UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 PROCESSO DE NUMERIZAÇÃO Prof. Adriano Vargas Freitas
Construção do número As crianças crescem em culturas nas quais o número está presente, de forma oral ou escrita. Quantificar, contar, enumerar faz parte do cotidiano, portanto, as crianças já chegam à escola com algum conhecimento de números. Aprende a dizer quantos anos tem, a recitar a sequência numérica, a identificar pequenas quantidades de figuras, a conhecer preços...
Número Numeral Algarismo é a ideia de quantidade que nos vem à mente quando contamos, ordenamos e medimos. Assim, estamos pensando em números quando contamos as portas de um automóvel, enumeramos a posição de uma pessoa numa fila ou medimos o peso de uma caixa. é toda representação de um número, seja ela escrita ou falada. é todo símbolo numérico que usamos para formar os numerais escritos sistema de numeração É todo conjunto de regras para a produção sistemática de numerais. No caso de sistemas de numeração escrita, a produção dos numerais é feita através de combinações de algarismos e eventuais símbolos não numéricos (Ex.: a vírgula no sistema indo-arábico).
Numerais são palavras que quantificam os elementos, ou indicam sua ordem de sucessão. São utilizados em textos, em que se quer indicar quantidades, posição ou partes de um todo. Podem ser cardinais, ordinais, multiplicativos ou fracionários. Números são símbolos que expressam quantidades, grandezas, posições, medidas ou códigos. Abaixo, os numerais correspondentes aos números de 1 a 10: cardinais ordinais multiplicativos fracionários Um Primeiro Simples Inteiro Dois Segundo Dobro, duplo Meio, metade Três Terceiro Triplo Terço Quatro Quarto Quádruplo Quarto Cinco Quinto Quíntuplo Quinto Seis Sexto Sêxtuplo Sexto Sete Sétimo Séptuplo Sétimo Oito Oitavo Óctuplo Oitavo Nove Nono Nônuplo Nono Dez Décimo Déctuplo Décimo............
Exemplos EXEMPLO O número vinte e três pode ser representado pelo numeral XXIII ( no sistema romano ), pelo numeral 23 ( no sistema indo-arábico ) e de muitas outras maneiras. EXEMPLO No cotidiano, são comuns as confusões entre os conceitos de número, numeral e algarismo. Vejamos algumas: minha senha bancária tem três números. o funcionário da CERJ registrou mal o número das centenas do valor de meu consumo mensal de energia elétrica"
Utilizamos os números em diferentes funções do dia a dia Quando contamos quantidades, estamos utilizando números cardinais. Eles dão nomes às diferentes quantidades. Ex.: João comeu 5 brigadeiros. Usamos os números ordinais para indicar uma ideia de lugar, de posição ou de ordem. Ex.: Estou no 3º lugar da fila. Ana ganhou o 1º lugar no concurso. Empregamos números com códigos, às vezes combinados com letras. Ex.: números de telefones, placas de carro, senhas de acesso, etc.
O número operatório Para observação... Escolha uma criança que tenha por volta de 4 anos. Apresente 5 objetos iguais e peça que ela os conte... Provavelmente ela irá apontá-los um a um dizendo 1, 2, 3, 4,5 e confirmará que ali existem 5 objetos. Então, você lhe pede que mostre onde há 5 carrinhos... Provavelmente ela vai apontar o último. Quando isso acontece é porque a criança ainda não diferencia os aspectos cardinal (cinco) e ordinal (quinto).
Mas o que é mesmo o aspecto cardinal do número? Qual é a quantidade de maçãs? 7 é o nome dessa quantidade toda de maçãs O número cardinal é o nome de cada quantidade. O número ordinal indica a posição em uma sequência.
Em resumo... Classificação Seriação Cardinal (nome da quantidade) Ordinal (ideia de lugar) Número operatório
Quando estimulo na criança a habilidade de classificar e dar um nome àquele todo, estou favorecendo as condições para que ela construa o número cardinal. Quando estimulo a habilidade de seriar, procurando o lugar de cada elemento em uma ordem, estou favorecendo as condições para que ela construa o número ordinal.
Comparação, correspondência e conservação do número A primeira ideia que crianças pequenas têm acerca de quantidade é verificar, por comparação, onde há muitos objetos e onde há poucos. A correspondência um a um é uma percepção fundamental para que a criança seja capaz de atingir o conceito de número operatório, e lhe permite igualar duas coleções no sentido da quantidade. Quando a criança atinge a percepção de mesma quantidade, podemos pesquisar sua capacidade de conservar quantidades.
O princípio da conservação da quantidade numérica, também chamado de invariância numérica, é percebido pela criança quando ela é capaz de compreender que uma quantidade permanece idêntica seja qual for o arranjo das unidades que a formam, isto é, ela concorda que a totalidade dessa quantidade se mantém a mesma, independentemente do espaço que ocupar. Além disso, que segue uma sequência numérica, e que se conversa mesmo que partes não esteja à sua vista...
Sequência numérica A sequência numérica (de números inteiros positivos) representada abaixo se inicia no zero, ou seja na ausência de quantidade, e segue progressivamente na estrutura igual mais um. Cada número tem um antecessor (um vizinho de antes) e um sucessor (um vizinho depois).
Sugestões de atividades Algumas atividades podem favorecer o significado, a concretude, a visualização, a percepção e a compreensão necessários para o desenvolvimento das habilidades numéricas, lembrando que a aprendizagem ocorre de forma espiral, pois cada novo momento possibilita uma compreensão e uma organização conceitual diferentes.
1) Qual o nome do grupo? classificação - coletiva Formar grupos com base em características comuns, sem informar a razão de estar organizando desta forma. A tarefa é descobrir por que elas estão agrupadas desta forma. Os componentes devem conversar entre si, sem dar pistas aos outros grupos. Sugestões de classificação: meninos e meninas, características da roupa, cabelo solto ou não, etc. Objetivos: desenvolver a percepção e atenção para encontrar os atributos comuns utilizados na classificação; estimular a capacidade de dar nomes aos grupos. Representação: coletiva desenhar um cartaz que explique como os grupos foram classificados.
2) Qual o meu lugar? seriação - coletiva Propor que as crianças encontrem uma maneira de se organizar considerando o comprimento dos cabelos. Sugestões de seriação: corporal: altura, tonalidade do cabelo, etc. Objetivos: construir o conceito de seriação; estimular a compreensão de que cada elemento só ocupa um único lugar na série. Representação: coletiva desenhar um cartaz que explique como as formações foram realizadas..
3) Brincar de arrumação. classificação em grupos Cada criança traz para escola cinco ou mais objetos diferentes (embalagens vazias, tampas, revistas, etc.). Pegue uma quantidade de materiais variados e classifique-os. Os alunos deverão descobrir qual foi o critério de classificação e dar um nome para o grupo. Objetivos: classificar, desenvolver a habilidade de perceber diferenças. Representação: desenhos espontâneos das atividades realizadas.
4) Quem tem mais? em dupla Material: um dado e palitos diversos. Cada jogador lança o dado na sua vez e pega tantos palitos quanto o dado indicar. Diz, após sua jogada quantos palitos já conseguiu ao todo. O jogo acaba quando acabarem os palitos. Para descobrirem quem ganhou o jogo, fazem correspondência um a um entre a quantidade de palitos dos jogadores. Uma sugestão inicial é utilizar um dado marcando apenas 1 e 2. Objetivos: comparar e estimular adições de pequenas quantidades; construir o número cardinal. Representação: cada criança faz uma colagem com os palitos que ganhou.
O intruso 1 2 3 4 5 6 7 8 9 10 11 14 15 22 23 26 31 36 42 60 51 55 70 72 74 76 77
Trabalho (para ser apresentado na próxima aula individualmente ou em grupos de até 3 componentes) Apresentar uma atividade que possa ser utilizada em ambiente educativo envolvendo contagem processo de numerização Voltado para a Educação Infantil ou para a Educação de Jovens e Adultos Com plano de aula (ver modelo) A atividade será desenvolvida em nossa aula e analisada pela turma.
Plano de Aula (modelo) Curso de Pedagogia Matemática Conteúdo e Método - Prof. Adriano Vargas Componentes do Grupo: nomes dos componentes Instituto de Educação de Angra dos Reis Universidade Federal Fluminense Plano de aula - Atividade de Numerização Nome da atividade: Disciplina: Matemática Modalidade/Série: indique aqui se é voltada para a educação infantil ou para a educação de jovens e adultos, em seguida, para qual série Conteúdo: Noções básicas de numerização Objetivo: Proporcionar aprendizagens envolvendo o processo de numerização Duração: indique aqui o tempo que seria necessário para desenvolver toda a atividade em uma sala de aula Metodologia: indique aqui toda a atividade, passo a passo Avaliação: indique como a atividade será avaliada. Recursos utilizados: indique aqui todos os recursos instrucionais que serão utilizados na atividade (ex.: cartolina, quadro, vídeo, etc...) Referências: apresente as referências das obras que foram consultadas, inclusive vídeos.
Exercícios: 1) Complete a tabela: antecessor número sucessor 12039 30009 998998 175911 2) Descubra: dois números naturais consecutivos que, somados dão 45:
3) Usando os algarismo 3, 5, 6 e 8, sem repetí-los em um mesmo número, escreva: a) O maior número possível: b) O menor número possível: c) Os números maiores que 5000 e menores que 6000, em ordem crescente:
SEQÜÊNCIA DIDÁTICA: Um a mais SÉRIES DO ENSINO FUNDAMENTAL todas as séries DISCIPLINA: Matemática, CARGA HORÁRIA: - h/a DATA: CONTEÚDOS: processo de numerização OBJETIVO: associar quantidades e números; estimular a ideia de igual mais um; estimular a construção de sequencia numérica. Praticar a contagem. TÉCNICA: individualizante e socializante. RECURSO: Material para o jogo: 10 cartões, cada um com uma quantidade de bolinhas marcadas, que vão de 1 a 10. Quadro e giz, datashow, cartazes, etc. ATIVIDADES: embaralhar os cartões e distribuí-los. Começa quem tem o cartão 1. Cada cartão seguinte deve ter uma bolinha a mais que o anterior. Se um jogador, no momento da jogada, não tiver o cartão correspondente, passa a vez. Ganha o jogo quem acabar primeiro os cartões. Os dois jogadores devem estar um ao lado do outro, para ver a sequencia numérica que estão construindo, na mesma posição. Representação: colar em uma folha os cartões, depois de várias jogadas, respeitando a sequencia numérica. AVALIAÇÃO: análise e socialização das propostas de solução.
SEQÜÊNCIA DIDÁTICA: Detetive de números SÉRIES DO ENSINO FUNDAMENTAL todas as séries DISCIPLINA: Matemática, CARGA HORÁRIA: - h/a DATA: CONTEÚDOS: processo de numerização OBJETIVO: associar quantidades e números; estimular a ideia de igual mais um; estimular a construção de sequencia numérica. Praticar a contagem. TÉCNICA: individualizante e socializante. ATIVIDADES:Regras do Jogo: um aluno pensa em um número e os demais vão falar números que o primeiro aluno indicará se é maior ou menor do que ele pensou. Ganha quem adivinhar o número pensado. AVALIAÇÃO: análise e socialização das propostas de solução.
Você reconhecerá o valor e a importância de trabalhar a construção dos conceitos por meio de vivências significativas e divertidas no dia em que vir as carinhas sorridentes e os olhinhos brilhantes das crianças que compreendem o que estão fazendo e, ao mesmo tempo, estão brincando e se divertindo. Que é como, aliás, toda criança deveria aprender! Eu me torno competente em algo quando vivo, quando experimento, quando compreendo, quando estou aberto para aprender, enfim, quando faço o meu melhor, sem me importar se sou adulto ou criança. Ramos, Luzia Faraco Conversas sobre números, ações e operações Editora Ática, 2009
Para próxima aula: Material Dourado