Análise não-standard ( NSA ) ultrafiltros, complicada (bem conhecida) Análise semi-standard ( SSA ) filtros, mais simples (?)

Tamanho: px
Começar a partir da página:

Download "Análise não-standard ( NSA ) ultrafiltros, complicada (bem conhecida) Análise semi-standard ( SSA ) filtros, mais simples (?)"

Transcrição

1 1 Contas com infinitesimais... Análise não-standard ( NSA ) ultrafiltros, complicada (bem conhecida) Análise semi-standard ( SSA ) filtros, mais simples (?) Contas em SSA podem ser traduzidas para contas standard O processo inverso dessa tradução (em standard SSA... quem é o...?) nos leva a uma linguagem muito interessante, em que temos uma espécie de isomorfismo de Curry-Howard. Curry-Howard categorias: essa linguagem dá uma notação bastante boa pra topoi; Outras semânticas: parece que essa linguagem com infinitesimais corresponde a um fragmento de Lógica Linear.

2 Introdução rapidíssima à Análise Não-Standard (NSA) Um dos objetivos da NSA é nos permitir falar de infinitesimais. Como? Idéia ingênua: infinitesimais vão ser representados por seqüências de reais tendendo a zero. Universo standard: Set. Universo não-standard: Set N. Cada cara α de Set pode ser levado numa seqüência constante (α,α,α,...). Existe uma cópia do universo standard dentro do universo nãostandard. Os caras da cópia também são chamados de standard. Correção da idéia ingênua: queremos identificar certas seqüências. Duas seqüências (α 1,α 2,...) e (β 1,β 2,...) são identificadas se elas coincidem em quase todo ponto. Melhor: num conjunto grande de pontos, onde os conjuntos grandes são, por definição, os que pertencem ao conjunto dos conjuntos grandes, F. Se sabemos F sabemos a relação de equivalência. Para que (α n ) (β n ) (α n ) e (β n ) coincidem num conjunto grande seja realmente uma relação de equivalência precisamos que F seja um filtro: um conjunto maior que um conjunto grande também é grande, a interseção de dois conjuntos grandes é grande, o tudo (N) é grande. E para que a relação de equivalência não identifique todo mundo, queremos: o vazio não é grande. Definições: um conjunto é pequeno se ele o complemento dele é grande; um conjunto é médio se ele não é nem pequeno nem grande. 2

3 Um exemplo: os subconjuntos finitos de N são pequenos. Os cofinitos são grandes. Os outros (exemplo, o conjunto dos pares) são médios. Vamos chamar esse filtro de N. Tome ǫ (1, 1/2, 1/3,...). Interprete ǫ < 1/3: dá uma seqüência de valores de verdade, (Ⅎ, Ⅎ, Ⅎ,,,,,...), que está na mesma classe de equivalência que o, i.e., o (,,,,...); ǫ < 1/3 é verdade sob o ponto de vista desse filtro: (ǫ < 1/3) /N. (ǫ 0) /N ( ǫ < r) /N para qualquer r real standard maior que zero. Ôba. Problema: em (Set N ) /N (que vamos chamar de Set N ) temos mais de dois valores de verdade: (, Ⅎ,, Ⅎ,...) não é equivalente nem a (,,,...) nem a (Ⅎ, Ⅎ, Ⅎ,...), já que só coincide com cada um deles num conjunto médio. Uma conserto pra isso: ao invés de usar N use um filtro que obedeça as condições acima e divida todo mundo em grandes e pequenos, sem médios. (Um filtro sem médios é chamado de ultrafiltro ). Generalização: Ao invés de N como conjunto-índice, I (qualquer). F um filtro sobre I. U ultrafiltro sobre I. Abuso de linguagem: vamos continuar usando a terminologia e a notação de seqüências mesmo quando ao invés de N tivermos um I qualquer. Nomes: Set F é um (ou o ) universo semi-standard. Set U é um (ou o ) universo não-standard. 3

4 Ultrafiltros são esquisitos e anti-intuitivos; não dá pra pegar explicitamente um ultrafiltro não-trivial, i.e., em que Set U tenha mais gente que Set. Argh. Truque: podermos fazer contas com infinitesimais em Set F. Em Set U temos o teorema da transferência, em Set F temos algo mais fraco... 4 Set Set N 0 (0, 0, 0,...) π (π,π,π,...) sen (sen, sen, sen,...) ǫ (1, 1/2, 1/3,...) f (f 1,f 2,f 3,...) f(x,y) (f 1 (x 1,y 1 ),f 2 (x 2,y 2 ),...) (,,,...) Ⅎ (Ⅎ, Ⅎ, Ⅎ,...) ǫ <1/10 ( 1 <1/10, 1/2 <1/10, 1/3 <1/10,...) Dá pra transferir as duas sentenças abaixo: x R sen x 1 x,y,z,n N (x,y,z 1) (n 2) (x n + y n z n ) Expressões sem variáveis livres, com todos os quantificadores limitados, com todas as constantes standard, retornando um valor de verdade... são verdadeiras em Set U se e só se elas são verdadeiras em Set! Em Set U os quantificadores quantificam sobre muito mais gente. Problema: a sentença que diz que a união de quaisquer dois conjuntos A e B existe, A B C x x C (x A) (x B), não está numa forma em que possamos mostrar que ela vale em Set U aplicando o teorema da transferência nela em Set. Ela é verdade em Set U por outros motivos. Mais sobre isso no final.

5 5 SSA, NSA e continuidade Em toda essa página f, x 0 são standard, f : X Y, x 0 X. p.i.p. ponto infinitamente próximo. Outro exemplo de filtro: I R, F vizinhanças do 0. Outro: as vizinhanças furadas do 0 em R. Teorema chave: (i) f contínua em x 0 (ii) f leva todo p.i.p. de x 0 num p.i.p. de f(x 0 ) ( I, F) (iii) f leva o p.i.p. de x 0 natural, x 1, num p.i.p. de f(x 0 ) (iv) f leva todo p.i.p. de x 0 num p.i.p. de f(x 0 ) ( I, U; versão NSA do (ii)) Definições: x 1 está infitamente próximo de x 0 V viz standard de x 0 temos (x 1 V ) /F. x 1 é o p.i.p. de x 0 natural x 1 é a identidade I X, I X, F é o filtro das vizinhanças de x 0. Obs: (x 1 V ) /F para toda vizinhança standard V de x 0... Demonstração do teorema chave: (i) (ii): f(x 1 ) é um p.i.p. de f(x 0 ) V vizinhança standard de f(x 0 ) temos (f(x 1 ) V ) /F mas f(x 1 ) V é verdadeiro exatamente na imagem inversa de V por f, que é uma vizinhança de x 0 já que f é contínua. (i) (iii): caso particular de (i) (ii). (i) (iii): Se f não é contínua então existe uma vizinhança V de f(x 0 ) cuja imagem inversa por f, f 1 (V ), não é uma vizinhança de x 0. f(x 1 ) V é verdade exatamente em f 1 (V ), que não é uma vizinhança de x 0, e portanto (f(x 1 ) V ) /F. (i) (ii): use o p.i.p. natural como contra-exemplo (recicle (i) (iii))

6 Limites: lim x x0 f(x) a f leva o p.i.p. natural de x 0 (agora usando vizinhanças furadas) num p.i.p. de a. Exemplo: queremos ver que lim n (1 + x n )n e x. Troque n por ω (1, 2, 3,...) e veja que a diferença entre (1+ x ω )ω e e x é um infinitesimal. Obs: ω é um ponto infinitamente próximo do infinito em N com as definições adequadas (I N, F {A N A cofinito }) 6 log(1 + x ω )ω ω log(1 + x ω ) ω (log 1 + ((log 1) + o 1 ) x ω ) ω (0 + (1 + o 1 ) x ω ) ω (1 + o 1 ) x ω (1 + o 1 ) x (1 + x ω )ω e ((1+o 1) x) e (x+o 1x) e (x+o 2) e x + o 3. ω p.i.p. em N o 1 p.i.p. 0 em R o 2 p.i.p. 0 em R o 1 p.i.p. 0 em R... o 2 p.i.p. 0 em R... o 3 p.i.p. 0 em R... Passagem para standard: ω ω( ) (identidade) o 1 o 1 ( ) o 2 o 2 ( ) o 3 o 3 ( ) lim ω( ) lim o 1 ( ) 0 lim o 2 ( ) 0 lim o 3 ( ) 0

7 7 d dx f(x,y)dy, versão 1 (grande e feia) F(x) : F(x + ǫ) F (x) F (x) f(x,y)dy ya(x+ǫ) f(x + ǫ,y)dy f(x + ǫ,y)dy + ya(x+ǫ) ya(x) f(x + ǫ,y)dy f(x,y) + (f x (x,y) + o 1 (y))ǫ dy + ya(x+ǫ) ya(x) f(x,a(x)) + o 2 (y)dy ( f(x,y)dy + f x (x,y)dy + o 3 )ǫ + (a (x) + o 4 )(f(x,a(x)) + o 5 )ǫ ( f(x,y)dy + f x (x,y)dy ) +a (x)f(x,a(x)) ǫ + o 6 ǫ f x (x,y)dy + a (x)f(x,a(x)) + o 6 f x (x,y)dy + a (x)f(x,a(x)) d dx f(x,y)dy, versão 2 (maior e mais feia) Mesma coisa, só que com ǫ, o 1, o 2, o 3, o 4, o 5 e o 6 dependendo também de (repare que o 1 e o 2 já dependem de y)

8 8 d dx ya0 f(x,y) dy, versão 3 (bem mais curta) F(x) : F 1 ya0 ya1 ya0 ya0 f(x,y) dy f 1 dy f 1 dy + ya1 ya 0 f 1 dy f 0 + (f x0 + o 1 )ǫ dy + ya0 ya0 ya1 ya 0 f(x,a 0 ) + o 2 dy f 0 dy + ( ya0 f x0 dy + o 3 ) ǫ + (a x0 + o 4 )(f(x,a 0 ) + o 5 )ǫ ( ya0 f 0 dy + f x0 dy ) +a x0 f(x,a 0 ) ǫ + o 6 ǫ F (x) F (x) ya0 ya0 f x0 dy + a x0 f(x,a 0 ) + o 6 f x (x,y) dy + a (x)f(x,a(x)) Dicionário: x 0 x x 1 x + ǫ f 0 f(x 0,y) f 1 f(x 1,y) f x0 f x (x 0,y) f x1 f x (x 1,y) a 0 a(x 0 ) a 1 a(x 1 ) a x0 a (x 0 ) a x1 a (x 1 ) ǫ ǫ( ) o 1 o 1 (y, ) o 2 o 2 (y, ) o 3 o 3 ( ) o 4 o 4 ( ) o 5 o 5 ( ) o 6 o 6 ( )

9 Idéia (!!!): na maior parte dos problemas que queremos resolver com infinitesimais há muito poucos objetos naturais de cada tipo. Muitas das definições do dicionário são óbvias. Deve ser possível formalizar uma linguagem em que as contas curtas fazem sentido e as definições do dicionário aparecem automaticamente. Exemplo: temos uma função f : X Y e uma g : Y Z; X é o espaço dos x, E x, Y é o espaço dos ys, etc; f é uma função que leva x zes em y s, i.e., f é de tipo x y; f é um ponto do espaço de funções E x y. x 0 e x 1 são pontos de E x. Pense em x 0 standard e x 1 infinitamente próximo de x 0. 9 x 0 x y y 0 z 0 y z x 0 f f(x 0 ) g g(f(x 0 )) x 1 x y y 1 z 1 y z x 1 f f(x 1 ) g g(f(x 1 )) E mais: dx : x 1 x 0, ou x 1 : x 0 + dx; idem para y e z. Agora dy faz sentido (se dx 0 em quase todo ). dx dy Se f é derivável, y dx x + o f (x 0 ) + o (y x f (x 0 ) é standard)

10 Exemplo sério 1: cálculo até uma certa precisão. Fixe um infinitesimal ǫ. Um 0 x é uma soma x 0 + o, onde x 0 é um standard e o é um infinitesimal. Um 4 x é uma soma x 0 + x 1 ǫ + x 2 ǫ 2 + x 3 ǫ 3 + (x 4 +o)ǫ 4, onde os x i são standard e o o é um infinitesimal. Nem todo hiperreal é um 4 x (contra-exemplos fáceis: ǫ e ω (1, 2, 3,...)) mas os que são tem decomposição única em x 0 + x 1 ǫ + x 2 ǫ 2 + x 3 ǫ 3 + (x 4 + o)ǫ 4. Se x y é suave o suficiente (C 4 ), 4 x x y 4 y e não precisamos escrever as fórmula explícitas que dão os y i a partir dos x i e das derivadas y x, y xx, y xxx,... 4 x e 4 y podem ser tomados como classes de equivalência. 10

11 11 Exemplo sério 2: teorema da função inversa. x 0 x y y x Dois corolários: forma local das imersões (t x,y é a imersão, e t x é inversível), e o teorema da função implícita (x,y f, e queremos a x y que se mantenha sobre a curva de nível f f 0, onde f 0 f(x 0,y 0 )). t t x y t x x t TFI x y t x y x y x y f f x y x y f f (x y) x y TFI As duas deduções acima em forma normal: [x] 2 t t [t] 1 t x y x y x t x 1 TFI x t x y y x y 2 t x y x y x y f f x y y y x y 2 [x] 2 [y] 1 x y f y x y f f y f 1 TFI

12 12 Exemplo sério 3: derivadas Regras: x y x 0 x y x y x y x0 Como obter z a partir de x, x y e x,y z: x x x y y z x,y z Dois jeitos de derivar esse z com relação a x: z : x x [x] 1 x x y y x,y z z x z 1 x z x z x d dx x d z : dx x z, usando semi-descargas: [x] 1 y x,y z [x] 1 x y z x z 1 x z x z x ((x) 1 ) 2 y (x) 2 x y z 1 z x 2 z xx x,y z

13 13 Notas: As páginas anteriores são exatamente (módulo correções mínimas) as transparências que eu usei na minha apresentação no encontro de lógica da UFF, em 24 de fevereiro de 2000; esta página é uma espécie de README para quem só tiver acesso às transparências, e foram escritas alguns dias depois. Resuminho da apresentação: eu introduzo rapidamente a análise não-standard ( NSA ) e uma versão dela com filtros no lugar de ultrafiltros ( análise semistandard, ou SSA ). A SSA tem uma lógica menos familiar que a NSA (mais de dois valores de verdade) e não tem um teorema de transferência tão bom quanto o da NSA, mas SSA não só é suficiente para fazer contas com infinitesimais como contas em SSA admitem uma tradução bem fácil para standard. Nessa tradução SSA standard todos os objetos não-standard passam a ser funções de uma variável que varia sobre o conjunto-índice. Se tentamos ir na direção contrária e ao invés de deixar explícitas dependências em variáveis novas nós omitimos todas as dependências óbvias nós chegamos a uma linguagem curta bem interessante, que sugere um sistema de dedução natural para infinitesimais. Coisas que eu menciono rapidamente mas que ainda não tenho nenhuma boa versão escrita: notação curta para categorias, em especial para topoi; outra interpretação para os tipos e as regras que aparecem nas árvores da dedução natural com infinitesimais, inspirada na Geometry of Interaction do Girard, que é uma semântica para lógica linear em espaços de Banach. Observações: 1) as contas das páginas 6, 7 e 8 foram usadas só pra fazer umas mímicas rápidas sobre como os infinitesimais viram funções na tradução para standard; 2) quando eu digo que NSA é complicada e SSA é simples, por exemplo na página 1, é no sentido de que se sabemos que algo é verdade em NSA (i.e., num Set I /U) só sabemos que esse algo é verdade num conjunto grande de índices, e não temos muita intuição sobre o que isso queira dizer; em SSA podemos ter intuições melhores. Por exemplo, se usamos o filtro dos cofinitos sobre os naturais então algo que é verdade é verdade para todo índice suficientemente grande em qualquer representante do hipervalor de verdade. 3) No fim da página 4 eu digo que Set U tem uniões de conjuntos por outros motivos que eu iria contar no final mas acabei não contando; pra mim o grande motivo (não o mais elementar, mas o mais interessante) é que os Set I, Set U e Set F são topoi quando são definidos da forma certa. Eduardo Ochs, 27 de fevereiro de edrx@inx.com.br

Axiomas de corpo ordenado

Axiomas de corpo ordenado Axiomas de corpo ordenado 2 a lista de exercícios Análise real A abordagem axiomática dos números reais previne erros que a intuição pode ocasionar e torna mais rigoroso o processo de demonstração matemática,

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006.

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006. Fórmulas de Taylor Notas Complementares ao Curso MAT0413 - Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006 Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares

Leia mais

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1 Definição 0.1. eja F : R n R n um campo de vetores (diferenciável. screva F = (F 1,..., F n. (i O divergente de F é a função div F : R n R definida por div F. = m particular, para n = temos n F i = F 1

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

GABARITO. Prova 4 (points: 156/100; bonus: 0 ; time: 120 ) FMC2, (Turmas T56+N12 do Thanos) Regras: Boas provas! Gabarito 30/06/2017

GABARITO. Prova 4 (points: 156/100; bonus: 0 ; time: 120 ) FMC2, (Turmas T56+N12 do Thanos) Regras: Boas provas! Gabarito 30/06/2017 FMC2, 2017.1 (Turmas T56+N12 do Thanos) Prova 4 (points: 156/100; bonus: 0 ; time: 120 ) Nome: Θάνος Gabarito 30/06/2017 Regras: I. Não vires esta página antes do começo da prova. II. Nenhuma consulta

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 RICARDO SA EARP Limites e continuidade em espaços topológicos (1) (a) Assuma que Y = A B, onde A e B são subconjuntos abertos disjuntos não vazios. Deduza que A B

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Cap. 5 Estabilidade de Lyapunov

Cap. 5 Estabilidade de Lyapunov Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x

Leia mais

EDOs lineares de coeficientes constantes via Álgebra Linear

EDOs lineares de coeficientes constantes via Álgebra Linear EDOs lineares de coeficientes constantes via Álgebra Linear Lucas Seco 26 de Dezembro de 2012 Sempre ouvi falar que a solução de EDOs lineares homogêneas de coeficientes constantes bem como o Método dos

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

TEOREMA DE LEGENDRE GABRIEL BUJOKAS

TEOREMA DE LEGENDRE GABRIEL BUJOKAS TEOREMA DE LEGENDRE GABRIEL BUJOKAS A nossa meta hoje é responder a seguinte questão: Questão. Para a, b Z, determine se a equação ( ) tem uma solução com x, y, z Z, além da solução trivial x = y = z =

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Tópico 4. Derivadas (Parte 1)

Tópico 4. Derivadas (Parte 1) Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade

Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 2 o semestre de 207 Aulas 6 e 7 Limites e Continuidade Estas duas aulas envolvem detalhes muito técnicos. Por essa razão, serão

Leia mais

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db, CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Introdução à Linguagem da Topologia

Introdução à Linguagem da Topologia Introdução à Linguagem da Topologia Corpos Define-se corpo por um conjunto K, munido de duas operações básicas chamadas de adição e multiplicação. São os axiomas do corpo: Axiomas da Adição Associatividade:

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos O Exercício 8 é o exercício bônus dessa lista Exercício 1. Seja K um conjunto formado exatamente

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Limites de funções algumas propriedades

Limites de funções algumas propriedades Limites de funções algumas propriedades Good girls go to heaven; Bad girls go everywhere. Frase de pára-choque de caminhão americano, que diz algo como Garotas bem comportadas vão para o céu; Garotas sapecas

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada

Leia mais

(Aula 13) Ruy J. G. B. de Queiroz Centro de Informática, UFPE. Teoria dos Conjuntos. (Aula 13) Ruy de Queiroz. Conjuntos.

(Aula 13) Ruy J. G. B. de Queiroz Centro de Informática, UFPE. Teoria dos Conjuntos. (Aula 13) Ruy de Queiroz. Conjuntos. Ruy J. G. B. de Centro de Informática, UFPE 2009.1 Conteúdo 1 2 Observação (Ponto de Partida) (1) A operação de sucessor de um conjunto x: S(x) = x {x}. (2) n = {m N m < n}. (3) N: o menor conjunto contendo

Leia mais

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro 19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos

Leia mais

LIMITE DE UMA FUNÇÃO II

LIMITE DE UMA FUNÇÃO II LIMITE DE UMA FUNÇÃO II Nice Maria Americano Costa Pinto LIMITES À ESQUERDA E À DIREITA Se a função f() tende ao ite b, quando tende ao valor a por valores inferiores a a, diz-se que b éo ite à esquerda

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Decimasegunda áula: Conexidade por caminhos, local, e sequências

Decimasegunda áula: Conexidade por caminhos, local, e sequências Decimasegunda áula: Conexidade por caminhos, local, e sequências A definição de espaço conexo traduz matemáticamente a intuição de conjunto feito por um pedaço só. Também podemos considerar um espaço conexo

Leia mais

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Cálculo avançado 1 TOPOLOGIA DO R n 1. Considere o produto interno usual, no R n. ostre que para toda aplicação linear f : R n R existe um único vetor y R n tal que f (x) = x, y para

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x). P4 de MAT1104 2008.2 1ª parte, sem maple. 1.Seja f(x)= int(sqrt(1+t^4)/t,t=1..x^2). a) calcule a derivada de f(x). f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

Leia mais

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

Lista de Exercícios de Funções de Várias Variáveis

Lista de Exercícios de Funções de Várias Variáveis Lista de Exercícios de Funções de Várias Variáveis 29 de dezembro de 2016 2 Sumário 1 Sequências e Séries InnitasP1) 5 1.1 Sequências............................. 5 1.1.1 Digitado por:luele Ribeiro de

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Mais derivadas. 1 Derivada de logaritmos. Notas: Rodrigo Ramos. 1 o. sem Versão 1.0

Mais derivadas. 1 Derivada de logaritmos. Notas: Rodrigo Ramos. 1 o. sem Versão 1.0 Mais derivadas Notas: Rodrigo Ramos o. sem. 205 Versão.0 Obs: Esse é um teto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas que são pedidas ao longo do teto.

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Compacidade de conjuntos e operadores lineares

Compacidade de conjuntos e operadores lineares Compacidade de conjuntos e operadores lineares Roberto Imbuzeiro Oliveira 13 de Janeiro de 2010 No que segue, F = R ou C e (X, X ), (Y, Y ) são Banach sobre F. Recordamos que um operador linear T : X Y

Leia mais

1.3 Conjuntos de medida nula

1.3 Conjuntos de medida nula 1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos

Leia mais

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A.

Definição 1. Um ideal de um anel A é um subgrupo aditivo I de A tal que ax I para todo a A, x I. Se I é um ideal de A escrevemos I A. 1. Ideais, quocientes, teorema de isomorfismo Seja A um anel comutativo unitário. Em particular A é um grupo abeliano com +; seja I um subgrupo aditivo de A. Como visto no primeiro modulo, sabemos fazer

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes DAMCZB014-17SA Introdução à análise funcional Claudia Correa Conjuntos quocientes e espaços vetoriais quocientes O objetivo do presente texto é recordar as noções relacionadas a conjuntos quocientes e

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Lista 1: sistemas de equações lineares; matrizes.

Lista 1: sistemas de equações lineares; matrizes. Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas

Leia mais

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk Lista 3 Cálculo Vetorial Integrais de Linha e o Teorema de Green Parametrizações Encontre uma parametrização apropriada para a curva suave por partes em R 3. a) intersecção do plano z = 3 com o cilindro

Leia mais

COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO.

COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO. COMPARAÇÃO ENTRE ALGUMAS FERRAMENTAS DE ANÁLISE REAL DE UMA VARIÁVEL COM SEUS ANÁLOGOS EM ESPAÇOS MÉTRICOS E O TEOREMA DO PONTO FIXO. Maicon Luiz Collovini Salatti - luizcollovini@gmail.com Universidade

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019 Funções Geratrizes Rafael Kazuhiro Miyazaki - rafaelkmiyazaki@gmail.com 21 de Janeiro de 2019 1 Introdução Uma função geratriz (ou geradora) é uma função que carrega uma certa informação em sua série de

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa) Início: 15:00 Término: 16:50 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Programação Linear. Dualidade

Programação Linear. Dualidade Programação Linear Dualidade Dualidade Já vimos em sala que para cada PPL existe um outro PL chamado dual, que consiste em modelar um problema que utiliza os mesmos dados que o original, mas alterando

Leia mais

Topologia Geral. Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita

Topologia Geral. Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita Topologia Geral Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita Sumário Capítulo 1. Alguns conceitos básicos 5 Capítulo 2. Espaços topológicos 9 1. Espaços topológicos. Conjuntos abertos

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais