Documentos relacionados
Exercícios de Matemática Análise Combinatória - Princípio Fundamental da Contagem

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

Análise Combinatória. Prof. Thiago Figueiredo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Projeto Jovem Nota 10 Princípio Fundamental de Contagem Lista 1 Professor Marco Costa

I. Princípio Fundamental da Contagem (P.F.C.)

Exercícios de Análise Combinatória ano: 2013

Projeto Rumo ao ITA Exercícios estilo IME

Simulado OBM Nível 2

TRABALHO DE MATEMÁTICA II

Matemática SSA 2 REVISÃO GERAL 1

Disciplina: Matemática Data da entrega: 18/04/2015.

Progressão Geométrica- 1º ano

Princípio Fundamental da Contagem

MATEMÁTICA E RACIOCÍNIO LÓGICO

Nível II 5º e 6º anos

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

Contagem I. Figura 1: Abrindo uma Porta.

Este material traz a teoria necessária à resolução das questões propostas.

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

QUESTÃO 1 ALTERNATIVA B

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Física. Questão 1. Avaliação: Aluno: Data: Ano: Turma: Professor:

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 7

Canguru Matemático sem Fronteiras 2015

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

AV2 - MA (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Exercícios de Matemática Análise Combinatória - Permutação

Prova do Nível 1 (resolvida)

d) e) a) 1 5 b) 2 5 c) 3 4 d) 1 4 e) 1 2

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Solução da prova da 1 a fase OBMEP 2008 Nível 1

OFICINA DE JOGOS APOSTILA DO PROFESSOR

Coordenadoria de Educação CADERNO DE REVISÃO Matemática Aluno (a) 5º ANO

ANÁLISE COMBINATÓRIA números, já que os algarismos PRÍNCIPIO FUNDAMENTAL DA CONTAGEM

Simulado OBM Nível 1. Gabarito Comentado

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 8 Ọ ANO EM Disciplina: matemática

TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Canguru Matemático sem Fronteiras 2014

Vestibulando Web Page

REGRAS GERAIS REDE 2 horas e 30 minutos. Os desafios deverão ser entregues conforme instrução: Exemplo: desafio1_equipepentagrama

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

Exercícios Análise Combinatória

Gráficos de M.U. Movimento Uniforme

43. Jogo do bingo com figuras

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

I. Experimentos Aleatórios

Revisão de combinatória

Teoria das Probabilidades

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

PRINCÍPIO DA CASA DOS POMBOS

EXAME DISCURSIVO 2ª fase

C O L É G I O F R A N C O - B R A S I L E I R O

2º ano do Ensino Médio

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela

TRABALHO DE MATEMÁTICA II

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Professor Mauricio Lutz PROBABILIDADE

Lista de Exercícios. Vetores

Pré Universitário Uni-Anhanguera

O princípio multiplicativo

RESOLUÇÃO Matemática APLICADA FGV Administração

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) Circule as frações equivalentes: 03- Escreva:

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

JOGOS QUE CONSTAM DO KIT DE REFORÇO ESCOLAR

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.

Problemas de Jogos e Tabuleiros

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Princípio da Casa dos Pombos II

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

01) ) ) ) ) 555

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

MATEMÁTICA ENEM 2009

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

UFRGS MATEMÁTICA. 01) Considere as desigualdades abaixo III) 3 2. II) Quais são verdadeiras?

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS

Instruções para a Prova de MATEMÁTICA APLICADA:

Transcrição:

Lista 2 ano manhã Professor Habib 1. (Fuvest) Três empresas devem ser contratadas para realizar quatro trabalhos distintos em um condomínio. Cada trabalho será atribuído a uma única empresa e todas elas devem ser contratadas. De quantas maneiras distintas podem ser distribuídos os trabalhos? a) 12 b) 18 c) 36 d) 72 e) 108 2. (Ufrs) No desenho a seguir, as linhas horizontais e verticais representam ruas, e os quadrados representam quarteirões. A quantidade de trajetos de comprimento mínimo ligando A e B que passam por C é a) 12 b) 13 c) 15 d) 24 e) 30 3. (Fuvest-gv) As atuais placas de licenciamento de automóveis constam de sete símbolos sendo três letras, dentre as 26 do alfabeto, seguidas de quatro algarismos. a) Quantas placas distintas podemos ter sem o algarismo zero na primeira posição reservada aos algarismos? b) No conjunto de todas as placas distintas possíveis, qual a porcentagem daquelas que têm as duas primeiras letras iguais? 4. (Ufc) Atualmente, as placas dos veículos são formadas por três letras seguidas de quatro algarismos. Considerando estas informações, calcule o número de placas distintas que podem ser fabricadas, iniciadas pelas letras HUI, nesta ordem, e cujo último algarismo seja ímpar.

5. (Fgv) Uma pessoa vai retirar dinheiro num caixa eletrônico de um banco mas, na hora de digitar a senha, esquece-se do número. Ela lembra que o número tem 5 algarismos, começa com 6, não tem algarismos repetidos e tem o algarismo 7 em alguma posição. O número máximo de tentativas para acertar a senha é a) 1 680 b) 1 344 c) 720 d) 224 e) 136 6. (Mackenzie) Os números pares com 4 algarismos distintos, que podemos obter com os elementos do conjunto {0; 3; 4; 5; 6; 7; 8}, são em número de: a) 6 b) 420 c) 5.6 d) 5.4 e) 380 7. (Ufes) Quantos são os números naturais de cinco algarismos, na base 10, que têm todos os algarismos distintos e nenhum deles igual a 8, 9 ou 0? Quantos deles são pares? 8. (Ufal) Quantos números pares de quatro algarismos distintos podem ser formados com os elementos do conjunto A={0,1,2,3,4}? a) 60 b) 48 c) 36 d) 24 e) 18 9. (Unitau) O número de anagramas da palavra BIOCIÊNCIAS que terminam com as letras AS, nesta ordem é: a) 9! b) 11! c) 9!/(3! 2!) d) 11!/2! e) 11!/3! 10. (Fuvest) Num programa transmitido diariamente, uma emissora de rádio toca sempre as mesmas 10 músicas, mas nunca na mesma ordem. Para esgotar todas as possíveis seqüências dessas músicas serão necessários aproximadamente: a) 100 dias. b) 10 anos. c) 1 século. d) 10 séculos. e) 100 séculos. 11. (Fuvest) A figura a seguir representa parte do mapa de uma cidade onde estão assinalados as casas de João(A), de Maria(B), a escola(c) e um possível caminho que João percorre para, passando pela casa de

Maria, chegar à escola. Qual o número total de caminhos distintos que João poderá percorrer, caminhando somente para o Norte ou Leste, para ir de sua casa à escola, passando pela casa de Maria? 12. (Fatec) Seis pessoas, entre elas João e Pedro, vão ao cinema. Existem seis lugares vagos, alinhados e consecutivos. O número de maneiras distintas como as seis podem sentar-se sem que João e Pedro fiquem juntos é a) 720 b) 600 c) 480 d) 240 e) 120 13. (Mackenzie) Os anagramas distintos da palavra MACKENZIE que têm a forma E...E são em número de: a) 9! b) 8! c) 2.7! d) 9! -7! e) 7! 14. (Ufsc) Calcule o número de anagramas da palavra CLARA em que as letras AR aparecem juntas e nesta ordem. 15. (Uff) Com as letras da palavra PROVA podem ser escritos x anagramas que começam por vogal e y anagramas que começam e terminam por consoante. Os valores de x e y são, respectivamente: a) 48 e 36. b) 48 e 72. c) 72 e 36. d) 24 e 36. e) 72 e 24. 16. (Fuvest) Com as 6 letras da palavra FUVEST podem ser formadas 6!=720 "palavras" (anagramas) de 6 letras distintas cada uma. Se essas "palavras" forem colocadas em ordem alfabética, como num dicionário, a 250 "palavra" começa com

a) EV b) FU c) FV d) SE e) SF 17. (Fgv) Um processo industrial deve passar pelas etapas A, B, C, D e E. a) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas no início do processo e A deve anteceder B? b) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas, em qualquer ordem, e não necessariamente no início do processo? 18. (Unesp) Quatro amigos vão ocupar as poltronas a, b, c, d de um ônibus dispostas na mesma fila horizontal, mas em lados diferentes em relação ao corredor, conforme a ilustração. Dois deles desejam sentar-se juntos, seja do mesmo lado do corredor, seja em lados diferentes. Nessas condições, de quantas maneiras distintas os quatro podem ocupar as poltronas referidas, considerando-se distintas as posições em que pelo menos dois dos amigos ocupem poltronas diferentes? a) 24. b) 18. c) 16. d) 12. e) 6. 19. (Ufrs) Um trem de passageiros é constituído de uma locomotiva e 6 vagões distintos, sendo um deles restaurante. Sabendo-se que a locomotiva deve ir à frente, e que o vagão restaurante não pode ser colocado imediatamente após a locomotiva, o número de modos diferentes de montar a composição é a) 120 b) 230 c) 500 d) 600 e) 720 20. (Ita) O número de anagramas da palavra VESTIBULANDO, que não apresentam as cinco vogais juntas, é: a) 12! b) (8!) (5!)

c) 12! - (8!) (5!) d) 12! - 8! e) 12! - (7!) (5!) 21. (Unb) Em um tabuleiro quadrado, de 5 x 5, mostrado na figura I, deseja-se ir do quadrado esquerdo superior (ES) ao quadrado direito inferior (DI). Somente são permitidos os movimentos horizontal (H), vertical (V) e diagonal (D), conforme ilustrado na figura II. Com base nessa situação e com o auxílio dos princípios de análise combinatória, julgue os itens que se seguem. (0) Se forem utilizados somente movimentos horizontais e verticais, então o número de percursos possíveis será igual a 70. (1) Se forem utilizados movimentos horizontais e verticais e apenas um movimento diagonal, o número de percursos possíveis será igual a 140. (2) Utilizando movimentos horizontais, verticais e três movimentos diagonais, o número de percursos possíveis é igual a 10. 22. (Cesgranrio) Um fiscal do Ministério do Trabalho faz uma visita mensal a cada uma das cinco empresas de construção civil existentes no município. Para evitar que os donos dessas empresas saibam quando o fiscal as inspecionará, ele varia a ordem de suas visitas. De quantas formas diferentes esse fiscal pode organizar o calendário de visita mensal a essas empresas? a) 180 b) 120 c) 100 d) 48 e) 24 23. (Puccamp) O número de anagramas da palavra EXPLODIR, nos quais as vogais aparecem juntas, é a) 360 b) 720 c) 1.440 d) 2.160 e) 4.320

24. (Uff) Cinco casais vão-se sentar em um banco de 10 lugares, de modo que cada casal permaneça sempre junto ao sentar-se. Determine de quantas maneiras distintas todos os casais podem, ao mesmo tempo, sentar-se no banco. 25. (Uel) Considere todos os números inteiros positivos que podem ser escritos permutando-se os algarismos do número 2341. Quantos dos números considerados são menores que 2341? a) 9 b) 15 c) 27 d) 84 e) 120 26. (Ufmg) Um clube resolve fazer uma Semana de Cinema. Para isso, os organizadores escolhem sete filmes, que serão exibidos um por dia. Porém, ao elaborar a programação, eles decidem que três desses filmes, que são de ficção científica, devem ser exibidos em dias consecutivos. Nesse caso, o número de maneiras DIFERENTES de se fazer a programação dessa semana é a) 144 b) 576 c) 720 d) 1040 27. (Unirio) Um jogo é formado por 20 pontos, conforme a figura anterior. Calcule: a) o número total de possibilidade para "caminhar" de A a C, sabendo-se que só pode haver movimento na horizontal (da esquerda para a direita) ou na vertical (de cima para baixo), um espaço entre dois pontos de cada vez; b) a probabilidade de "caminhar" de A a C, passando por B, seguindo as regras do item a. 28. (Ufmg) Um aposentado realiza diariamente, de segunda a sexta-feira, estas cinco atividades: a) leva seu neto Pedrinho, às 13 horas, para a escola; b) pedala 20 minutos na bicicleta ergométrica;

c) passeia com o cachorro da família; d) pega seu neto Pedrinho, às 17 horas, na escola; e) rega as plantas do jardim de sua casa. Cansado, porém, de fazer essas atividades sempre na mesma ordem, ele resolveu que, a cada dia, vai realizálas em uma ordem diferente. Nesse caso, o número de maneiras possíveis de ele realizar essas cinco atividades, EM ORDEM DIFERENTE, é a) 24 b) 60 c) 72 d) 120 29. (Ufpr) Um grupo de 8 pessoas vai entrar em um veículo no qual existem 3 lugares voltados para trás e 5 lugares voltados para frente. No grupo, há 2 pessoas que preferem bancos voltados para trás, 3 pessoas que preferem bancos voltados para frente e as demais não têm preferência. O número de possibilidades para a ocupação dos lugares pelas 8 pessoas é: (01) 2160, se forem respeitadas as preferências. (02) 40320, se não forem consideradas as preferências. (08) 720, se forem respeitadas as preferências. (16) 20160, se não forem consideradas as preferências. (32) 180, se forem respeitadas as preferências. Soma ( ) 30. (Unesp) Quatro amigos, Pedro, Luísa, João e Rita, vão ao cinema, sentando-se em lugares consecutivos na mesma fila. O número de maneiras que os quatro podem ficar dispostos de forma que Pedro e Luísa fiquem sempre juntos e João e Rita fiquem sempre juntos é a) 2. b) 4. c) 8. d) 16. e) 24. 31. (Ufsm) De quantas maneiras distintas podem-se alinhar cinco estacas azuis idênticas, uma vermelha e uma branca? a) 12 b) 30 c) 42 d) 240 e) 5040 32. (Uel) Considere o conjunto A={1, 2, 3, 4}. Sendo m o número de todas as permutações simples que podem ser feitas com os elementos de A e sendo n o número de todos os subconjuntos de A, então: a) m < n b) m > n

c) m = n + 1 d) m = n + 2 e) m = n + 3 33. (Ufes) De quantas maneiras 10 clientes de um banco podem se posicionar na fila única dos caixas de modo que as 4 mulheres do grupo fiquem juntas? a) 4! 7! b) 5! 6! c) 6 6! d) 10 6! e) 4! + 10! 34. (Ufrs) Cada cartela de uma coleção é formada por seis quadrados coloridos, justapostos como indica a figura abaixo. Em cada cartela, dois quadrados foram coloridos de azul, dois de verde e dois de rosa. A coleção apresenta todas as possibilidades de distribuição dessas cores nas cartelas nas condições citadas e não existem cartelas com a mesma distribuição de cores. Retirando-se ao acaso uma cartela da coleção, a probabilidade de que somente uma coluna apresente os quadrados de mesma cor é de a) 6 %. b) 36 % c) 40 % d) 48 % e) 90 % 35. (Uerj) Considere a equação abaixo, que representa uma superfície esférica, para responder à questão. (x - 1) + (y - 1) + (z - 1) = 9 Determine o total de pontos da superfície esférica acima com todas as coordenadas inteiras. 36. (Ufc) O número de maneiras segundo as quais podemos dispor 3 homens e 3 mulheres em três bancos fixos, de tal forma que em cada banco fique um casal, sem levar em conta a posição do casal no banco, é: a) 9 b) 18

c) 24 d) 32 e) 36 37. (Fgv) De quantas formas podemos permutar as letras da palavra ELOGIAR de modo que as letras A e R fiquem juntas em qualquer ordem? a) 360 b) 720 c) 1080 d) 1440 e) 1800 38. (Mackenzie) Num avião, uma fila tem 7 poltronas dispostas como na figura abaixo. Os modos de João e Maria ocuparem duas poltronas dessa fila, de modo que não haja um corredor entre eles, são em número de: a) 6 b) 7 c) 8 d) 10 e) 12 39. (Ufmg) Num grupo constituído de 15 pessoas, cinco vestem camisas amarelas, cinco vestem camisas vermelhas e cinco vestem camisas verdes. Deseja-se formar uma fila com essas pessoas de forma que as três primeiras vistam camisas de cores diferentes e que as seguintes mantenham a seqüência de cores dada pelas três primeiras. Nessa situação, de quantas maneiras distintas se pode fazer tal fila? a) 3(5!) b) (5!) c) (5!) (3!) d) 15!/(3!5!) 40. (Puc-rio) O produto n (n - 1) pode ser escrito, em termos de fatoriais, como:

a) n! - (n - 2)! b) n!/(n - 2)! c) n! - (n - 1)! d) n!/[2(n - 1)!] e) (2n)!/[n!(n - 1)!] 41. (Unicamp) Considere o conjunto dos dígitos {1, 2, 3,..., 9} e forme com eles números de nove algarismos distintos. a) Quantos desses números são pares? b) Escolhendo-se ao acaso um dos números do item (a), qual a probabilidade de que este número tenha exatamente dois dígitos ímpares juntos? 42. (Uff) Três ingleses, quatro americanos e cinco franceses serão dispostos em fila (dispostos em linha reta) de modo que as pessoas de mesma nacionalidade estejam sempre juntas. De quantas maneiras distintas a fila poderá ser formada de modo que o primeiro da fila seja um francês? 43. (Fuvest) Quantos são os números inteiros positivos de 5 algarismos que não têm algarismos adjacentes iguais? a) 5ª. b) 9 8. c) 8 9. d) 8. e) 9. 44. (Ita) Considere todos os números de cinco algarismos formados pela justaposição de 1, 3, 5, 7 e 9 em qualquer ordem, sem repetição. A soma de todos esses números está entre: a) 5 10 e 6 10 b) 6 10 e 7 10 c) 7 10 e 8 10 d) 9 10 e 10 10 e) 10 10 e 11 10 45. (Fuvest) Uma caixa automática de banco só trabalha com notas de 5 e 10 reais. Um usuário deseja fazer um saque de R$100,00. De quantas maneiras diferentes a caixa eletrônica poderá fazer esse pagamento? a) 5. b) 6. c) 11. d) 15. e) 20. 46. (Unicamp) Sabendo que números de telefone não começam com 0 nem com 1, calcule quantos diferentes números de telefone podem ser formados com 7 algarismos. 47. (Fuvest) Considere todas as trinta e duas seqüências, com cinco elementos cada uma, que podem ser formadas com os algarismos 0 e 1. Quantas dessas seqüências possuem pelo menos três zeros em posições consecutivas? a) 3

b) 5 c) 8 d) 12 e) 16 48. (Ufes) Um "Shopping Center" possui 4 portas de entrada para o andar térreo, 5 escadas rolantes ligando o térreo ao primeiro pavimento e 3 elevadores que conduzem do primeiro para o segundo pavimento. De quantas maneiras diferentes uma pessoa, partindo de fora do "Shopping Center" pode atingir o segundo pavimento usando os acessos mencionados? a) 12 b) 17 c) 19 d) 23 e) 60 49. (Ufpe) Na figura a seguir temos um esboço de parte do centro da cidade do Recife com suas pontes. As setas indicam o sentido do fluxo de tráfego de veículos. De quantas maneiras, utilizando apenas o esboço, poderá uma pessoa ir de carro do ponto A ao ponto B (marco zero) e retornar ao ponto de partida passando exatamente por três pontes distintas? a) 8 b) 13 c) 17 d) 18 e) 20 50. (Puccamp) Seja o conjunto A= {1, 2, 3, 5, 7, 11, 13, 17, 19}. Quantos produtos de 4 fatores distintos, escolhidos entre os elementos de A, contêm o fator 5 e são pares? a) 21 b) 24 c) 35 d) 42 e) 70 51. (Uel) Para responder a certo questionário, preenche-se o cartão apresentado a seguir, colocando-se um "x"

em uma só resposta para cada questão. De quantas maneiras distintas pode-se responder a esse questionário? a) 3 125 b) 120 c) 32 d) 25 e) 10 52. (Ufmg) Considere os conjuntos P={2,3,5,7,11,13,17,19} e Q={23,29,31,37,41,43}. a) Determine o número total de produtos distintos de seis fatores distintos, que podem ser obtidos, escolhendose três fatores entre os elementos do conjunto P e três fatores entre os elementos do conjunto Q. b) Determine quantos dos produtos obtidos no item (a) são divisíveis, pelo menos, por um dos números 2 ou 29. 53. (Unesp) Uma pessoa quer trocar duas cédulas de 100 reais por cédulas de 5,10 e 50 reais, recebendo cédulas de todos esses valores e o maior número possível de cédulas de 50 reais. Nessas condições, qual é o número mínimo de cédulas que ela poderá receber? a) 8. b) 9. c) 10. d) 11. e) 12. 54. (Unesp) No código Morse, usado em telegrafia, as letras e os algarismos são representados por seqüências cujos termos podem ser traços ou pontos, permitindo-se repetições: A =.-, B = -..., 2 =..---, etc. Usando-se seqüências de no mínimo 2 e no máximo 5 termos, podem-se representar as 26 letras do alfabeto e os 10 algarismos? Justifique. 55. (Unaerp) Uma fechadura de segredo possui 4 contadores que podem assumir valores de 0 a 9 cada um, de tal sorte que, ao girar os contadores, esses números podem ser combinados, para formar o segredo e abrir a fechadura. De quantos modos esses números podem ser combinados para se tentar encontrar o segredo? a) 10.000 b) 64.400 c) 83.200 d) 126

e) 720 56. (Unaerp) Numa urna escura, existem 7 meias pretas e 9 meias azuis, o número mínimo de retiradas ao acaso (sem reposição) para que se tenha, certamente, um par da mesma cor é: a) 2 b) 3 c) 8 d) 9 e) 10 57. (Ufpe) Uma prova de matemática é constituída de 16 questões do tipo múltipla escolha, tendo cada questão 5 alternativas distintas. Se todas as 16 questões forem respondidas ao acaso, o número de maneiras distintas de se preencher o cartão de respostas será: a) 80 b) 16 c) 5 d) 16 e) 5 58. (Pucsp) Para ter acesso a certo arquivo de um microcomputador, o usuário deve realizar duas operações: digitar uma senha composta por três algarismos distintos e, se a senha digitada for aceita, digitar uma segunda senha, composta por duas letras distintas, escolhidas num alfabeto de 26 letras. Quem não conhece as senhas pode fazer tentativas. O número máximo de tentativas necessárias para ter acesso ao arquivo é a) 4120 b) 3286 c) 2720 d) 1900 e) 1370 59. (Fuvest) Numa primeira fase de um campeonato de xadrez cada jogador joga uma vez contra todos os demais. Nessa fase foram realizados 78 jogos. Quantos eram os jogadores? a) 10 b) 11 c) 12 d) 13 e) 14 60. (Cesgranrio) As novas placas dos veículos são formadas por três letras seguidas por quatro algarismos, como por exemplo GYK 0447. O número de placas diferentes que podem ser construídas é, em milhões de placas, aproximadamente igual a: a) 1 b) 25 c) 75 d) 100 e) 175

61. (Cesgranrio) No código Morse, as letras são. e -, e as palavras contêm de uma a quatro letras. O número de palavras distintas que podem ser formadas neste código é de: a) 16 b) 20 c) 24 d) 26 e) 30 62. (Mackenzie) Se x é inteiro tal que x < 10, então o número de formas de se escolherem três valores de x com soma par é: a) 527 b) 489 c) 432 d) 405 e) 600 63. (Unesp) Considere o conjunto A = {1, 2, 3, 4, 5}. Quantos números de dois algarismos distintos é possível formar com os elementos do conjunto A, de modo que a) a soma dos algarismos seja ímpar? b) a soma dos algarismos seja par? 64. (Ufrj) Quantos números de 4 algarismos podemos formar nos quais o algarismo 2 aparece ao menos uma vez? 65. (Fuvest) Um estudante terminou um trabalho que tinha n páginas. Para numerar todas essas páginas, iniciando com a página 1, ele escreveu 270 algarismos. Então o valor de n é: a) 99 b) 112 c) 126 d) 148 e) 270 66. (Ufrj) Um construtor dispõe de quatro cores (verde, amarelo, cinza e bege) para pintar cinco casas dispostas lado a lado. Ele deseja que cada casa seja pintada com apenas uma cor e que duas casas consecutivas não possuam a mesma cor. Por exemplo, duas possibilidades diferentes de pintura seriam:

Determine o número de possibilidades diferentes de pintura. 67. (Fatec) A abertura de certo tipo de mala depende de dois cadeados. Para abrir o primeiro, é preciso digitar sua senha, que consiste num número de três algarismos distintos escolhidos de 1 a 9. Aberto o primeiro cadeado, deve-se abrir o segundo, cuja senha obedece às mesmas condições da primeira. Nessas condições, o número máximo de tentativas necessário para abrir a mala é: a) 10024 b) 5040 c) 2880 d) 1440 e) 1008 68. (Ufmg) Observe o diagrama. O número de ligações distintas entre X e Z é a) 39 b) 41 c) 35 d) 45 69. (Mackenzie) Cada um dos círculos da figura a seguir deverá ser pintado com uma cor, escolhida dentre quatro disponíveis. Sabendo que dois círculos consecutivos nunca serão pintados com a mesma cor, então o

número de formas de se pintar os círculos é: a) 7 b) 7!. 4! c) 3. 7! d) 4 e) 2916 70. (Unb) Uma sala tem 5 lâmpadas, Ø, Ø, ؃, Ø e Ø, que podem estar acesas ou apagadas, independentemente uma das outras. Existem, assim, várias combinações possíveis de lâmpadas acesas. Cada uma dessas combinações é identificada com um conjunto S diferente. Por exemplo, S = {؃, Ø } corresponde ao caso em que apenas ؃ e Ø estão acesas e S=¹, quando nenhuma lâmpada está acesa. Considere P o conjunto formado por todos os possíveis conjuntos de lâmpadas acesas. Define-se, então, no conjunto P, a seguinte função: f(s) = n n nƒn n, em que n = 1, se Ø Æ S, e n = 0, se Ø È S. Com relação à situação apresentada, julgue os itens adiante. (0) Se S = {؃, Ø }, então f(s) = 00101. (1) f (¹) = 00001 (2) Se f (S) = 10011, então S = {Ø, Ø, Ø }. (3) A função f estabelece uma correspondência biunívoca entre P e um conjunto com 32 elementos. 71. (Unicamp) Em uma festa para calouros estão presentes 250 calouros e 350 calouras. Para dançar, cada calouro escolhe uma caloura ao acaso formando um par. Pergunta-se: a) Quantos pares podem ser formados? b) Qual a probabilidade de que uma determinada caloura NÃO ESTEJA dançando no momento em que todos os 250 calouros estão dançando? 72. (Ufrs) Na figura seguinte, um caminho que liga os pontos A e B é qualquer seqüência de segmentos consecutivos cujo primeiro segmento tem origem A e o último segmento tem extremidade B.

Quantos caminhos diferentes com segmentos não repetidos ligam os pontos A e B? a) 4 b) 8 c) 16 d) 20 e) 32 73. (Unirio) Uma família formada por 3 adultos e 2 crianças vai viajar num automóvel de 5 lugares, sendo 2 na frente e 3 atrás. Sabendo-se que só 2 pessoas podem dirigir e que as crianças devem ir atrás e na janela, o número total de maneiras diferentes através das quais estas 5 pessoas podem ser posicionadas, não permitindo crianças irem no colo de ninguém, é igual a: a) 120 b) 96 c) 48 d) 24 e) 8 74. (Ita) Listando-se em ordem crescente todos os números de cinco algarismos distintos, formados com os elementos do conjunto {1, 2, 4, 6, 7}, o número 62417 ocupa o n-ésimo lugar. Então n é igual a: a) 74 b) 75 c) 79 d) 81 e) 92 75. (Ufes) As senhas de acesso a um banco de dados de uma empresa são formadas por uma seqüência de cinco caracteres. Quantas senhas podem ser formadas se dois desses caracteres devem ser letras do alfabeto inglês (que tem 26 letras) e três devem ser dígitos (símbolos 0,1,2,3,4,5,6,7,8,9)? 76. (Uece) Quantos números ímpares, cada um com três algarismos, podem ser formados com os algarismos 2,3,4,6 e 7, se a repetição de algarismos é permitida? a) 60 b) 50 c) 40 d) 30

77. (Mackenzie) Utilizando-se, necessariamente, os algarismos 1 e 2, podemos formar K números distintos com 5 algarismos. Então K vale: a) 30 b) 48 c) 64 d) 72 e) 78 78. (Unicamp) Em um certo jogo são usadas fichas de cores e valores diferentes. Duas fichas brancas equivalem a três fichas amarelas, uma ficha amarela equivale a cinco fichas vermelhas, três fichas vermelhas equivalem a oito fichas pretas e uma ficha preta vale quinze pontos. a) Quantos pontos vale cada ficha? b) Encontre todas as maneiras possíveis para totalizar 560 pontos, usando, em cada soma, no máximo cinco fichas de cada cor. 79. (Unesp) Um turista, em viagem de férias pela Europa, observou pelo mapa que, para ir da cidade A à cidade B, havia três rodovias e duas ferrovias e que, para ir de B até uma outra cidade, C, havia duas rodovias e duas ferrovias. O número de percursos diferentes que o turista pode fazer para ir de A até C, passando pela cidade B e utilizando rodovia e trem obrigatoriamente, mas em qualquer ordem, é: a) 9. b) 10. c) 12. d) 15. e) 20. 80. (Ita) Quantos números de seis algarismos distintos podemos formar usando os dígitos 1, 2, 3, 4, 5 e 6, nos quais o 1 e o 2 nunca ocupam posições adjacentes, mas o 3 e o 4 sempre ocupam posições adjacentes? a) 144. b) 180. c) 240. d) 288. e) 360. 81. (Unirio) Com os algarismos de 1 a 9, o total de números de 4 algarismos diferentes, formados por 2 algarismos pares e 2 ímpares, é igual a: a) 126 b) 504 c) 720 d) 1440 e) 5760 82. (Unirio) Uma pessoa quer comprar 6 empadas numa lanchonete. Há empadas de camarão, frango, legumes

e palmito. Sabendo-se que podem ser compradas de zero a 6 empadas de cada tipo, de quantas maneiras diferentes esta compra pode ser feita? 83. (Uerj) Trechos complementares de duas cadeias de nucleotídeos de uma molécula de DNA. Observe que uma cadeia se dispõe em relação à outra de modo invertido (Adaptado de LOPES. Sônia. "BIO 3". São Paulo. Saraiva,1993.) Considere as seguintes condições para a obtenção de fragmentos de moléculas de DNA: - todos os fragmentos devem ser formados por 2 pares de bases nitrogenadas; - cada fragmento deve conter as quatro diferentes bases nitrogenadas. O número máximo de fragmentos diferentes que podem ser assim obtidos corresponde a: a) 4 b) 8 c) 12 d) 24 84. (Ita) Considere os números de 2 a 6 algarismos distintos formados utilizando-se apenas 1, 2, 4, 5, 7 e 8. Quantos destes números são ímpares e começam com um dígito par? a) 375 b) 465 c) 545 d) 585 e) 625 85. (Uerj) Observe o resultado de uma enquete do site britânico CentralNic.

a) Determine, dentre os usuários de computador que participaram da enquete, o número daqueles que possuem senha na categoria familiar. b) Admita que, para criar uma senha da categoria criptográfica, o usuário deva utilizar duas vogais seguidas de quatro algarismos distintos. Calcule o número de senhas criptográficas diferentes que podem ser formadas. 86. (Fatec) Para participar de um campeonato de futebol, o técnico da FATEC selecionou 22 jogadores, 2 para cada posição. O número de maneiras distintas que o técnico pode formar esse time de modo que nenhum jogador atue fora de sua posição é: a) 2541 b) 2048 c) 462 d) 231 e) 44 87. (Puc-rio) A senha de acesso a um jogo de computador consiste em quatro caracteres alfabéticos ou numéricos, sendo o primeiro necessariamente alfabético. O número de senhas possíveis será, então: a) 36. b) 10 36. c) 26 36. d) 26. e) 10 26. 88. (Unicamp) Em Matemática, um número natural a é chamado palíndromo se seus algarismos, escritos em ordem inversa, produzem o mesmo número. Por exemplo, 8, 22 e 373 são palíndromos. Pergunta-se: a) Quantos números naturais palíndromos existem entre 1 e 9.999? b) Escolhendo-se ao acaso um número natural entre 1 e 9.999, qual é a probabilidade de que esse número seja palíndromo? Tal probabilidade é maior ou menor que 2%? Justifique sua resposta. 89. (Ufsm) Analise as afirmativas a seguir. I. O número de comissões de 3 pessoas que se pode formar num grupo de 5 pessoas é 60.

II. Com os dígitos 1, 2, 3, 4 e 5, podem-se formar 125 números de 3 algarismos. III. A quantidade de 7 bombons iguais pode ser repartida de 6 maneiras diferentes, em duas caixas idênticas, sem que nenhuma caixa fique vazia. Está(ão) correta(s) a) apenas I. b) apenas II. c) apenas I e III. d) apenas II e III. e) I, II e III. 90. (Pucpr) Durante um exercício da Marinha de Guerra, empregaram-se sinais luminosos para transmitir o código Morse. Este código só emprega duas letras (sinais): ponto e traço. As palavras transmitidas tinham de uma a seis letras. O número de palavras que podiam ser transmitidas é: a) 30 b) 15 c) 720 d) 126 e) 64 91. (Puc-rio) A figura dos cinco discos ligados dois a dois, emblema oficial dos jogos olímpicos, delimita nove regiões limitadas do plano. Uma figura análoga, com um número ímpar 2n+1 de discos, delimitará um número de regiões limitadas de: a) 2n+1. b) 3n+1. c) 4n+1. d) 5n+1. e) (n-1). 92. (Ufrrj) Carlos, aluno de dança de salão da "Academia do Júlio" e freqüentador assíduo de bailes, ficou muito entusiasmado com os passos do "fox", do "bolero" e do "samba". Resolveu, então, criar uma nova dança chamada "sambolerox", na qual existem passos das três danças que o entusiasmaram. Carlos teve a idéia de formar um grupo de passos, com 5 passos dos nove conhecidos no "fox", 4 dos seis conhecidos no "bolero" e 3 dos cinco conhecidos no "samba". Com um grupo formado, Carlos inventou seus passos de "sambolerox", misturando 3 passos, um de cada estilo de dança, sem se preocupar com a ordem dos mesmos. O número de grupos que Carlos poderia ter formado e o número de seqüência de passos de "sambolerox" em cada grupo são, respectivamente, a) 18900 grupos e 60 passos de "sambolerox" por grupo. b) 60900 grupos e 12 passos de "sambolerox" por grupo. c) 20 grupos e 60 passos de "sambolerox" por grupo. d) 60900 grupos e 60 passos de "sambolerox" por grupo. e) 20 grupos e 18900 passos de "sambolerox" por grupo. 93. (Ufscar) Considere a figura a seguir. O número de caminhos mais curtos, ao longo das arestas dos cubos, ligando os pontos A e B, é. a) 2. b) 4.

c) 12. d) 18. e) 36. 94. (Pucpr) Dos anagramas da palavra CASTELO, quantos têm as vogais em ordem alfabética e juntas? a) 180 b) 144 c) 120 d) 720 e) 360 95. (Ufal) Com os elementos do conjunto {1, 2, 3, 4, 5, 6, 7} formam-se números de 4 algarismos distintos. Quantos dos números formados NÃO são divisíveis por 5? a) 15 b) 120 c) 343 d) 720 e) 840 96. (Ufrn) A figura a seguir representa um mapa das estradas que interligam as comunidades A, B, C, D, E e F. Assinale a opção que indica quantos percursos diferentes existem para se chegar à comunidade D (partindo-se

de A), sem que se passe mais de uma vez numa mesma comunidade, em cada percurso. a) 72 b) 12 c) 18 d) 36 97. (Ufpi) Escrevendo-se em ordem decrescente todos os números de cinco algarismos distintos formados pelos algarismos 3, 5, 7, 8 e 9, a ordem do número 75389 é: a) 54 b) 67 c) 66 d) 55 e) 56 98. (Ufpe) A ilustração abaixo é do mapa de uma região onde estão indicadas as cidades A, B, C, D, E, F e as estradas que ligam estas cidades. Um vendedor deseja empreender uma viagem partindo de A para visitar cada uma das outras cidades, exatamente uma vez, e voltar para A. Acerca dos trajetos possíveis de tais viagens, qual das seguintes afirmações é incorreta? a) Existem 6 trajetos para o vendedor. b) Se ele começa visitando D existe um único trajeto. c) Se ele primeiro visita B então existem três trajetos. d) Se ele começa visitando E existe um único trajeto. e) Existem três trajetos em que ele visita C antes de B. 99. (Cesgranrio) Na figura a seguir, temos uma "malha" formada por 16 retângulos iguais. Uma partícula deve ir do ponto P ao ponto M, percorrendo a menor distância possível, deslocando-se somente por sobre as linhas da figura e com velocidade média de 2cm/s. Como exemplo, temos, a seguir, uma representação de um desses caminhos.

Quantos são os possíveis caminhos que tal partícula poderá percorrer? a) 256 b) 128 c) 120 d) 70 e) 56 100. (Ufes) Em um grupo de 60 mulheres e 40 homens existem exatamente 25 mulheres e 12 homens que tocam algum instrumento musical. De quantas maneiras podemos formar uma dupla de um homem e uma mulher de modo que pelo menos uma das pessoas da dupla toque algum instrumento? a) 300 b) 720 c) 1.000 d) 1.420 e) 1.720 101. (Uff) O estudo da genética estabelece que, com as bases adenina (A), timina (T), citosina (C) e guanina (G), podem-se formar, apenas, quatro tipos de pares: A-T, T-A, C-G e G-C. Certo cientista deseja sintetizar um fragmento de DNA com dez desses pares, de modo que: - dois pares consecutivos não sejam iguais; - um par A-T não seja seguido por um par T-A e vice-versa; - um par C-G não seja seguido por um par G-C e vice-versa.

Sabe-se que dois fragmentos de DNA são idênticos se constituídos por pares iguais dispostos na mesma ordem. Logo, o número de maneiras distintas que o cientista pode formar esse fragmento de DNA é: a) 2 b) 2 c) 2 10 d) 2 e) 2 10 102. (Uff) Diogo precisa que sua mulher, Cristina, retire dinheiro no caixa eletrônico e manda entregar-lhe o cartão magnético, acreditando que ela saiba qual é a senha. Cristina, entretanto, recorda que a senha, composta de seis algarismos distintos, começa por 75 - os dois algarismos finais indicativos do ano em que se casou com Diogo; lembra, ainda, que o último algarismo da senha é ímpar. Determine o tempo máximo necessário para Cristina descobrir a senha da conta de Diogo, caso ela gaste 10 segundos no teste de cada uma das possíveis senhas. 103. (Ufmg) Em uma lanchonete, os sorvetes são divididos em três grupos: o vermelho, com 5 sabores; o amarelo, com 3 sabores; e o verde, com 2 sabores. Pode-se pedir uma casquinha com 1, 2 ou 3 bolas, mas cada casquinha não pode conter 2 bolas de um mesmo grupo. O número de maneiras distintas de se pedir uma casquinha é a) 71 b) 86 c) 131 d) 61 104. (Ufc) A quantidade de números inteiros, positivos e ímpares, formados por três algarismos distintos, escolhidos dentre os algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9, é igual a: a) 320 b) 332 c) 348 d) 360 e) 384 105. (Ufes) Num aparelho telefônico, as dez teclas numeradas estão dispostas em fileiras horizontais, conforme indica a figura a seguir. Seja N a quantidade de números de telefone com 8 dígitos, que começam pelo dígito 3 e terminam pelo dígito zero, e, além disso, o 2Ž e o 3Ž dígitos são da primeira fileira do teclado, o 4Ž e o 5Ž dígitos são da segunda fileira, e o 6Ž e o 7Ž são da terceira fileira.

O valor de N é a) 27 b) 216 c) 512 d) 729 e) 1.331 106. (Ufrn) Um fenômeno raro em termos de data ocorreu às 20h02min de 20 de fevereiro de 2002. No caso, 20:02 20/02 2002 forma uma seqüência de algarismos que permanece inalterada se reescrita de trás para a frente. A isso denominamos capicua. Desconsiderando as capicuas começadas por zero, a quantidade de capicuas formadas com cinco algarismos não necessariamente diferentes é a) 120 b) 720 c) 900 d) 1000 107. (Uel) Quando os deputados estaduais assumiram as suas funções na Câmara Legislativa, tiveram que responder a três questionamentos cada um. No primeiro, cada deputado teria que escolher um colega para presidir os trabalhos, dentre cinco previamente indicados. No segundo, deveria escolher, com ordem de preferência, três de seis prioridades previamente definidas para o primeiro ano de mandato. No último, deveria escolher dois dentre sete colegas indicados para uma reunião com o governador. Considerando que todos responderam a todos os questionamentos, conforme solicitado, qual o número de respostas diferentes que cada deputado poderia dar? a) 167 b) 810 c) 8400 d) 10500 e) 12600 108. (Uel) Um número capicua é um número que se pode ler indistintamente em ambos os sentidos, da esquerda para a direita ou da direita para a esquerda (exemplo: 5335). Em um hotel de uma cidade, onde os jogadores de um time se hospedaram, o número de quartos era igual ao número de capicuas pares de 3 algarismos. Quantos eram os

quartos do hotel? a) 20 b) 40 c) 80 d) 90 e) 100 109. (Unesp) Dado os números n e j Æ N, a) calcule o valor de n de modo a satisfazer (n + 1)!/n! = 9. b) Sabendo-se que bœ = [(j + 1)!/(j + 2)!] (j - 4), calcule b ƒ. 110. (Ufpe) De quantas maneiras podemos classificar os 4 empregados de uma micro-empresa nas categorias A ou B, se um mesmo empregado pode pertencer às duas categorias? 111. (Ufpe) O mapa abaixo representa a divisão do Brasil em suas regiões. O mapa deve ser colorido de maneira que regiões com uma fronteira em comum sejam coloridas com cores distintas. Determine o número (n) de maneiras de se colorir o mapa, usando-se 5 cores. Indique n/10. 112. (Unesp) Um certo tipo de código usa apenas dois símbolos, o número zero (0) e o número um (1) e, considerando esses símbolos como letras, podem-se formar palavras. Por exemplo: 0, 01, 00, 001 e 110 são algumas palavras de uma, duas e três letras desse código. O número máximo de palavras, com cinco letras ou menos, que podem ser formadas com esse código é: a) 120. b) 62. c) 60. d) 20. e) 10. 113. (Enem) No Nordeste brasileiro, é comum encontrarmos peças de artesanato constituídas por garrafas preenchidas com areia de diferentes cores, formando desenhos. Um artesão deseja fazer peças com areia de cores cinza, azul, verde e amarela, mantendo o mesmo desenho, mas variando as cores da paisagem (casa, palmeira e fundo), conforme a figura.

O fundo pode ser representado nas cores azul ou cinza; a casa, nas cores azul, verde ou amarela; e a palmeira, nas cores cinza ou verde. Se o fundo não pode ter a mesma cor nem da casa nem da palmeira, por uma questão de contraste, então o número de variações que podem ser obtidas para a paisagem é a) 6. b) 7. c) 8. d) 9. e) 10. 114. (Uerj) Para montar um sanduíche, os clientes de uma lanchonete podem escolher: - um dentre os tipos de pão: calabresa, orégano e queijo; - um dentre os tamanhos: pequeno e grande; - de um até cinco dentre os tipos de recheio: sardinha, atum, queijo, presunto e salame, sem possibilidade de repetição de recheio num mesmo sanduíche. Calcule: a) quantos sanduíches distintos podem ser montados; b) o número de sanduíches distintos que um cliente pode montar, se ele não gosta de orégano, só come sanduíches pequenos e deseja dois recheios em cada sanduíche. 115. (Ufrj) A seqüência 1, 3, 5, 9, 13, 18, 22 é uma das possibilidades de formar uma seqüência de sete números, começando em 1 e terminando em 22, de forma que cada número da seqüência seja maior do que o anterior e que as representações de dois números consecutivos na seqüência estejam conectadas no diagrama a seguir por um segmento.

a) Quantas seqüências diferentes, com essas características, podemos formar? b) Quantas dessas seqüências incluem o número 13? 116. (Ufrs) Para colocar preço em seus produtos, uma empresa desenvolveu um sistema simplificado de código de barras formado por cinco linhas separadas por quatro espaços. Podem ser usadas linhas de três larguras possíveis e espaços de duas larguras possíveis. O número total de preços que podem ser representados por esse código é a) 1440. b) 2880. c) 3125. d) 3888. e) 4320. 117. (Ufsm) Assinale V nas afirmativas verdadeiras e F nas falsas. ( ) Na placa da figura, o algarismo da unidade é igual ao da centena, bem como o algarismo da dezena é igual ao do milhar. Assim, a quantidade de placas distintas com essa característica e com as letras PN nessa ordem é 100. ( ) Considerando placas formadas por 3 letras e 4 algarismos, a quantidade de placas distintas que contêm apenas as letras P e N e que têm os algarismos da unidade e da centena iguais é 6.10. ( ) Considerando placas formadas por 3 letras e 4 algarismos, a quantidade de placas distintas que contêm apenas as letras P e N e que têm os algarismos da dezena e do milhar iguais é C(3,2).A(4,2).

A seqüência correta é a) F - F - V. b) V - F - V. c) V - V - F. d) F - V - F. e) F - F - F. 118. (Fgv) Em uma gaveta de armário de um quarto escuro há 6 camisetas vermelhas, 10 camisetas brancas e 7 camisetas pretas. Qual é o número mínimo de camisetas que se deve retirar da gaveta, sem que se vejam suas cores, para que: a) Se tenha certeza de ter retirado duas camisetas de cores diferentes. b) Se tenha certeza de ter retirado duas camisetas de mesma cor. c) Se tenha certeza de ter retirado pelo menos uma camiseta de cada cor. 119. (Ufrj) Um marceneiro cortou um cubo de madeira maciça pintado de azul em vários cubos menores da seguinte forma: dividiu cada aresta em dez partes iguais e traçou as linhas por onde serrou, conforme indica a figura a seguir. a) Determine o número de cubos menores que ficaram sem nenhuma face pintada de azul. b) Se todos os cubos menores forem colocados em um saco, determine a probabilidade de ser retirar, ao acaso, um cubo com pelo menos duas faces azuis. 120. (Unb) Um jogo para ser disputado entre duas pessoas utiliza dois tabuleiros, uma caixa - C1 - de pinos em forma de triângulo, losango, círculo, pentágono, hexágono e estrela, e uma segunda caixa - C2 - de pinos nas cores branca e preta. O tabuleiro I possui 11 fileiras (colunas) com 4 posições cada uma. À exceção da primeira, a cada fileira do tabuleiro I corresponde um conjunto de quatro posições no tabuleiro II. O jogador A escolhe 4 pinos de formatos distintos da caixa C1 e os coloca na primeira fileira do tabuleiro I. A escolha do jogador A não é revelada ao jogador B, ou seja, a primeira fileira do tabuleiro I é mantida escondida. O objetivo do jogador B é reproduzir a fileira escondida: formatos e respectivas posições dos pinos na fileira. Para isso, o jogado B retira 4 pinos de formatos distintos da caixa C1 e os coloca na segunda fileira do tabuleiro I. No tabuleiro II, em resposta a essa tentativa, o jogador A indica, fielmente, cada acerto de formato do pino que não esteja em posição correta, atribuindo um pino branco, retirado da caixa C2; cada acerto simultâneo de formato e posição na fileira, atribuindo um pino preto, retirado da caixa C2; e, para cada pino cujo formato não corresponda a nenhum dos quatro da fileira escondida, o jogador A deixa uma posição sem pino no tabuleiro II.

Essa sistemática repete-se a cada palpite de B, o qual tem até 10 chances para reproduzir a fileira de pinos escondida. Caso consiga, B terá vencido a partida. O exemplo abaixo ilustra as duas primeiras jogadas de um jogador B. A respeito dessa situação, julgue os seguintes itens. (1) O número total de maneiras como o jogador A pode compor a fileira escondida é superior a 480. (2) A função que a cada palpite do jogador B associa a resposta do jogador A é uma função injetora. (3) Em sua primeira jogada, o jogador B tem mais de 50% de chance de acertar pelo menos três formatos dos pinos. (4) Se, como resposta à 5 jogada do jogador B, o jogador A lhe atribuir somente 3 pinos pretos, então o jogador B terá informações suficientes para vencer o jogo. 121. (Ufg) A figura a seguir representa uma bandeira com 4 listras. Dispondo-se de 4 cores distintas, deseja-se pintar todas as listras, de forma que listras vizinhas tenham cores diferentes. a) De quantas maneiras distintas a bandeira pode ser pintada? Justifique. b) Escolhendo-se aleatoriamente uma das formas possíveis de pintar a bandeira, qual é a probabilidade de que a forma escolhida seja uma que contenha as 4 cores? 122. (Unb) Uma empresa realiza um processo seletivo de entrevistas para selecionar um único candidato para

nela ocupar uma certa posição estratégica. Apresentam-se para a seleção n concorrentes, sendo nµ3. Três entrevistadores deverão classificar os candidatos de acordo com a sua adequação para a função. Cada entrevistador deverá listar os n candidatos em ordem decrescente de adequação, sendo o primeiro listado aquele que possuir o melhor perfil para exercer a função. As três listas elaboradas pelos entrevistadores, nelas devidamente identificados, constituirão o relatório a ser encaminhado à direção da empresa, que adota o seguinte critério: um candidato será contratado se for classificado em primeiro lugar por pelo menos dois dos entrevistadores. Com base nessas informações, julgue os itens que se seguem. (1) A probabilidade de se ter dois candidatos distintos selecionados para possível contratação é igual a 0,5. (2) A quantidade total de possíveis relatórios diferentes que poderão ser encaminhados à direção da empresa é igual a n!. (3) A quantidade total possíveis relatórios diferentes em que seriam listados em primeiro lugar candidatos distintos pelos entrevistadores é igual a n(n-1).(n-2).[(n-1)!]. (4) A quantidade total de possíveis relatórios diferentes que conduziriam à contratação de um dos candidatos é igual a (n!) -n(n-1).(n-2).[(n-1)!]. 123. (Enem) Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas em cada uma delas as letras T, V e E. As fichas encontram-se alinhadas em uma ordem qualquer. O participante deve ordenar as fichas a seu gosto, mantendo as letras voltadas para baixo, tentando obter a sigla TVE. Ao desvirá-las, para cada letra que esteja na posição correta ganhará um prêmio de R$200,00. A probabilidade de o PARTICIPANTE não ganhar qualquer prêmio é igual a: a) 0 b) 1/3 c) 1/4 d) 1/2 e) 1/6 124. (Mackenzie) Com as raízes da equação x - 4x + 5x - 2x = 0 formam-se k números de quatro algarismos. Então k vale: a) 27. b) 54. c) 81. d) 162. e) 12. 125. (Ufpr) A figura abaixo representa um esquema de 17 cm por 21 cm, elaborado como modelo para a confecção de uma colcha de retalhos de tecidos. As regiões indicadas na figura por A, B, C e D correspondem às cores dos tecidos a serem utilizados: A-verde; B-azul; C-amarela; D-branca. As demais regiões serão feitas com tecido de cor bege

Sobre esse esquema, é correto afirmar: (01) A área que corresponde ao tecido de cor verde é 128 cm. (02) O comprimento de um fio dourado a ser colocado no contorno externo do tecido de cor amarela é menor que 18Ë2cm. (04) A área correspondente ao tecido de cor branca é menor do que 20 cm. (08) Se o tamanho da colcha for de 1,70 m por 2,10 m e ela for confeccionada mediante uma ampliação do esquema, então, nessa ampliação, a área do tecido de cor azul será de 800 cm. (16) Para alterar a distribuição de cores no esquema, existem 16 possibilidades de troca daquelas mesmas 4 cores nas regiões A, B, C e D. Soma ( )

GABARITO 1. [C] 2. [E] 3. a) 158184000 b) 1/26 3,85 % 4. 5000 5. [B] 6. [B] 7. 2520 números e 1080 números pares 8. [A] 9. [C] 10. [E] 11. 150 caminhos 12. [C] 13. [E] 14. 24 15. [A] 16. [D] 17. a) 6 seqüências b) 48 seqüências 18. [D] 19. [D] 20. [C] 21. V V F

22. [B] 23. [E] 24. 3840 maneira distintas 25. [A] 26. [C] 27. a) 35 b) 18/35 28. [B] 29. 01 + 02 = 03 30. [C] 31. [C] 32. [B] 33. [A] 34. [C] 35. 30 pontos 36. [E] 37. [D] 38. [D] 39. [C] 40. [B] 41. a) 4.8! b) 1/14 42. 34.560 maneiras 43. [E]

44. [B] 45. [C] 46. 8 000 000. 47. [C] 48. [E] 49. [C] 50. [A] 51. [C] 52. a) 1120 b) 770 53. [B] 54. 60 55. [A] 56. [B] 57. [E] 58. [E] 59. [D] 60. [E] 61. [E] 62. [B] 63. a) 12 b) 8 64. 3168 números 65. [C] 66. 324 possibilidades

67. [E] 68. [B] 69. [E] 70. V F V V 71. a) 87 500 pares b) 2/7 72. [C] 73. [E] 74. [D] 75. 676.000 senhas 76. [B] 77. [A] 78. a) A branca vale 300, a amarela 200, a vermelha 40 e a preta 15. b) (1 branca, 1 amarela e 4 pretas) ou (1 branca, 5 vermelhas e 4 pretas) ou (2 amarelas e 4 vermelhas) 79. [B] 80. [A] 81. [D] 82. 84 83. [D] 84. [D] 85. a) 570 b) 126.000 86. [B]

87. [C] 88. a) 196 b) No intervalo entre 1 e 9.999 temos 9.997 números. P = 196/9.997 1,96 % Observação: Considerando que devam ser incluídos os extremos do intervalo, as respostas seriam: a) 198 b) 1,98 % 89. [B] 90. [D] 91. [C] 92. [A] 93. [E] 94. [C] 95. [D] 96. [C] 97. [C] 98. [D] 99. [D] 100. [D] 101. [A] 102. 1h45min 103. [A] 104. [A] 105. [D]

106. [C] 107. [E] 108. [B] 109. a) n = 8 b) b ƒ = 135 110. O número de maneiras de classificar os 4 empregados é 3.3.3.3=81. 111. n/10 = 54 112. [B] 113. [B] 114. a) 186 b) 20 115. a) 32 seqüências b) 12 seqüências 116. [D] 117. [C] 118. a) 11 b) 4 c) 18 119. a) 512 b) 10,4 % 120. F F V V 121. a) 108 b) 2/9 122. F F V V 123. [B] 124. [B]

125. 01 + 04 + 08 = 13