EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A
|
|
|
- Sebastiana Barbosa Salvado
- 7 Há anos
- Visualizações:
Transcrição
1 EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 07 01) f(x) = (x) + f(x) = 4x + f(x) g(x) = (x) g(x) = 4x = g(x) h(x) = (x) h(x) = 4x h(x) 0) Se é uma função linear, pode-se escreer como f(x) = a x. Se passa pelo ponto P(, 6), então, f( ) = 6. Assim: f( ) = 6 a ( ) = 6 a = 3 f(x) = 3x 03) Gráfico é uma reta, ou seja, é uma função afim. Assim, f(x) = ax + b. ( 1, ) f( 1) = a ( 1) + b = a + b = (5, 3) f(5) = 3 a 5 + b = 3 5a + b = 3
2 Resole-se então o sistema: a b 5a b 3 1 6a 1 a b b 6 6 Tem-se então que a função f(x) fica 1 13 f(x) x ) 1 t 1 a 1 t a 4 1 1t 1 4t t 7 anos AULA 08 01) Para uma função quadrática tem-se: b x1 a f(x) 0 b x a Sabe-se que a abscissa do értice (x ) é a média aritmética entre as raízes, assim:
3 x x x x x x x1 x b b a a b b a b a b a b a Para o cálculo da ordenada do értice (y ), faz-se: y f(x ) y a x b x c ab ab 4a c b b y a b c a a y y y y y a b b 4ac ab b c 4a a 4a 4a b 4ac 4a 4a 0)
4 b x1 a f(x) 0 b x a x1 x x b b a a x x x x x b b a b a b a b a 03) f(x) é uma função quadrática com concaidade para baixo, ou seja, o conjunto imagem é definido por Im (f) : ]-,y ]. Cálculo do y : y y 4a y Assim, tem-se que Im(f) : ]-,] 04)
5 S(a) = a (10 a) S(a) = 10a a Área Máxima acontecerá no alor de a correspondente ao értice da parábola definida por S(a), ou seja: 10 a 1 a 5 As dimensões do retângulo são, então: 5 cm x 5 cm. AULA 09 01) f x a x x x x f x a. x xx xx x x f x a. x x 1 x x x1x b c a a f(x) a x x f(x) ax bx c c.q.d 0) As raízes são e 1 e o gráfico passa pelo ponto (0, 4). Pela forma fatorada, tem-se: f(x) = a (x x 1 ) (x x ) f(x)=a (x + ) (x 1) Sendo f(0) = 4, tem-se: a (0 + ) (0 1) = 4 a = Conclui-se então que a função f(x) é: f(x) = (x + ) (x 1) f(x) = x + x 4
6 03) Considerando o Noo Eixo, a parábola representa uma função com raízes 0 e 100 e que passa pelo ponto (60, 8). Assim: C() = a ( 0) ( 100) C(60) =a (60 0) (60 100) 8 = a a = 0,005 Assim, C() = 0,005 ( 0) ( 100) Para = 10, tem-se: C(10) = 0,005 (10 0) (10 100) C(10) = 10 O alor de C solicitado no enunciado precisa ser calculado em relação ao eixo original, então: C = 16 + C (10) C = C = 6
7 EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA B AULA 07 01) 1 S 4 6 sen30º 1 S 1 S 6 u.a 0) a) d cos 60º 1 d d d 7 cm b) 1 S 5 8 sen60º 3 S 40 S 0 3 cm 03) Os lados são: a = 3 m b = 5 m c = 6 m
8 a) a b c p p p 7 m S p p a p b p c S S 56 S 14 m b) S p r 14 7 r 14 r m 7 c) a b c S 4 R R R R m AULA 08 01)
9 Do triângulo PQS, tem-se: 3 sen60º QS 3 3 QS QS k cos 60º 1 k k 1 Do triângulo PQR, tem-se: QR 1 3 QR 147 QR 7 3 Do triângulo RSQ, tem-se: sen10º 7 3 sen sen 11 sen 14
10 0) a) Pela Lei dos Cossenos, tem-se: x cos10º 1 x x x 70 m Pelo Teorema de Tales, tem-se: y 70 y 49m b) Pela Semelhança de Triângulos, tem-se: R 50 y R R m Cálculo do perímetro: PER R R 3 (6 ) 97 PER PER (6 )m 5 03)
11 c 1 + b 1 = 10 b + c = 1 cm S = p r S = (10 + b + c) 1 S = (10 + 1) 1 S = cm AULA 09 01) Os alores serão assim distribuídos: k A k B 3 k C 4 k D 3 k E 6 Pelo alor total, obtém-se:
12 A B C D E k k k k k k 4k 3k 4k k k k 400 Conclui-se então que cada um ai receber: k A A 1 00 reais k B B 800 reais 3 k C C 600 reais 4 k D D 800 reais 3 k E E 400 reais 6 A diferença entre o maior e o menor alor é 800 reais. 0) I FALSO x y z = (k ) k (k + ) x y z = k (4k 4) x y z = 8k 3 8k x y z = 8(k 3 k) DIVISÍVEL POR 8 II FALSO x + y + z = k + k + k + x + y + z = 6k MÚLTIPLO DE 6 III VERDADEIRO x + z = y k + k + = k
13 4k = 4k 03) T = x k + (x + ) k T = (x + x +) k T k x A parte que caberá ao mais elho, será igual a x. x Quanto maior o alor de x, maior o denominador, MENOR a parte do terreno que caberá ao filho mais elho e sempre maior que 1/. 04) d + e + f = 0,3 50 d + e + f = 80 0,40 80 = d d = 3 0,0 50 = c + f c + f = 50 f = 10 c = e + 10 = 80 e = 38 b = e b = 38 a + b + c = 0,68 50 a = 170 a = 9
14 EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA C AULA 08 01) a) Multiplicou a 1ª linha por Multiplicou a 3ª linha por 1 Multiplicou a 3ª coluna por 3 DET = ( 1) 3 deta DET = 6 5 DET = 30 b) det(3a) = 3 3 deta det(3a) = 7 5 det(3a) = 135 c) Matriz Transposta DET = deta DET = 5 d) Combinação Linear entre as 1ª e 3ª linhas DET = deta DET = 5 e)
15 Troca de posição entre as ª e 3ª colunas DET = deta DET = 5
16 EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA D AULA 07 01) 180º(n ) ai n 180º(10 ) ai 10 a 144º i 0) d 3n n(n 3) 3n n 3n 6n n 0 n 9n 0 n 9 lados 03) Considerando que o ângulo interno de cada pentágono regular é x, tem-se: 180º(5 ) x 5 x 108º Da figura, tem-se: 3x + = 360º 3 108º + = 360º = 36º 04)
17 S 180º(n ) i 160º 180º(n ) 1 n n 14 n (n 3) d d d 77 Para um polígono com quantidade PAR de lados, o número de diagonais que passa pelo centro é igual à metade do número de lados. Assim: n D d 14 D 77 D 70 AULA 08 01) < 61 ACUTÂNGULO 0) 8 5 < x < < x < 13 Como x é um alor inteiro, tem-se: x : {4, 5, 6, 7, 8, 9, 10, 11, 1} Ao todo são 9 possibilidades de triângulos. 03)
18 Pelo Teorema da Bissetriz Interna, tem-se: 8 1 x 15 x 1x 10 8x 0x 10 x 6 cm 04) Pela figura, tem-se: (m + n + p + q + r) é a soma dos ângulos internos de um pentágono; m, n, p, q, r e s são também ângulos internos de cada triângulo (ângulo oposto pelo értice); Então:
19 m a j 180º n h i 180º p f g 180º q d e 180º r b c 180º (m n p q r) (a b c d e f g h i) 900º 180º(5) 540º (a b c d e f g h i) 900º a b c d e f g h i 360º AULA 09 01) Por semelhança de triângulos, tem-se: 6 x 1 30 x 1x 180 6x x 10 Área 10 1 Área 10 0)
20 x 40x 900 x,5 cm 03) 4 d 19 d 4d 8 d 38 d 30 d 15 m 04)
21 b h k h k kh bh bk kh bk bh k(h b) bh bh k h b
22 EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA E AULA 07 01) 1 = sen x + cos x sen x + cos x = 1 0)
23 03) sen x cos x 1 3 sen x sen x senx 16 5 o 4 sen x x Quadrante senx senx 5 4 senx 4 tgx tgx 5 tgx cos x sec x sec x sec x cos x cos sec x cos sec x cos sec x senx cot gx 1 tgx 1 3 cot gx cot gx )
24 cos1 < sen1 < tg1 AULA 08 01) I sen x cos x 1 cos x sen x cos x 1 cos x cos x cos x tg x 1 sec x sec x 1 tg x c.q.d II sen x cos x 1 sen x sen x cos x 1 sen x sen x sen x 1 cotg x cos sec x cos sec x 1 cotg x c.q.d 0)
25 x tg(a)x 1 0 ( tga) tga 4 1 ( 1) x 1 tga 4tg a 4 x tga 4 tg a 1 x tga sec a x tga sec a x tga sec a x tga sec a x x tga sec a 03) y y y y sec x tgx sec x tgx 1 sen x cot gx cos sec x cot gx cos sec x cos x cot g x cos sec x 1 cos x 1 sec x sec x tg x 04) Utilizando o Produto Notáel a 3 + b 3 = (a + b) (a ab + b ), tem-se: 3 3 sen x cos x E senx cos x E (senx cos x) (sen x senx cos x cos x) E 1 senx cos x senx cos x AULA 09 01) y = sen30º + sen150º sen10º sen330º y = sen30º + sen30º ( sen30º) ( sen30º)
26 y = 4 sen30º y = 4 0,5 y = 0) y = cos60º + cos10º tg10º cotg40º y = cos60º + ( cos60º) tg30º cotg60º y tg30º cot g60º 3 1 y y y 3 03) A = 180º 8º A = 15º B = 180º + 8º B = 08º C = 360º 8º C = 33º cosa = cos8º = 0,889 cosb = cos8º = 0,889 cosc = cos8º = 0,889 04) 4 4 tg tg tg tg 5 5
EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São
MAT 2A SEMI AULA Interseção com eixo y. x = 0. f (0) = = zeros da função: y = 0. x 2 + 3x = 0 x( x + 3) = 0
MAT A SEMI AULA 03 03.01 Interseção com eixo y x 0 f (0) 0 4 0 + 10 10 03.0 zeros da função: y 0 x + 3x 0 x(x + 3) 0 x 0 ou x 3 (0; 0) e (3; 0) 03.04 y 0 x + 4 0 x 4 x R 03.04 x v b ( ) a 1 1 x v 1 1 +
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.
01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22
MATEMÁTICA CADERNO 2 SEMIEXTENSIVO E. FRENTE 1 Álgebra. n Módulo 5 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO SEMIEXTENSIVO E ) I) x + 0 x II) x 7 + x + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) x 6x + < não tem solução, pois a 0, "a Œ ) A igualdade x x x +, com x + 0, é verificada
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.
Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.
a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.
TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que
Proposta de correcção
Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do
Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões
Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
MAT 3A AULA 7 MAT 3A AULA 7 1 MAT 3A AULA 7 2 MAT 3A AULA 7 3 MAT 3A AULA 7 4 MAT 3A AULA 7 5
MAT 3A AULA 7 MAT 3A AULA 7 1 (4; ) y = ax + b b = 0 = a 4 a = 1 f(x) = 0,5x MAT 3A AULA 7 {4a + b = (1) } + {7a + b = 4} = 3a = a = 3 MAT 3A AULA 7 3 4 3 + b = B = 8 3 b = 3 MAT 3A AULA 7 4 Do gráfico
o anglo resolve a prova de Matemática do ITA dezembro de 2008
o anglo resolve a prova de Matemática do ITA dezembro de 008 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua
SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA
MATEMÁTICA conhecimento específico 1 01. CONJUNTOS Interessado em lançar os modelos A, B e C de sandálias, em uma determinada região do estado, foi realizada uma pesquisa sobre a preferência de compra
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 19 (pág. 74) AD TM TC. Aula 20 (pág. 75) AD TM TC. Aula 21 (pág.
Matemática Setor A Prof.: Índice-controle de Estudo Aula 9 (pág. 7) AD TM TC Aula 0 (pág. 75) AD TM TC Aula (pág. 76) AD TM TC Aula (pág. 77) AD TM TC Aula (pág. 78) AD TM TC Aula (pág. 79) AD TM TC Aula
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
3 x + y y 17) V cilindro = πr 2 h
MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +
Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.
Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
Professor Dacar Lista de Exercícios - Revisão Trigonometria
1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
f k f k, para todo k, cujo gráfico encontra-se esboçado abaixo.
9) Considere uma função f : COMISSÃO PERMANENTE DE SELEÇÃO - COPESE QUESTÕES OBJETIVAS 2, definida por f x ax bx c, sendo a, b, c, para a qual f k f k, para todo k, cujo gráfico encontra-se esboçado abaixo.
Lista Recuperação Paralela II Unidade Parte I - Trigonometria
Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
Ciclo trigonométrico
COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
RESUMÃO DE MATEMÁTICA PARA EsPCEx
Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Plano de Recuperação Semestral EM
Série/Ano: 1º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
o anglo resolve a prova de Matemática do ITA dezembro de 2005
o anglo resolve a prova de Matemática do ITA dezembro de 005 Código: 858006 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º
A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente
MATEMÁTICA CADERNO CURSO D ) I) x 0 As raízes são e e o gráfico é do tipo FRENTE ÁLGEBRA n Módulo 7 Sistema de Inequações ) I) x x 0 As raízes são e e o gráfico é do tipo Logo, x ou x. II) x x 0 As raízes
Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA
Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.
as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2
MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de
5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27
MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME DO CANDIDATO, que constam na etiqueta
RESOLUÇÕES E RESPOSTAS
MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;
UNIVERSIDADE GAMA FILHO
UNIVERSIDADE GAMA FILHO Pró-Reitoria de Ciências Exatas e Tecnologia CÁLCULO BÁSICO Notas de Aula Simone Dutra Ramos Resumo Estas notas de aula têm por finalidade apresentar de forma clara e didática todo
LISTA DE EXERCÍCIOS 3º ANO
Questão Considere a figura. (3-3 ) cm O trajeto ACDB tem comprimento mínimo quando B, D e H são colineares. Com efeito, se D' é um ponto da reta DK e C' é o pé da perpendicular baixada de D' sobre a reta
CONCURSO PÚBLICO DE PROVAS E TÍTULOS EDITAL ESPECÍFICO 92/ CAMPUS FORMIGA PROVA OBJETIVA - PROFESSOR EBTT ÁREA DE MATEMÁTICA EDUCAÇÃO MATEMÁTICA
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS CAMPUS FORMIGA Rua São Luiz Gonzaga, s/n Bairro São Luiz Formiga
1. As funções tangente e secante As expressões para as funções tangente e secante são
CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes
5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27
MATEMÁTICA CADERNO SEMIEXTENSIVO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log
NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados
ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...
1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Sendo as raízes da equação, calcule o valor da expressão 0. Determine o valor de K na equação 3 de modo que o produto das raízes
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 00. Prof. Guilherme Sada Ramos Guiba ) Pelo enunciado, devemos pressupor que todos os itens que o jovem puder escolher para o carro, ele escolherá. Feito isso, percebemos
MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
Aula 5 - Soluções dos Exercícios Propostos
Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.
4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO E GRADUAÇÃO DE SARGENTOS 2020-21 SOLUÇÃO DAS QUESTÕES DE
PROVAS DE NÍVEL MÉDIO DA FUNDATEC
PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
Matemática B Extensivo V. 6
GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
x 4 0 MAT 4A AULA ) D(f) = IR {-2, 2} ALTERNATIVA B 10.02) x 2 3x + 2 > 0 Raízes : 1 e 2 S: x < 1 ou x > 2 ALTERNATIVA E 10.
MAT 4A AULA 10 10.01) x 4 0 x e x D(f) = IR {-, } ALTERNATIVA B 10.0) x 3x + > 0 Raízes : 1 e S: x < 1 ou x > ALTERNATIVA E 10.03) x 10 0 x 10 ALTERNATIVA C 10.04) f(x) > 0 para x - 3 f(x) = 0 para x =
MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...
Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções
Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Aplicações da Integral - Continuação e Técnicas de Integração Aula 33 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 30 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: MATEMÁTICA 1 Série/Ano: 1º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SANDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados
A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970
A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma
COLÉGIO SHALOM Ensino MÉDIO 2º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a):. No.
COLÉGIO SHALOM Ensino MÉDIO º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a): No TRABALHO DE RECUPERAÇÃO VALOR, INSTRUÇÕES: LEIA com atenção cada questão; PROCURE compreender o que
NOTAÇÕES A. ( ) 0. B. ( ) 1. C. ( ) 2. D. ( ) 4. E. ( ) 8. são disjuntos, A B=
NOTAÇÕES = {,,,...} : conjunto dos números reais : conjuntodos números complexos [ ab, ] = { x ; a x b} ( a, + ) = a, + = { x ; a< x < + } A\ B= { x A; x B} A : complementar doconjunto A i :unidade imaginária;
Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9
Prova Final de Matemática a Nível de Escola 3º Ciclo do Ensino Básico Decreto-Lei nº139/01, de 5 de julho Prova 8/1ª Fase 9 Páginas Duração da Prova (CADERNO ÚNICO): 90 minutos. Tolerância: 30 minutos.
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME
PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:
