CORROSÃO E ELETRODEPOSIÇÃO

Documentos relacionados
Degradação e. Capítulo 1.2 Fundamentos

Corrosão e Protecção

ELETROQUÍMICA. Prof a. Dr a. Carla Dalmolin

Eletroquímica. Eletroquímica: Pilhas Galvânicas. Potencial de redução. Força eletromotriz. Equação de Nernst. Electrólise.

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

QUI201 (QUI145) QUÍMICA ANALÍTICA B (Química Industrial) Prof. Mauricio X. Coutrim

Química Geral e Inorgânica. QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin. Eletroquímica

REAÇÕES DE ÓXIDO-REDUÇÃO

QUI 154 Química Analítica V Análise Instrumental. Aula 4 Potenciometria

ELETRODO OU SEMIPILHA:

02/10/2017 ELETRÓLISE AQUOSA

Físico-Química. Eletroquímica Prof. Jackson Alves

Aula 20 Eletrodeposição

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

CÉLULAS ELETROLÍTICAS

LISTA DE EXERCÍCIOS Eletroquímica

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUIMICA DISCIPLINA: FÍSICO-QUÍMICAII

REACÇÕES DE OXIDAÇÃO-REDUÇÃO (REDOX)

QUI 070 Química Analítica V Análise Instrumental. Aula 7 Química Eletroanalítica

QUÍMICA ELETROANALÍTICA

Célula eletroquímica ou galvânica: permite interconversão de energia química e elétrica

QUI 070 Química Analítica V Análise Instrumental. Aula 4 Química Eletroanalítica

Estudo das reações químicas para geração de energia.

Redox: objectivos principais

Reacções de Oxidação-Redução

CÉLULAS GALVÂNICAS OU CÉLULAS ELECTROQUÍMICAS

QUI 070 Química Analítica V Análise Instrumental. Aula 7 Química Eletroanalítica

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA PROF. RODRIGO BANDEIRA

PROMILITARES 20/09/2018 QUÍMICA. Professora Caroline Azevedo ELETROQUÍMICA. Eletroquímica. Você precisa saber o que é oxidação e redução!

Química. Eletroquímica

Reações de oxirredução

PMT AULAS 1 E 2 Augusto Camara Neiva. PMT Augusto Neiva

1- Números de oxidação (Nox) Indicam a espécie que perde elétrons e a que ganha elétrons, ou seja, é a carga elétrica da espécie química.

Química Analítica Avançada

ELETROQUÍMICA. 1. Introdução

APLICAÇÕES DOS POTENCIAIS PADRÃO DE ELETRODO

ELETROQUÍMICA SAINDO DO EQUILÍBRIO. Curvas de Polarização Pilhas e Corrosão Exercício

Departamento de Química Inorgânica IQ / UFRJ IQG 128 / IQG ELETRÓLISE

REVISÃO DE QUÍMICA CEIS Prof. Neif Nagib

ELETROQUÍMICA Profº Jaison Mattei

Cálculo da Força Eletromotriz de uma Pilha

E cel = E catodo - E anodo E cel = 0,337 ( 0,763) E cel = 1,100 V. ZnSO 4(aq) 1,0 mol L -1 CuSO 4(aq) 1,0 mol L -1

01) O elemento X reage com o elemento Z, conforme o processo: Nesse processo: Z 3 + X Z 1 + X 2. b) X ganha elétrons de Z. d) X e Z perdem elétrons.

ELETROQUÍMICA OU. Profa. Marcia M. Meier QUÍMICA GERAL II

CQ049 FQ Eletroquímica.

O que esses dispositivos tem em comum? São dispositivos móveis. O que faz os dispositivos móveis funcionarem?

GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA ESCOLA TÉCNICA ESTADUAL REPÚBLICA

AULA DE RECUPERAÇÃO PROF. NEIF NAGIB

HIDROMETALURGIA E ELETROMETALURGIA. Prof. Carlos Falcão Jr.

Eletroquímica. Profa. Marcia Margarete Meier. Disciplina de Química Geral Profa. Marcia Margarete Meier

Potenciometria. Fundamentos

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA

Polarização e cinética de eletrodo

INTRODUÇÃO À ELETROQUÍMICA

Cursos Técnicos Integrados ao Ensino Médio

química química na abordagem do cotidiano

08/04/2016. Aulas 8 12 Setor B

INTRODUÇÃO À ELETROQUÍMICA Prof. Dr. Patricio R. Impinnisi Departamento de engenharia elétrica UFPR

Potencial Elétrico e Pilhas

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 28 TURMA ANUAL

PMT AULA 3 versão 2 SAINDO DO EQUILÍBRIO. Curvas de Polarização Pilhas e Corrosão. A. C. Neiva

EleELETROQUÍMICA (Parte I)

Prof André Montillo

Experiência 11 PILHA DE DANIELL PILHA DE DANIELL

QUÍMICA. Transformações Químicas e Energia. Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday - Parte 10

É a perda de elétrons. É o ganho de elétrons

e - Zinco ZnSO 4 Zn(s) Zn 2 Zn(s) Zn 2+ (aq) + 2 e - + 0,76 V Cu(s) Cu 2+ (aq) + 2 e - - 0,34 V

ELETROQUÍMICA REAÇÃO ENERGIA QUÍMICA ELÉTRICA. Pilha. Eletrólise. espontânea. não espontânea

Volumetria de Óxido-redução

PMT2423 FÍSICO-QUÍMICA PARA METALURGIA E MATERIAIS III. PMT Físico-Química para Metalurgia e Materiais III - Neusa Alonso-Falleiros

Índice. Agradecimentos... Prefácio da Edição Revisada... Prefácio...

RT ln zf. Reações Eletroquímicas Equilíbrio. Equação de Nernst. ox, rev. Constantes úteis:

INTRODUÇÃO À ELETROQUÍMICA Prof. Dr. Patricio R. Impinnisi Departamento de engenharia elétrica UFPR

Aula EQUILÍBRIO DE OXIDAÇÃO E REDUÇÃO METAS

Química 12º Ano. Uma reacção de oxidação-redução, ou reacção redox, é uma reacção em. variação dos números de oxidação de alguns elementos.

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

Colégio FAAT Ensino Fundamental e Médio

Trataremos da lei limite de Debye-Hückel e definiremos as células

Redução e oxidação. Housecroft cap. 8. Oxidação e redução

Abrange todos processo químicos que envolvem transferência de elétrons.

QUÍMICA. Transformações Químicas e Energia. Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday - Parte 4

Quí. Allan Rodrigues Monitor: João Castro

Pilha de Daniell. Sentido dos elétrons

Oxirredução IDENTIFICAÇÃO O QUE SOFRE ENTIDADE O QUE FAZ. Oxidante ganha e - ( NOX) oxida o redutor redução

Resumo de Química: Pilhas e eletrólise

PMT AULA 3. Curvas de Polarização. Pilhas e Corrosão. A. C. Neiva

para as soluções e pressão para gases. Identificar o par

E-books PCNA. Vol. 1 QUÍMICA ELEMENTAR CAPÍTULO 10 ELETROQUÍMICA

QUÍMICA. Transformações Químicas e Energia. Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday - Parte 3

Reacções de Redução/Oxidação. Redox

Eletroquímica: Pilha e Eletrólise

8 Redução eletrolítica de íons aquosos

AULA 18 Eletroquímica

Exercício de Revisão III Unidade. Eletroquímica

Quí. Quí. Monitor: Diego Gomes

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

Cobre + Íons. Prata. Eletroquímica CURSO DE FÍSICOF

Força relativa de oxidantes e redutores

Resposta Capítulo 17: Eletroquímica: Pilhas

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA LEIA COM MUITA ATENÇÃO

Transcrição:

CORROSÃO E ELETRODEPOSIÇÃO Princípios de Eletroquímica Prof. Dr. Artur de Jesus Motheo Departamento de FísicoF sico-química Instituto de Química de são Carlos Universidade de São Paulo 1

Princípios de Eletroquímica Quando se imerge uma placa de zinco numa solução ácida, ocorre seguinte processo: Esta reação pode ser traduzida pela seguinte equação química global: Zn + 2H + Zn 2+ + H 2 Pode também m ser escrita sob a forma de duas semi-rea reações: Zn Zn 2+ + 2e - 2H + + 2e - H 2 2

A reação Zn Zn 2+ + 2e - é uma reação de oxidação ão: Oxidação é uma reação onde uma espécie química perde elétrons O estado de oxidação dessa espécie aumenta (torna-se mais positivo) Princípios de Eletroquímica eletrodo onde se dád uma oxidação é o ânodo A reação 2H + + 2e - H 2 é uma reação de redução ão: Redução é uma reação onde uma espécie química ganha elétrons O estado de oxidação dessa espécie diminui O elétrodo onde se dád uma redução é o cátodo 3

Princípios de Eletroquímica Metal em contato com uma solução átomos na rede cristalina do metal íons na solução, elétrons no metal Me Me n + + n e - Do lado do metal, a interface fica com excesso de cargas negativas; Do lado da solução, a interface fica com excesso de cargas positivas Cria-se um campo elétrico e um diferença de potencial entre o metal e a solução A interface entre o metal e a solução chama-se elétrodo 4

Princípios de Eletroquímica 2º Princípio da Termodinâmica a a matéria tende para um estado de desordem máximom ximo A energia livre diminui, o que também é favorável: vel: No início: No equilíbrio: (µ n+ Me ) Me > (µ n+ ( Me ) solução (µ n+ Me ) Me = (µ n+ ( Me ) solução se a solução original contém íons do metal, terá menos tendência a receber íons da mesma natureza; se a atividade (concentração) destes íons for grande, poderá mesmo dar- se o fenômeno inverso deposição metálica à superfície do eletrodo. 5

Eletrodos com interesse em Corrosão Eletrodos gasosos neles processa-se se uma reação que envolve um gás g s como reagente ou produto: gases íons (que ficam na solução) íons em solução gases em qualquer caso, a reação dá-se d à superfície de um metal, que atua como suporte à troca de elétrons eletrodo de hidrogênio: 2H + + 2e - H 2 eletrodo de oxigênio: em meio ácido: O 2 + 4H + + 4e - 2H 2 O em meio neutro ou alcalino: O 2 + 2H 2 O + 4e - 4OH - 6

Eletrodos com interesse em Corrosão A cada um dos equilíbrios correspondem potenciais (ou tensões) de eletrodo Por convenção, atribuiu-se o valor zero ao potencial do eletrodo normal (padrão) de hidrogênio (ENH) p H2 = 1 atm, a H+ = 1 íon-grama L -1, T = 25 C Os potenciais dos outros sistemas são referidos em relação ao ENH As tabelas de potenciais padrão de elétrodo (potenciais normais a 25 C) são normalmente chamadas Séries Eletroquímicas O potencial é tanto mais alto quanto mais nobre for o metal (mais difícil de oxidar) 7

Eletrodos com interesse em Corrosão As condições de medida de um potencial padrão raramente se verificam: atividades das espécies iônicas não são unitárias; temperatura diferente de 25 C; existem impurezas nos metais; os metais podem ser portadores de um eletrodo gasoso; pode formar-se uma camada de óxido. Em corrosão, as Séries Eletroquímicas (padrão) são encaradas com alguma reserva: Opta-se por obter tabelas de potenciais dos metais em meios específicos (potenciais galvânicos) séries galvânicas Os potenciais galvânicos são diferentes dos potenciais padrão, podendo p mesmo haver inversão nas posições relativas dos metais na séries 8

Eletrodos com interesse em Corrosão Série Eletroquímica Padrão versus Série S Galvânica (em solução de NaCl a 3%) (potenciais relativos ao ENH) 9

Eletrodos com interesse em Corrosão Medição de potenciais para medir o potencial de um eletrodo é necessário fechar o circuito através da introdução de outro eletrodo na solução; Para que esse segundo eletrodo não afete a medida, deve usar-se um eletrodo de referência que se caracteriza por ter um valor constante de potencial, independente das condições do meio; O eletrodo de referência mais imediato seria o eletrodo normal de hidrogênio(e=0,00 V), mas não é fácil de manipular: Elevada acidez (atividade unitária de H + ); Envolve o borbulhamento de um gás (H 2 ); Frágil. 10

Eletrodos com interesse em Corrosão Usam-se se então outros eletrodos de referência mais robustos e com valor de potencial fixo e reprodutível face ao ENH, pelo que a conversão dos valores lidos é fácil. eletrodo de calomelanos saturado (ECS) Hg 2 Cl 2 (s) + 2e - 2Hg (l) + 2Cl - notação: Hg, Hg 2 Cl 2 KCl (sol. saturada) E H (25 C) = + 0,244 V eletrodo de cobre/sulfato de cobre: Cu 2+ + 2e - Cu notação: Cu CuSO 4 (sat) E H (25 C) = + 0,3180 V eletrodo de prata/cloreto de prata: AgCl + e - Ag + Cl - notação: Ag, AgCl KCl (1 mol L -1 ) E H (25 C) = + 0,2224 V 11

Eletrodos com interesse em Corrosão É possível calcular o potencial de equilíbrio de uma dada reação em condições diferentes das condições padrão, pela equação de Nernst: onde: E 0 potencial de equilíbrio nas condições desejadas Eº 0 potencial de equilíbrio nas condições padrão R constante dos gases perfeitos (8.303 J.mole-1.K-1) T n temperatura na escala Kelvin nº de elétrons trocados na reação válida para um equilíbrio genérico F constante de Faraday (96500 C mol -1 ) (Ox) e (Red) atividades das espécies oxidada e reduzida 12

Eletrodos com interesse em Corrosão Utilizando logaritmos decimais, a 25 C C (298,15 K): 13

Eletrodos com interesse em Corrosão Devido à reação de oxidação, a interface fica, do lado do metal, com excesso de cargas negativas; Num metal não pode haver acumulação de cargas É necessário existir, na vizinhança a do eletrodo, um segundo eletrodo onde as cargas negativas sejam consumidas A reação que se dád nesse eletrodo tem que ser uma redução Se não puder dar-se esse processo, a reação de oxidação não pode progredir 14

Processos num Sistema em Corrosão E > 0 G < 0 reação espontânea 15

Processos num Sistema em Corrosão Lâmina de zinco metálico, chamada de eletrodo, está parcialmente imersa em solução contendo íons Zn2+: Zn Zn 2+ + 2e - Zn 2+ + 2e - Zn Oxidação de Zn para Zn 2+ (fundo da vista expandida) Redução de Zn 2+ para Zn (perto do topo) Ocorrem no eletrodo até que uma condição de equilíbrio seja atingida. * Os ânions necessários para tornar a solução eletricamente neutra não estão representados para facilitar a visualização. 16

Processos num Sistema em Corrosão Zn Zn 2+ + 2e - 2H + + 2e - H 2 O conjunto dos dois eletrodos forma uma célula eletroquímica célula de corrosão 17

Processos num Sistema em Corrosão Um processo de corrosão pode decompor-se em: a) Processo anódico (oxidação) b) Processo de transporte de elétrons e transporte de íons c) Processo catódico (redução) Então, Um metal só se corrói (dissolução anódica) se simultaneamente houver um processo catódico com potencial superior ao do elétron metálico Exemplo: Em água pura, sem oxigênio, apenas se corroem os metais cujo potencial é inferior ao potencial do eletrodo de hidrogênio 18

Célula constituída por dois metais: o metal de menor potencial (menos nobre) funciona como ânodo o metal de maior potencial (mais nobre) funciona como cátodo ou como portador do cátodo Exemplo: Cu e Zn Teorias das Células C Locais 19

Teorias das Células C Locais Exemplo: Cu e Zn 20

Teorias das Células C Locais Exemplo: Cu e Zn (solução com íons Cu 2+ ) 21

Teorias das Células C Locais Célula constituída por um sós metal: Os ânodos e os cátodos encontram-se, lado a lado, sobre o mesmo metal A superfície, sendo heterogênea, permite o estabelecimento de zonas diferentes: zonas mais nobres: cátodos Células de corrosão = Células Locais zonas menos nobres: ânodos As heterogeneidades podem dever-se a: a processo de fabricação: composição (limites de grão), laminação,... ligas (diferentes fases) manuseamento: mãos, utensílios,... ação do meio: armazenamento, radiações,... Teoria das Células Locais Delarive 22

Teorias das Células C Locais 23

Diagramas Potencial-Corrente 24

Diagramas Potencial-Corrente Para i 0 o potencial afasta-se de E 0 A diferença entre E e E 0 chama-se sobretensão (n) A sobretensão pode ter várias origens, recebendo a designação respectiva: sobretensão de ativação (ou transferência de carga), de difusão (ou concentração),... 25

Diagramas Potencial-Corrente 26

Diagramas Potencial-Corrente 27

Diagramas Potencial-Corrente metais isolados 28

Diagramas Potencial-Corrente i catódica = ianódica 29

Diagramas Potencial-Corrente Meio condutor: i catódica = i anódica = i corr 30

Diagramas Potencial-Corrente E corr = potencial de corrosão ou potencial misto I corr = densidade de corrente de auto corrosão 31

Diagramas Potencial-Corrente Tipos de controle 32

Diagramas Potencial-Corrente Influência da diferença E oc E oa (declives idênticos) 33

Diagramas Potencial-Corrente Influência dos declives (E oc E oa idênticos) 34

Diagramas Potencial-Corrente Menor diferença entre potenciais de equilíbrio dos processos anódico e catódico Maiores declives das curvas E-i desses processos Menor velocidade de corrosão 35

Diagramas Potencial-Corrente Controle catódico - difusão Reação catódica: redução do oxigênio 36

Teoria dos Potenciais Mistos Ânodos e cátodos locais Infinitamente pequenos Distribuídos uniformemente na superfície Mudam de posição ao longo do tempo 37

Corrosão Uniforme e Corrosão Localizada Corrosão Uniforme Nas condições anteriores, com ânodos e cátodos: que são muito pequenos estão distribuídos uniformemente na superfície variam de posição no decurso do processo Corrosão localizada Células de corrosão fixas dissolução anódica sempre nos mesmos locais processo de redução sempre nos mesmos locais 38

Corrosão Uniforme e Corrosão Localizada Corrosão Uniforme Corrosão Localizada 39

Corrosão Uniforme e Corrosão Localizada Relação de Áreas em Corrosão localizada A corrente consumida no processo catódico tem que ser produzida no processo anódico A intensidade de corrente anódica (I A ) é igual à intensidade de corrente catódica (I C ): Sendo velocidade de corrosão igual à densidade de corrente i A, tem-se: 40

Corrosão Uniforme e Corrosão Localizada Corrosão Uniforme Corrosão Localizada 41