Optimização/Matemática II (Eco)
|
|
|
- Silvana Arruda Neto
- 7 Há anos
- Visualizações:
Transcrição
1 Optimização/Matemática II (Eco) Frequência/ Exame 1ª Época 1º Ano 2º Semestre 2013 / 2014 Licenciaturas em Gestão, Finanças e Contabilidade, Gestão de Marketing e Economia Duração da Frequência: 1h 30m (1h 15m + 15 m) Duração do Exame: 2h 30m (2h + 30 m) Nome:... Número:... Curso:... Turma:... Nome do docente: Alunos em Frequência: resolver apenas as questões de 5. a 10. da prova. Alunos em Exame: resolver todas as questões da prova. Nas questões comuns às duas provas, a primeira cotação diz respeito ao Exame de 1ª época. Nota: Não é permitido o uso de calculadora Durante a prova, deve manter o telemóvel desligado Não se esclarecem dúvidas durante a prova Não destaque nenhuma das folhas que compõem a prova (incluindo a de rascunho) Apresente todas as justificações necessárias Escreva apenas a tinta permanente ou com esferográfica. 1. Calcule uma primitiva das seguintes funções: a) (1 pontos) f(x, y) = 3cos (x) 1+4sen 2 (x). b) (1.5 pontos) g(x, y) = 3x+2 x (x+1) 2.
2 2
3 1 2. (1.75 pontos) Calcule o valor do integral x 2 0 e 2x dx. 3
4 3. Considere a região do plano, definida pelas seguintes condições: a) (0.75 pontos) Represente-a graficamente. b) (1.25 pontos) Determine a sua área. y 3x, y x 2 e y x
5 4. (1.5 pontos) Determine a solução particular da equação diferencial ordinária 1 dy 2x dx + y = 3, sujeita à condição inicial y(0) = 1. 5
6 5. (1.75/ 2.5 pontos) Estude a natureza e a soma da série 7 1 n 1 a 2 3n função do parâmetro real a 0, com n N. a 5 2n, em 6
7 6. (1.25/1.75 pontos) Considere a função real de duas variáveis f(x, y) em que f f = 4x 2y e = 2y 2x 6. Prove que (x, y) = (3,6) é um minimizante da x y função f(x, y). 7
8 7. (1.25/2 pontos) Considere o seguinte problema de Programação Linear: Max Z= 3 x+ 4 y s. a x y 4 2 x y 10 x, y 0 Apresente os dois primeiros quadros do método do Simplex, indicando todos os cálculos intermédios. 8
9 8. Considere o seguinte modelo em Programação Linear referente a um problema de planeamento de produção. As variáveis de decisão representam o nível de produção diário de 3 produtos: P1, P2 e P3. A primeira restrição refere-se à produção mínima de P1, enquanto a segunda está relacionada com o número de horas máquinas diariamente disponíveis. O objectivo é maximizar o lucro diário. Max Z= x x x 3 s. a x 1 6 x x 2 + x 3 24 x 1, x 2, x 3 0 Utilizando o Solver, obtiveram-se os seguintes outputs: Célula de Objectivo (Máximo) Célula Nome Valor Original Valor Final $B$6 f.o Células de Variável Final Reduzido Objectivo Permissível Permissível Célula Nome Valor Custo Coeficiente Aumentar Diminuir $B$3 x E+30 $C$3 x E+30 0 $D$3 x E+30 Restrições Final Sombra Restrição Permissível Permissível Lado Célula Nome Valor Preço Direito Aumentar Diminuir $E$9 R $E$10 R E a) (1.0/1.75 pontos) Indique a solução óptima do problema (incluindo os valores das variáveis de folga e/ ou de excesso), bem como, o valor óptimo do problema. Não se esqueça de interpretar, no contexto, a solução óptima e o valor óptimo. b) (0.5/1.0 pontos) O problema tem soluções óptimas alternativas? Justifique a sua resposta. c) (0.75/1.5 pontos) Suponha que o lucro unitário associado a P1 se altera para 2. Indique quais as consequências para a solução óptima e para o valor óptimo. Justifique a sua resposta. d) (1.0/1.75 pontos) Formule o problema Dual e indique a sua solução óptima, bem como, o valor óptimo. 9
10 10
11 9. Uma siderurgia possui duas minas, M1 e M2, e três fábricas transformadoras, F1, F2 e F3. As minas M1 e M2 têm 110 e 220 toneladas de minério, respectivamente, para distribuir pelas fábricas. Os custos, em euros, de transportar uma tonelada de minério entre as minas e as fábricas são apresentados na tabela seguinte: F1 F2 F3 M M Sabendo que as fábricas F1, F2 e F3 necessitam de 80, 150 e 100 toneladas de minério, respectivamente, a siderurgia pretende determinar a forma mais económica de distribuir o minério pelas fábricas. a) (1.0/1.75 pontos) Identifique o problema da siderurgia e determine uma solução admissível. b) (1.0/1.75 pontos) Averigúe se a solução admissível determinada em a) é óptima. Caso não seja, melhore-a. c) (1.0/1.5 pontos) A siderurgia adquiriu uma nova mina, designada por M3. No entanto, a mina M3 só pode abastecer de minério as fábricas F1 e F2, sendo os custos de transporte, por tonelada, de 30 e 50, respectivamente. Admitindo que cada uma das minas tem capacidade para abastecer apenas uma das fábricas, a siderurgia pretende determinar a forma mais económica de cada fábrica ser abastecida a partir de uma só mina. Identifique o novo problema e formule-o em Programação Linear. Não se esqueça de definir as variáveis utilizadas na formulação. 11
12 12
13 10. Considere a seguinte tabela payoff relativa ao jogo de soma nula com dois jogadores: Jogador A Jogador B I II a) (0.75/1.0 pontos) Estude a estabilidade do jogo. b) (0.25/0.75 pontos) Averigúe a existência de estratégias dominadas. c) (0.75/1.0 pontos) Formule o problema do Jogador B em Programação Linear. Não se esqueça de definir as variáveis utilizadas na formulação. 13
14 RASCUNHO: 14
Frequência / Exame de 1. a Época
ISCTE - Instituto Universitário de Lisboa Licenciaturas: Gestão, Finanças e Contabilidade, Gestão e Engenharia Industrial, Marketing e Economia Frequência / Exame de 1. a Época OPTIMIZAÇÃO / MATEMÁTICA
Frequência / Exame de 1. a Época
ISCTE - Instituto Universitário de Lisboa Licenciaturas: Gestão, Finanças e Contabilidade, Gestão e Engenharia Industrial, Marketing e Economia Frequência / Exame de 1. a Época OPTIMIZAÇÃO / MATEMÁTICA
ISCTE- IUL, Dpto de Métodos Quantitativos. 28 de Maio de 2012 Ano lectivo 2011/2012
1 ISCTE- IUL, Dpto de Métodos Quantitativos CURSOS1 o Ciclo: Gestão,FinançaseContabilidade,GestãoeEng. Industrial, Marketing, Economia Frequênciae1 o ExamedeOPTIMIZAÇÃO/MATEMÁTICAII 28 de Maio de 2012
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.
Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema
Gestão. Investigação Operacional. Teste / Exame 3.º ano / 1.º Semestre 2009 / 2010
Gestão Investigação Operacional Teste / Exame 3.º ano / 1.º Semestre 2009 / 2010 Data: Segunda-feira, 4 de Janeiro de 2010 Duração: 1h30m + 30m./ 2h30 m + 30m. Nome: Instruções: 1 Responda a todas as questões
Investigação Operacional
Investigação Operacional Licenciatura em Gestão 3.º Ano Ano Lectivo 2013/14 Programação Linear Texto elaborado por: Maria João Cortinhal (Coordenadora) Anabela Costa Maria João Lopes Ana Catarina Nunes
UNIVERSIDADE DE ÉVORA UNIVERSIDADE DO ALGARVE
CURSO DE MESTRADO EM ENGENHARIA CIVIL FUNDAMENTOS DE INVESTIGAÇÃO OPERACIONAL 2010/2011 1º SEMESTRE 1º ANO Exame época normal Parte I: PROGRAMAÇÃO LINEAR 9 de Fevereiro de 2011 Observações Duração desta
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Linear (PL) Aula 15. Dualidade Interpretação económica. Problema dual: preços sombra e perdas de oportunidade. Propriedade dos desvios complementares 2 Formulação do Problema de PL em termos
Complementos de Investigação Operacional. Folha nº 2 Programação Multiobjectivo 2006/07
Complementos de Investigação Operacional Folha nº 2 Programação Multiobjectivo 2006/07 1- x2 D(7,6) C(4,5) E(11,5) F(12,4) B(2,3) X G(13,2) A(1,1) H(10,1) max f 1 (x) = x 1 max f 2 (x) = x 2 (a) Represente
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual
INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. IV Modelo Dual António Carlos Morais da Silva Professor de I.O. i Cap. IV - Modelo Dual - Exercícios IV. Modelo Problema Dual 1. Apresente o
Investigação Operacional 2004/05 2º Mini-teste Extra. 9 de Dezembro, 11:00h 12:30h
Investigação Operacional 00/0 º Mini-teste Extra 9 de Dezembro, :00h :0h Sem consulta, sem máquina de calcular Justifique todas as respostas Departamento de Engenharia Civil Secção de Planeamento do Território
II. Programação Linear (PL)
II. Programação Linear (PL) Dualidade revisão e interpretação econômica Seja o pl max Z x x x x 4 x, x 5x x 0 8 000-00 Prof.ª Gladys Castillo Formulação do Problema de PL em termos de Atividades. Exemplo
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº4 Pós-Optimização e Análise de Sensibilidade
Ano lectivo: 2008/2009 Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº4 Pós-Optimização e Análise de Sensibilidade Cursos: Gestão e Economia 1.
Método do Big M. Análise de Sensibilidade
A 5 =A 4 +C 5 B 5 =B 3 +C 5 C 5 =C 4 /2 E 5 =E 4 +C 5 Método do Big M.5.5 4 -.5.5 6 -.5.5 2 -G.5.5 2 i 2/- 4/- 4/2=2 max = 2 Nuno Moreira - 22/23 x 2 R 3 5 G=2 R 2 R 5 x 3 Análise de Sensibilidade Nuno
Investigação Operacional
Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto
Métodos de Pesquisa Operacional
Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução
DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010
DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010 Exame de Recurso Dep. Econ. Gestão e Engª Industrial 14 de Julho de 2010 duração: 2h30 (80) 1. Considere o modelo seguinte, de Programação Linear
Investigação Operacional
Ano lectivo: /6 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Pós-Optimização e Análise de Sensibilidade Cursos: Gestão e Economia. Uma fábrica
Investigação Operacional
Análise de Sensibilidade, Formulação Dual (Mestrado) Engenharia Industrial http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas Uma das tarefas mais delicadas no
Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação
Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios
2º Semestre 2002/2003 Problemas Resolvidos
RESOLUÇÂO DO PROBLEMA Nº 19 Determinado problema de Programação Linear depois de formulado permitiu obter as seguintes expressões: Max L = 4x 1-2x 2 + 2x 3 -x 4 s.a. R 1: x 1 - x 2 + 2x 3 +x 4 10 R 2:
Investigação Operacional 2004/05 2º Mini-teste. 26 de Novembro, 9:00h 10:30h. Sem consulta, sem máquina de calcular Justifique todas as respostas
Investigação Operacional 004/05 º Mini-teste 6 de Novembro, 9:00h 0:h Sem consulta, sem máquina de calcular Justifique todas as respostas Departamento de Engenharia Civil Secção de Planeamento do Território
max z = 10x 1 + 4x 2 s.a x 1 + x x 1 + 4x x 1 + 6x 2 300
Escola Superior de Tecnologia de Tomar Área de Matemática Investigação Operacional / Técnicas de Optimização e Decisão Engenharia Química, Engenharia do Ambiente, Engenharia Informática e Engenharia Civil
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
1 Aula 2 Definição de Problemas de Investigação Operacional Construção de um modelo matemático de PL. Programação Matemática(PM) e Programação Linear(PL). Exemplos clássicos de PL. 2 Problemas de Investigação
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios
INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. VII Interpretação económica do modelo de PL António Carlos Morais da Silva Professor de I.O. i Cap. VII - Interpretação económica do modelo de
Simplex. Investigação Operacional José António Oliveira Simplex
18 Considere um problema de maximização de lucro relacionado com duas actividades e três recursos. Na tabela seguinte são dados os consumos unitários de cada recurso (A, B e C) por actividade (1 e 2),
Programação Linear. Rosa Canelas 2010
Programação Linear Rosa Canelas 2010 Problemas de Optimização São problemas em que se procura a melhor solução (a que dá menor prejuízo, maior lucro, a que é mais eficiente, etc.) Alguns destes problemas
Vânio Correia Domingos Massala
Optimização e Decisão 06/0/008 Método do Simplex Vânio Correia - 5567 Domingos Massala - 58849 INSTITUTO SUPERIOR TÉCNICO Generalidades do Método do Simplex Procedimento algébrico iterativo para resolver
Optimização em Redes e Não Linear
Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia
Cap ıtulo 1 Exerc ıcios de Formula c Enunciados
Capítulo 1 Enunciados Enunciados 2 Problema 1 Publicações Polémicas vai publicar uma autobiografia de um político controverso, e admite que a 1 a edição vai ser vendida por completo se não houver atrasos.
Investigação Operacional
Investigação Operacional Programação Linear Licenciatura em Engenharia Civil Licenciatura em Engenharia do Território Problema Uma firma fabrica dois produtos P e P em três máquinas M, M e M. P é processado
sujeito a: 30x x (madeira) 5x x (horas de trabalho) x 1, x 2 0
IV. MÉTODO GRÁFICO O método gráfico só permite resolver problemas de PL de pequena dimensão (duas ou três variáveis) não tendo pois qualquer interesse prático. O método gráfico permite visualizar um conjunto
Cap ıtulo 1 Exerc ıcios de Formula c ao Enunciados
Capítulo 1 Exercícios de Formulação Enunciados Enunciados 2 Problema 1 Publicações Polémicas vai publicar uma autobiografia de um político controverso, e admite que a 1 a edição vai ser vendida por completo
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Forma geral de um problema Em vários problemas que formulamos, obtivemos: Um objetivo de otimização
Programação Matemática Lista 3
Programação Matemática Lista 3. Coloque na forma padrão os seguintes problemas de programação linear: a) Maximizar X 7 X + 8 X 3 +X 4 X + X X 3 + X 4 4 X + X 3 9 X + X 3 + X 4 6 X 0, X 0, X 3 0, X 4 0
Dualidade e Análise de Sensibilidade
Dualidade e Análise de Sensibilidade 33. Considere o seguinte problema de programação linear: Min Z = 4x 1 + 3x 2 + 6x 3 2x 1 + 2x 2 + 3x 3 4 3x 1 + x 2 + 3x 3 3 x 1, x 2, x 3 0 a) Escreva o dual associado
Nova SBE Nova School of Business and Economics Semestre de Primavera 2011/2012. Cálculo II. (Para alunos que não realizaram o teste intermédio)
Nova SBE Nova School of Business and Economics Semestre de Primavera 2011/2012 Cálculo II Exame de 1 a Época, 30 de Maio de 2012 (Para alunos que não realizaram o teste intermédio) 1. O exame é constituído
X - D U A L I D A D E
X - D U A L I D A D E 1 - Introdução. Regras de transformação "Primal - Dual" Consideremos os dois problemas P1 e P2 de Programação Linear seguintes: P1 : n Maximizar F = Σ ck. Xk k = 1 n Σ aik. Xk bi
Transparências de apoio à lecionação de aulas teóricas. c 2012, 2011, 2009, 1998 José Fernando Oliveira, Maria Antónia Carravilla FEUP
Programação Linear Transparências de apoio à lecionação de aulas teóricas Versão 4 c 2012, 2011, 2009, 1998 José Fernando Oliveira, Maria Antónia Carravilla FEUP Programação Linear Problema de planeamento
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Pesquisa Operacional
Pesquisa Operacional Análise de Sensibilidade Algébrica Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 016 1 Análise de Sensibilidade Algébrica Variações do Lado Direito Variações na Função Objetivo
Índice. Prefácio Os modelos de programação linear e a investigação operacional 17
Índice Prefácio 13 Capítulo 1 Introdução 1. Os modelos de programação linear e a investigação operacional 17 2. O problema de programação linear 18 2.1. O problema de programação linear em substituição
AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DE CURSO SUPERIOR - 1º CICLO DE ESTUDOS
AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DE CURSO SUPERIOR - º CICLO DE ESTUDOS PROVA ESPECÍFICA DE CONHECIMENTOS E COMPETÊNCIAS: CULTURA MATEMÁTICA ESTG - IPVC Duração da Prova: h45. Tolerância: 5 minutos
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Exame de Investigação Operacional - Época Especial 13 de Dezembro de I (4 val.)
Universidade Lusófona de Humanidades e Tecnologias Licenciatura em Informática Exame de Investigação Operacional - Época Especial 13 de Dezembro de 2000 1. O tempo destinado à sua resolução são 120 minutos
O Problema de Transportes
Investigação Operacional- 00/0 - Problemas de Transportes 8 O Problema de Transportes O problema geral de transportes consiste em determinar a forma mais económica de enviar um bem que está disponível
Investigação Operacional
Licenciatura em Engenharia Electrotécnica e de Computadores Investigação Operacional Recurso 2004.02.09 Duração: 2 horas Nome: Teórica Responda a cada afirmação com (V) Verdadeira ou (F) Falsa. Por cada
Economia I; 2012/2013; 2º sem. Prova da Época Recurso 3 de Julho de Antes de iniciar a sua prova tenha em atenção os seguintes aspectos:
Economia I; 2012/2013; 2º sem. Prova da Época Recurso 3 de Julho de 2013 Antes de iniciar a sua prova tenha em atenção os seguintes aspectos: A duração da prova é de duas horas e trinta minutos (2h 30m).
PESQUISA OPERACIONAL I
PESQUISA OPERACIONAL I Professor: Dr. Edwin B. Mitacc Meza [email protected] www.engenharia-puro.com.br/edwin/po-i.html Dualidade Introdução Uma das mais importantes descobertas no início do
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA INVESTIGAÇÃO OPERACIONAL
INSTITUTO POLITÉCNICO DE SETÚBL ESCOL SUPERIOR DE TECNOLOGI DEPRTMENTO DE MTEMÁTIC INVESTIGÇÃO OPERCIONL TESTE CURSOS: EMP, EEM e EME 2005/2006 Data: 4 de Novembro de 2005 Duração: 19:0 às 21:0 Instruções:
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Linear (PL) Aula 10: Método Simplex Técnica das variáveis artificias Método das penalidades ( Big M ). Método das duas fases. 2 Modificando o Exemplo Protótipo. Suponha-se que é modificado
Programação linear I João Carlos Lourenço
Fundamentos de Investigação Operacional Programação linear I João Carlos Lourenço [email protected] Ano lectivo 2011/2012 Leituras recomendadas: Nova, A.P., Lourenço, J.C., 2011, Apontamentos de
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Caderno 1 + Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Combinando inequações lineares
Combinando inequações lineares A multiplicação por um número > 0 não altera uma inequação 2x x 5 4x 2x 10 1 2 1 2 A soma de duas inequações (com o mesmo sentido) produz uma inequação válida x 3x x 3 1
Economia I; 2013/2014; 2º sem. Prova da Época Recurso 25 de Junho de Antes de iniciar a sua prova tenha em atenção os seguintes aspectos:
Economia I; 2013/2014; 2º sem. Prova da Época Recurso 25 de Junho de 2014 Antes de iniciar a sua prova tenha em atenção os seguintes aspectos: A duração da prova é de duas horas e trinta minutos (2h 30m).
Aula 08: Modelagem Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 08: Modelagem Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Aulas anteriores: Modelagem (básico) Método
Economia I; 2013/2014; 2º sem. Prova da Época Recurso 25 de Junho de Antes de iniciar a sua prova tenha em atenção os seguintes aspectos:
Economia I; 2013/2014; 2º sem. Prova da Época Recurso 25 de Junho de 2014 Antes de iniciar a sua prova tenha em atenção os seguintes aspectos: A duração da prova é de duas horas e trinta minutos (2h 30m).
EAD 350 Pesquisa Operacional Aula 01 Parte 2
EAD 350 Pesquisa Operacional Aula 01 Parte 2 Profa. Daielly M. N. Mantovani Profa. Adriana Backx Noronha Viana Prof. Cesar Alexandre de Souza [email protected] FEA/USP Elaboração de Modelos de PO Definição
Instituto Universitário de Lisboa
Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Extremos 1 Extremos Livres 1. Dada uma função f : R n R e a R n, (a) Qual a propriedade que f(a) deve vericar para ser um máximo
OTIMIZAÇÃO. O processo de otimização normalmente involve a procura de pontos de máximos e mínimos de uma função.
OTIMIZAÇÃO O processo de otimização normalmente involve a procura de pontos de máximos e mínimos de uma função. Pontos de máximos e mínimos de uma função são pontos onde a derivada da função é nula. A
Investigação Operacional 21076
text Investigação Operacional 21076 Período de Realização Decorre de 10 a 17 de Abril de 2019 Data de Limite de Entrega 17 de Abril de 2019, até às 23h55 de Portugal Continental Tema Programação Linear.
EAD 350 Pesquisa Operacional Aula 01 Parte 2
EAD 350 Pesquisa Operacional Aula 01 Parte 2 Prof. Adriana Backx Noronha Viana (Material: Prof. Cesar Alexandre de Souza) [email protected] FEA/USP Problema... Vocês foram contratados pela Wyndor Glass Company
a) Formule este problema em Programação Linear inteira. b) Considere os seguintes dados Matriz das distâncias (em Km) entre as comunidades
Universidade de Lisboa, Faculdade de Ciências Mestrado em Matemática Aplicada à Economia e Gestão Logística e Gestão de Operações Módulo de Logística Exercícios Localização 1. Num distrito do Centro de
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
Escola Secundária com º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I 4º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Análise de Sensibilidade. Investigação Operacional. Análise de Sensibilidade aos coeficientes da FO. Análise de Sensibilidade
nálise de Sensibilidade Investigação Operacional rogramação Linear (arte II) 2/2 Nuno Moreira/milcar rantes/ui Marques/Marta Gomes Licenciatura em Engenharia Civil Licenciatura em Engenharia do Território
PROGRAMAÇÃO LINEAR 11º ANO MATEMÁTICA A
PROGRAMAÇÃO LINEAR 11º ANO MATEMÁTICA A Prof.ª: Maria João Mendes Vieira ESC 11MatA 2012/2013 PROGRAMAÇÃO LINEAR A programação linear é uma "ferramenta" matemática que permite encontrar a solução ótima
IX - A N Á L I S E D E S E N S I B I L I D A D E
IX - A N Á L I S E D E S E N S I B I L I D A D E A N Á L I S E P Ó S - O P T I M A L I D A D E Recordemos o exercício apresentado para ilustrar a aplicação do Algoritmo Simplex Revisto: Consideremos o
PROGRAMAÇÃO INTEIRA. Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos
PROGRAMAÇÃO INTEIRA Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto 5 modelos M9.1 - Problema de Seleção de Projetos ver Taha Capítulo 9 Cinco projetos estão sob avaliação
Combinando inequações lineares
Combinando inequações lineares A multiplicação por um número > 0 não altera uma inequação 2x x 5 4x 2x 0 2 2 A soma de duas inequações (com o mesmo sentido) produz uma inequação válida x 3x + x 3 2 + 5x
Modelos de planeamento e gestão de recursos hídricos. 19 de Novembro
Modelos de planeamento e gestão de recursos hídricos 19 de Novembro Metodologias de análise Sistema real vs sistema simplificado Modelação Matemática; Física; Análise de sistemas: Simulação; Optimização:
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar
Problemas de Fluxos em Redes
Investigação Operacional Problemas de Fluxos em Redes Slide Transparências de apoio à leccionação de aulas teóricas Problemas de fluxos em redes Rede: Conjunto de pontos (vértices) ligados por linhas ou
Investigação Operacional 2006/07 Ficha 7. Revisões. 1. Considere o seguinte problema de Programação Linear:
Investigação Operacional 006/07 Ficha 7 Revisões Departamento de Engenharia Civil Secção de Planeamento do Território e Ambiente. Considere o seguinte problema de Programação Linear: Maximizar z = x +.x
Prof.: Eduardo Uchoa.
Análise de sensibilidade Prof.: Eduardo Uchoa http://www.logis.uff.br/~uchoa/poi 1 Análise de Sensibilidade Uma vez que já se tenha resolvido um PL, existem técnicas para avaliar como pequenas alterações
Investigação Operacional
Métodos de Programação Linear: Big M, Fases, S Dual (Licenciatura) Tecnologias e Sistemas de Informação http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Simplex
EAD 350 Pesquisa Operacional Aula 03 Parte 2
EAD 350 Pesquisa Operacional Aula 03 Parte 2 Profa. Adriana Backx Noronha Viana (Participação Prof. Cesar Alexandre de Souza) [email protected] FEA/USP Método Simplex (item 4.1 do Hillier e Lieberman) - apenas
Programação Linear - Parte 5
Matemática Industrial - RC/UFG Programação Linear - Parte 5 Prof. Thiago Alves de Queiroz 1/2016 Thiago Queiroz (IMTec) Parte 5 1/2016 1 / 29 Dualidade Os parâmetros de entrada são dados de acordo com
PROGRAMAÇÃO LINEAR. Tipo de problemas: cálculo do plano óptimo de distribuição de mercadorias; minimiação de desperdícios no corte de materiais;
PROGRAMAÇÃO LINEAR Atribuição de recursos limitados a actividades concorrentes de modo a atingir-se um objectivo. Tipo de problemas: estrutura ideal das fabricações atendendo ao equipamento, mão de obra,
Modelos em Programação Linear Inteira
Modelos em Programação Linear Inteira Maria João Cortinhal a, Anabela Dias Costa a, Maria João Lopes a, Ana Catarina Nunes a a Departamento de Métodos Quantitativos, ISCTE-IUL 13 de Setembro de 2013 1
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
Programação Não Linear com Restrições Aula 30: Programação Não-Linear - Funções de Várias Variáveis com Restrições (Prática) Ponto Regular; Multiplicadores de Lagrange e Condições Necessárias; Condições
