na figura abaixo. Aluno As retas possuem infinitos pontos e, portanto, as coordenadas de cada ponto satisfazem à equação da reta. Veja um exemplo: Equação: 2x+ 4y = 10 Ponto: (3, 1) Substituindo x e y no primeiro membro da equação temos = 6+ 4= 10 Como obtemos 10, que é o valor do segundo membro da equação, podemos dizer que o ponto (3, 1), pertence à reta. Chegou a sua vez! 1. Substitua o ponto (3, 1) na equação da reta s. O que acontece? 2
3 2. Marque o ponto (3,1) no plano cartesiano acima e observe o que acontece em relação às duas retas. 3. Observe, agora, o ponto (1,2). O que ele representa no plano cartesiano? Matemática 4. Substitua o ponto (1,2) nas duas equações e diga o que acontece. O que podemos concluir? Segunda Etapa Um novo olhar... Atividade De olho no ponto. e sua repre- Novamente vamos trabalhar com o sistema sentação no plano cartesiano. 2x+ 4y= 10 ( r) 3x+ y= 5 () s 3
4 Aluno 1. Adicione as duas equações do sistema. Qual a equação encontrada? 2. Encontre dois pontos da equação obtida no item anterior preenchendo a tabela a seguir. y (x,y) 2-2 Agora, usando uma caneta colorida, represente essa equação, no mesmo plano cartesiano que contém as retas r e s. Chame-a de t. 4
5 3. Encontre a diferença entre a primeira equação e a segunda. Qual a equação encontrada? 4. Encontre dois pontos da equação obtida no item anterior preenchendo a tabela a seguir. Matemática x y (x,y) 4-2 Agora, usando uma cor diferente, represente essa equação, no mesmo plano cartesiano que contém as retas r e s. Chame-a de u. 5. Vamos encontrar mais uma equação. Dessa vez, multiplique a primeira equação por 2 e some o resultado com a primeira equação. Qual a equação encontrada? 6. Encontre dois pontos da equação obtida no item anterior preenchendo a tabela a seguir. x y (x,y) Agora, usando uma cor diferente, represente essa equação, no mesmo plano cartesiano que contém as retas r e s. Chame-a de v. 5
6 7. Nessa atividade você realizou operações com as equações iniciais e depois as representou num mesmo plano cartesiano, no qual já estavam representadas as duas equações do sistema inicial. O que ocorreu com todas essas retas? Terceira Etapa Fique por dentro! Atividade A meta é eliminar! Aluno Na Etapa 1, pudemos visualizar graficamente o ponto de interseção entre duas retas. Aprendemos, na Etapa 2, que podemos manipular as equações que as representam sem alterar o ponto de interseção entre elas. Nesta etapa, você deve encontrar esse ponto sem precisar desenhar as retas. Veja a seguir como isso pode ser feito. 1. Vamos continuar com as duas equações das etapas anteriores. Para iniciar, arrume-as na forma de um sistema. 2. Divida a primeira equação por 2. Coloque a equação resultante no lugar da primeira equação, obtendo um novo sistema. 6
7 3. Substitua a segunda equação pela soma entre a segunda equação e a primeira multiplicada por (-3). 4. Observando a segunda equação, você consegue determinar o valor de y? Determine o valor de y, indicando o que você fez. y = 2. Matemática 5. Com o valor de determinado no item anterior, você consegue determinar o valor de x? Troque ideias com seu colega e determine o valor de x. Em seguida, registre como você determinou. 6. Com os valores de x e de y, você consegue determinar a solução do sistema? Confira com seu colega e indique a solução. 7
8 7. Compare a solução do sistema com o ponto de interseção das retas indicado na Etapa 1. O que você observa? Quarta Etapa Quiz Carolina comprou 9 revistas: 8 tinham o mesmo preço e uma era mais cara. As 8 revistas custaram no total RS 52,00 a mais que a revista de maior preço. Se Carolina tivesse comprado 6 revistas das mais baratas, teria pago por elas R$ 36,00 a mais do que pagou pela mais cara. Aluno Quanto Carolina gastou? a. R$ 52,00 b. R$ 88,00 c. R$ 76,00 d. R$ 20,00 e. R$ 36,00 Quinta Etapa Análise das Respostas ao Quiz 8
9 Etapa Flex Para saber + Matemática Existência de soluções Nessa dinâmica pudemos perceber a relação entre as equações e a sua representação gráfica. Vamos agora pensar de forma mais geral na classificação do sistema a partir da sua representação gráfica. Como exemplo, vamos pensar em um sistema de ordem 2. Em um sistema de ordem 2, temos duas equações e duas incógnitas, como no sistema ax + by = m cx + dy = n Cada uma das equações representa uma reta. Representadas no plano cartesiano, existem três possibilidades para duas retas. Em cada um dos exemplos a seguir estão representadas essas três possibilidades. concorrentes. Exemplo 1: O sistema x+ y= 3 2x+ y= 5 é representado graficamente por duas retas 9
10 Nesse exemplo, as duas retas têm um ponto em comum, o ponto (2; 1). Resolva o sistema algebricamente e verifique a solução! Em termos matemáticos dizemos que ele é possível e determinado, sendo representado graficamente por duas retas concorrentes. Aluno Exemplo 2: O sistema paralelas distintas. x+ y= 3 3x+ 3y= 7 é representado graficamente por duas retas Nesse caso, as retas não têm ponto em comum. Ao tentar resolver o problema, percebemos que o sistema não tem solução. Veja. 10 x+ y= 3 3x+ 3y= 7
11 Substituindo a segunda equação pelo triplo da primeira menos a segunda, equação x + y = triplo da 0 3x+ 3y= 7 2 equação 0x + 0y = 2 resultado chegamos ao seguinte sistema x+ y= 3 0 = 2. Matemática Mas sabemos que 0 não é igual a 2, com isso a igualdade encontrada é falsa. Por esse motivo, dizemos que o sistema é impossível e é representado graficamente por duas retas paralelas distintas. Exemplo 3: O sistema é representado graficamente por duas retas paralelas coincidentes. x+ y= 3 2x+ 2y= 6 Nesse caso, todos os pontos das retas são comuns. Observe que a segunda equação corresponde a exatamente o dobro da primeira e, por isso, essas equações são equivalentes. Isso quer dizer que tanto faz dizer x+y=3 ou 2x+ 2y = 6. Então, tanto faz considerar uma ou outra e, nesse esse sentido, quaisquer valores de x e y que satisfaçam à equação x+ y = 3 representam uma solução do sistema. Mas existem infinitos pares que satisfaçam a essa equação: todos os pontos da reta! Logo, o sistema é chamado de possível e indeterminado e é representado graficamente por duas retas paralelas e coincidentes. 11
12 Agora, é com você! 1. Considere o seguinte sistema y x= 5 y + x = 1 a. Represente graficamente as equações no plano cartesiano a seguir. Aluno b. Substitua a segunda equação pela soma das duas equações. c. Observando o novo sistema, indique a solução. d. Compare a solução determinada com o ponto de interseção das retas. 12
13 2. Resolva os problemas a seguir. a. Num estacionamento há 37 veículos, entre motocicletas e automóveis. Esses veículos têm um total de 128 rodas. Quantas motocicletas há no estacionamento? Matemática b. Duas canetas e três lapiseiras custam R$ 51,00. Três canetas e duas lapiseiras custam R$ 46,50. Qual é o preço de cada uma? c. Um comerciante compra, no exterior, vidros de vitaminas de dois tipos. Cada vidro do tipo I custa 10 dólares e, do tipo II, 15 dólares. Se ele fez uma compra de 35 vidros, gastando 400 dólares, quantos vidros de cada tipo comprou? 13
14
Direto ao Ponto. Dinâmica 3. 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares
Reforço escolar M ate mática Direto ao Ponto Dinâmica 3 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares DINÂMICA Direto ao Ponto.
Observando incógnitas...
Reforço escolar M ate mática Observando incógnitas... Dinâmica 2 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Algébrico-Simbólico Sistemas Lineares. Aluno Primeira etapa
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira
MATEMÁTICA - 3o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como x o número de rapazes e y o número
de Sistemas de Método da Substituição Método da Substituição Método da Substituição 18/08/2016 a) x y = 14 x + y = 6 b) 2x - y = 4 x + y = 2 x = 6 - y
de Sistemas de Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos na outra equação, a variável isolada pela expressão obtida no segundo membro
O lance é determinar!
Reforço escolar M ate mática O lance é determinar! Dinâmica 3 2ª Série 3º Bimestre Matemática 2 Série do Ensino Médio Algébrico Simbólico Matrizes e Determinantes PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE
Passeio pelo Rio. Dinâmica 6. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico Geometria analítica.
Reforço escolar M ate mática Passeio pelo Rio Dinâmica 6 3º Série 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico Geometria analítica. Primeira Etapa Compartilhar ideias
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno
Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Discussão de Sistemas de Equações 7 ano E.F. Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações O Plano Cartesiano 1 Exercícios
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto
MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder
Vamos resolver problemas?
Reforço escolar M ate mática Vamos resolver problemas? Dinâmica 6 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Algébrico simbólico Funções Primeira Etapa COMPARTILHAR
Plano de trabalho. Sistemas lineares. Tarefa 1. Cursista: Tatiana Peixoto Coutinho Guimarães. Tutora: Edeson dos Anjos Silva
Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 2º ano- 4º bimestre/ 2013 Plano de trabalho Sistemas lineares Tarefa 1 Cursista: Tatiana Peixoto Coutinho Guimarães Tutora:
Uma equação nada racional!
Reforço escolar M ate mática Uma equação nada racional! Dinâmica 5 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Numérico Aritmético Radicais. DINÂMICA Equações
12 A interseção de retas e a solução de sistemas
A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as
Esopo, castanhas... e viva a sopa de letrinhas!
Reforço escolar M ate mática Esopo, castanhas... e viva a sopa de letrinhas! Dinâmica 1 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Sistemas Lineares
Curso de Álgebra Linear
Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.
GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais
Nem início, nem fim!
Reforço escolar M ate mática Nem início, nem fim! Dinâmica 7 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar
Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO
Reforço escolar M ate mática Tudo ou nada! Dinâmica 5 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico. Geometria Analítica. Primeira Etapa Compartilhar
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Ampliando os horizontes geométricos
Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de Polígonos.
Dinâmica 3. 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Ensino Fundamental 9º. Uma dica... Uso Conveniente da calculadora.
Uma dica... Reforço escolar M ate mática Dinâmica 3 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico simbólico Equação do 2º Grau DINÂMICA HABILIDADE Básica
Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas
Material Teórico - O Plano Cartesiano e Sistemas de Equações Sistemas de Equações do Primeiro Grau com Duas Incógnitas Sétimo Ano do Ensino Fundamental Prof Francisco Bruno Holanda Prof Antonio Caminha
Volume de pirâmides. Dinâmica 5. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 2ª Série 3º Bimestre ATIVIDADE QUAL É A SUA ÁREA?
Reforço escolar M ate mática Volume de pirâmides Dinâmica 5 2ª Série º Bimestre Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS
O DNA das equações algébricas
Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano
Quantos cones cabem em um cilindro?
Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
MATEMÁTICA. Equações do Primeiro Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equações do Primeiro Grau Professor : Dêner Rocha Monster Concursos 1 Equações do primeiro grau Objetivo Definir e resolver equações do primeiro grau. Definição Chama-se equação do 1º grau,
PLANO DE TRABALHO SOBRE SISTEMAS LINEARES. Nome: José Alves Mourão Filho Série 2ª Grupo 01 Tutor: Edeson dos Anjos Silva
PLANO DE TRABALHO SOBRE SISTEMAS LINEARES Nome: José Alves Mourão Filho Série 2ª Grupo 01 Tutor: Edeson dos Anjos Silva INTRODUÇÃO A finalidade é utilizar métodos para resolução de sistemas lineares e
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
TÃO IMPORTANTE QUANTO O QUE SE ENSINA E SE APRENDE, É COMO SE ENSINA E COMO SE APRENDE. (Cesar Coll)
PROJETO SEEDUC TUTOR: SUSI CRISTINE BRITTO FERREIRA PROFESSORA: CARMEN BEATRIZ L. P. DE M. PACHECO COLÉGIO ESTADUAL LIDDY MIGNONE- PATY DO ALFERES RJ TAFERA 1: PLANO DE TRABALHO 4º Bimestre CAMPO CONCEITUAL:
Curso de Álgebra Linear
Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula
A UUL AL A Sistemas do 1º grau Pedro e José são amigos. Ao saírem do trabalho, passaram por uma livraria onde havia vários objetos em promoção. Pedro comprou 2 cadernos e 3 livros e pagou R$ 17,40, no
O sítio do Seu Epaminondas
Reforço escolar M ate mática O sítio do Seu Epaminondas Dinâmica 1 9º Ano 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º Grau Aluno Primeira
AmigoPai. Matemática. Exercícios de Equação de 2 Grau
AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar
Retas e círculos, posições relativas e distância de um ponto a uma reta
Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo
O espião que me amava
Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno
Vamos resolver problemas?
Reforço escolar M ate mática Vamos resolver problemas? Dinâmica 6 1ª Série 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Algébrico simbólico Funções DINÂMICA Vamos
Invertendo a exponencial
Reforço escolar M ate mática Invertendo a exponencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica DINÂMICA
Pipocas do 9 o ano. Dinâmica 3. Aluno PRIMEIRA ETAPA COMPARTILHAR IDÉIAS. 9 Ano 3º Bimestre ATIVIDADE JOGO DA LINGUAGEM MATEMÁTICA
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre Matemática 9 Ano do Ensino Fundamental Algébrico-Simbólico Funções PRIMEIRA ETAPA COMPARTILHAR IDÉIAS ATIVIDADE JOGO DA LINGUAGEM
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações.
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. 11º Ano Paralelismo e perpendicularidade de retas No espaço, duas
Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico-Simbólico Funções Primeira Etapa Compartilhar idéias
Decifrando enigmas! Dinâmica 4. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 9 Ano 3º Bimestre ATIVIDADE TABULEIRO ALGÉBRICO
Reforço escolar M ate mática Decifrando enigmas! Dinâmica 4 9 Ano 3º Bimestre Matemática 9 Ano do Ensino Fundamental Algébrico-Simbólico Funções Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE TABULEIRO
x 1 + b a 2 a 2 : declive da recta ;
- O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2
Agrupamento de Escolas Diogo Cão. Nome : N.º Turma : Ficha Informativa - Matemática - 7º Ano
Agrupamento de Escolas Diogo Cão Nome : N.º Turma : Equações Ficha Informativa - Matemática - 7º Ano Data: / / O que são equações? A sala de estar da Joana é retangular e tem 18 m 2 de área e m de comprimento.
Palitos e triângulos
Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 2ª Série 3º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Funções Aluno Primeira Etapa Compartilhando
Palitos e triângulos
Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 3ª Série 3º Bimestre Matemática 3 Série do Ensino Médio Algébrico Simbólico Funções Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE PRIORIDADES:
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
MATEMÁTICA - 3o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano)
MATEMÁTICA - o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano) Exercícios de provas nacionais e testes intermédios 1. Numa modalidade do desporto escolar inscreveram-se inicialmente,
As equações que pensam
As equações que pensam Aula 15 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar resoluções de problemas envolvendo sistemas de duas equações e duas variáveis. Objetivos Após
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre
Reforço escolar M ate mática Ruas e esquinas Dinâmica 6 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar
Disciplina: MATEMÁTICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA REDI III ENSINO MÉDIO
Professor (: Estefânio Franco Maciel Aluno (: Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA REDI III ENSINO MÉDIO Data: /8/7. Questão ) Dados os sistemas S mx y : 3x y k correto. x y 7
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Geometria Analítica Equação Geral e Reduzida da Circunferência
Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 4º Bimestre / 2014 Plano de Trabalho Geometria Analítica Equação Geral e Reduzida da Circunferência Tarefa 2 Cursista:
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande. Capítulo 3. Sistemas de Equações Lineares
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande Capítulo Sistemas de Equações Lineares . Sistemas de Equações Lineares.. Definição Equação linear: É uma equação
3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta
1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
Professor APRESENTAÇÃO. Professor, nesta dinâmica, você irá desenvolver as seguintes etapas com seus alunos.
, nesta dinâmica, você irá desenvolver as seguintes etapas com seus alunos. 1 Compartilhar Ideias Vamos às compras! 5 min Duplas ou Trios Individual Um novo olhar... E agora como separar o valor das compras!
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
Geometria Analítica Circunferência
Formação Continuada em Matemática Fundação Cecierj/Consórcio CEDERJ Matemática 3º ano - 4º Bimestre 13 Plano de Trabalho Geometria Analítica Circunferência Tarefa - Grupo Aluna: Thelma Maria Teixeira Tutora:
ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO
ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa
Equacionando o cotidiano...
Equacionando Reforço escolar M ate mática o cotidiano... Dinâmica 8 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Algébrico simbólico Equações redutíveis do 2 grau Aluno
Olhando por esse Prisma...
Reforço escolar M ate mática Olhando por esse Prisma... Dinâmica 7 2º Série 2º Bimestre DISCIPLINA série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria Espacial: Prismas e Cilindros Primeira
Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa
Distância entre duas retas. Regiões no plano
Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,
MAT Poli Cônicas - Parte I
MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Discutindo a Relação Dinâmica 7 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática 2ª do Ensino Médio Geométrico DINÂMICA Discutindo a Relação Introdução
Números Irracionais. Dinâmica 7. Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS. 3ª Série 3º Bimestre ATIVIDADE LOCALIZANDO NÚMEROS RACIONAIS
Reforço escolar M ate mática Númer os irracionais Dinâmica 7 3ª Série 3º Bimestre Matemática 3 Série do Ensino Médio Numérico Aritmético Números Irracionais Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE
Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades
Capítulo 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades SISTEMA DE COORDENADAS LINEARES Um sistema de coordenadas lineares é uma representação gráfica dos números reais como os pontos
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
Aula 4 Colinearidade, coplanaridade e dependência linear
Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção
Acertou no que não viu
Reforço escolar M ate mática Acertou no que não viu Dinâmica 5 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Algébrico simbólico Funções Aluno Primeira Etapa Compartilhar
Figuras tri, tchê! Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 2ª Série 2º Bimestre
Reforço escolar M ate mática Figuras tri, tchê! Dinâmica 6 2ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria espacial: prismas e cilindros Primeira Etapa
Sistemas de Equações Lineares e Matrizes
Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,
Plano de Recuperação Semestral 1º Semestre 2017
Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Lots, Tiago Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos
MATEMÁTICA - 3o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano)
MATEMÁTICA - 3o ciclo Sistemas de duas equações do 1 o grau com duas incógnitas (8 o ano) Exercícios de provas nacionais e testes intermédios 1. Uma escola do 1. o ciclo gastou 63 euros na compra de canetas
Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO
Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes
Embrulhando uma Esfera!
Reforço escolar M ate mática Embrulhando uma Esfera! Dinâmica 6 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2 a do Ensino Médio Geométrico. Geometria Espacial: Esferas. Aluno Primeira
Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver
A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto
Ampliando os horizontes geométricos
Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de
Álgebra Linear I - Lista 5. Equações de retas e planos. Posições relativas. Respostas
Álgebra Linear I - Lista 5 Equações de retas e planos. Posições relativas Respostas 1) Obtenha equações paramétricas e cartesianas: Das retas que contém aos pontos A = (2, 3, 4) e B = (5, 6, 7), A = (
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
