Probabilidades e Estatística

Tamanho: px
Começar a partir da página:

Download "Probabilidades e Estatística"

Transcrição

1 Departameto de Matemática robabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ 2 o semestre 2011/ o Teste A 08/06/2012 9:00 Duração: 1 hora e 30 miutos Justifique coveietemete todas as respostas! Grupo I valores 1. O úmero de carros que passam em cada período de um miuto um determiado poto de uma autoestrada é uma variável aleatória com distribuição de oisso de valor esperado λ. Tedo por base a cotabilização do úmero de automóveis que passam esse poto da autoestrada em cada um de 100 itervalos de um miuto, seleccioados ao acaso: (a) Deduza o estimador de máxima verosimilhaça de λ. Será que o estimador é cetrado? (3.0) V.a. de iteresse X úmero de carros que passam em cada período de um miuto... Distribuição X oisso(λ) arâmetro descohecido λ E(X) V (X), λ > 0 F.p. (X x) form e λ λ x x!, x 0, 1, 2,... Amostra x (x 1,..., x ) amostra de dimesão proveiete da população X Obteção do estimador de MV de λ asso 1 Fução de verosimilhaça X i idep L(λ x) (X i x i ) X i X ( e λ ) λ xi x i! e λ λ xi x, λ > 0 i! asso 2 Fução de log-verosimilhaça l L(λ x) λ + l(λ) x i l(x i!) asso 3 Maximização 1 A estimativa de MV de λ é aqui represetada por ˆλ e d l L(λ x) dλ 0 (poto de estacioaridade) λˆλ ˆλ : d 2 l L(λ x) dλ < 0 (poto de máximo) λˆλ 2 + xi 0 ˆλ xi < 0 ˆλ 2 ˆλ 1 x i x, média da amostra roposição verdadeira 1 Este procedimeto só deve ser aplicado se x i 0, sedo o resultado obtido, ˆλ x, também válido se x i 0. ágia 1 de 8

2 asso 4 Estimador de MV de λ Será represetado pela v.a. EMV(λ) 1 X i, média da amostra aleatória. Estimador de MV de λ é cetrado? EMV(λ) é um estimador cetrado de λ sse E( ) λ, λ > 0. Ora, ( ) E( ) 1 E X i 1 E(X i ) X i X 1 E(X) E(X) λ, λ > 0. Assim, coclui-se que é um estimador cetrado de λ. (b) Sabedo que foi cotabilizada a passagem de um total de 950 carros o referido poto da (2.0) autoestrada o cojuto dos 100 itervalos de um miuto seleccioados, costrua um itervalo, com ível de cofiaça de aproximadamete 95%, para o parâmetro λ. V.a. X i úmero de carros que passam o i ésimo período de um miuto, i 1,..., 100 i.i.d. X i X Situação X oisso(λ) λ descohecido 100 >> 30 (suficietemete grade) Obteção de IC para λ asso 1 Selecção da v.a. fulcral para λ Utilizaremos a v.a. fulcral para λ Z E( ) EMVV ( )] λ EMV(λ/) λ a ormal(0, 1), uma vez que os foi solicitada a determiação de um IC aproximado para o parâmetro do modelo de oisso e a dimesão da amostra justifica o recurso a uma aproximação distribucioal. asso 2 Obteção dos quatis de probabilidade Dado que (1 α) 100% 95% α 0.05, os quatis a utilizar são { a α Φ 1 (1 α/2) Φ 1 (0.975) tabela b α Φ 1 (1 α/2) Φ 1 (0.975) Estes equadram a v.a. fulcral para λ com probabilidade aproximadamete igual a (1 α). asso 3 Iversão da desigualdade a α Z b α (a α Z b α ) 1 α ( a α λ b α ) 1 α b α λ a α ] 1 α Φ 1 (1 α/2) λ + Φ 1 (1 α/2) ] 1 α. ágia 2 de 8

3 asso 4 Cocretização Ao ter-se em cosideração que 100 x 1 x i Φ 1 (1 α/2) , coclui-se que o IC aproximado a 95% para λ é dado por ] x IC(λ) x ± Φ 1 (1 α/2) ] ± , ]. 2. Uma máquia produz peças cujo comprimeto, X, é uma variável aleatória com distribuição ormal, de parâmetros µ 20 cm e σ 1 cm se a máquia está afiada. De modo a cotrolar a produção, um operador da máquia seleccioou ao acaso 10 peças que coduziram aos seguites resultados: 10 x i e 10 (x i x) (a) Cosiderado σ descohecido, diga o que pode cocluir sobre a hipótese de µ 20 cm, ao ível (2.5) de sigificâcia de 2%. V.a. de iteresse X comprimeto de uma peça Situação X ormal(µ, σ 2 ) µ descohecido σ 2 descohecido Hipóteses H 0 : µ µ 0 20 H 1 : µ µ 0 20 Nível de sigificâcia α Estatística de teste T µ 0 S H0 t ( 1) pois pretedemos efectuar um teste sobre o valor esperado de uma população ormal com variâcia descohecida. Região de rejeição de H 0 (para valores da estatística de teste) Tratado-se de um teste bilateral (H 1 : µ µ 0 ), a região de rejeição de H 0 é uma reuião de itervalos do tipo W (, c) (c, + ), ode c : (Rejeitar H 0 µ µ 0 ) α 0, i.e., Decisão Uma vez que c F 1 t ( 1) (1 α 0 /2) 10 F 1 t (10 1) (1 0.02/2) F 1 t (9) (0.99) tabela x 1 x i s (xi x) , ágia 3 de 8

4 o valor observado da estatística é igual a t x µ 0 s Como t 4.36 W (, 2.821) (2.821, + ), devemos rejeitar H 0 fabricate) a qualquer.s. maior ou igual a 2%. (hipótese do (b) Teste, ao ível de sigificâcia de 5%, a hipótese da variabilidade do comprimeto das peças (2.5) produzidas pela máquia ser igual ao esperado (σ 1 cm) cotra a alterativa de ser superior ao esperado (σ > 1 cm). Situação X ormal(µ, σ 2 ) µ descohecido σ 2 descohecido Hipóteses H 0 : σ σ 0 1 H 1 : σ > σ 0 1 Nível de sigificâcia α Estatística de teste T ( 1)S2 σ 2 0 H0 χ 2 ( 1) pois pretedemos efectuar um teste sobre a variâcia de uma população ormal com valor esperado descohecido. Região de rejeição de H 0 (para valores da estatística de teste) Tratado-se de mais um teste uilateral superior (H 1 : σ > σ 0 ), a região de rejeição de H 0 é um itervalo à direita do tipo W (c, + ), ode c : (Rejeitar H 0 σ σ 0 ) α 0, i.e., c F 1 χ 2 ( 1)(1 α 0 ) F 1 χ 2 (9)(0.95) tabela Decisão Dado que 10, (x i x) e σ 0 1, o valor observado da estatística é igual a ( 1) s2 t σ0 2 (x i x) σ 2 0 Dado que t 5.95 W (16.92, + ), ão devemos rejeitar H 0 a qualquer.s. meor ou igual a 5%. ágia 4 de 8

5 Grupo II valores 1. As medições de uma ezima, referetes a uma amostra casual de 100 pacietes que sofrem de hepatite viral aguda, ecotram-se agrupadas em classes a tabela seguite: Classe ]2.4, 2.5] ]2.5, 2.6] ]2.6, 2.7] ]2.7, 2.8] Número de pacietes Será que uma distribuição ormal, com valor esperado 2.6 e desvio padrão, se ajusta bem a estes (4.0) dados? Teste esta hipótese com base o valor-p. V.a. de iteresse X medição de uma ezima em paciete com hepatite viral aguda Hipóteses H 0 : X Normal(2.6, 2 ) H 1 : X Normal(2.6, 2 ) Estatística de Teste k (O i E i ) 2 T E i a H0 χ 2 (k β 1), ode: k No. de classes; O i Frequêcia absoluta observável da classe i; E i Frequêcia absoluta esperada, sob H 0, da classe i; β No. de parâmetros a estimar 0. Região de rejeição de H 0 (para valores de T ) or estar a efectuar-se um teste de ajustameto, a região de rejeição de H 0 escrita para valores de T é um itervalo à direita W (c, + ). Frequêcias absolutas esperadas sob H 0 ara já, ote-se que o cojuto de valores possíveis da distribuição Normal(2.6, 2 ) é IR; daí que se passe a cosiderar duas ovas classes: os itervalos ], 2.4] e ]2.8, +, respectivamete, com frequêcia observada 0. Se para além disso atedermos a que F X H0 (x) Φ ( ) x 2.6, as frequêcias absolutas esperadas sob H 0, E i p 0 i (X classe i H 0), são, para i 1, 2, iguais a E 1 X ], 2.4] X Normal(2.6, 2 ) ] ( ) Φ 100 Φ( 2) Φ(2)] tabela 100 ( ) E 2 X ]2.4, 2.5] X Normal(2.6, 2 ) ] ( ) ( )] Φ Φ 100 Φ( 1) Φ( 2)] 100 ( ) ágia 5 de 8

6 E 3 X ]2.5, 2.6] X Normal(2.6, 2 ) ] ( ) ( )] Φ Φ 100 Φ(0) Φ( 1)] 100 ( ) E, por simetria da f.d.p. da Normal(µ, σ 2 ) em toro de µ 2.6, obtêm-se as restates frequêcias esperadas sob H 0 : E 4 E , E 5 E , E 6 E É ecessário agrupar classes uma vez que se verifica E i 5 em meos de 80% das classes (em todas elas tem-se E i 1). Agrupem-se as duas classes que violam essa codição, a 1 a e a 6 a : ficado a ova classe igual a ], 2.4] ]2.8, + com frequêcia observada 0 e frequêcia esperada sob H 0 igual a Decisão No cálculo do valor observado da estatística de teste covém adiatar a seguite tabela auxiliar. Classe i Freq. abs. obs. Freq. abs. esper. sob H 0 arcelas valor obs. estat. teste i o i E i p 0 (o i E i ) 2 i E i 1 ova ], 2.4] ]2.7, (0 4.56) ]2.4, 2.5] ( ) ]2.5, 2.6] ]2.6, 2.7] ]2.7, 2.8] k oi 100 k Ei 100 t k (o i E i ) 2 E i Decisão (com base em itervalo para o valor-p) Uma vez que este teste está associado a uma região de rejeição que é um itervalo à direita temos: valor p (T > t H 0 ) (T > H 0 ) 1 F χ 2 (5 0 1) (5.2997). Recorredo às tabelas de quatis da distribuição do qui-quadrado podemos adiatar um itervalo para o valor-p deste teste. Com efeito, ao equadrarmos coveietemete t , obtemos sucessivamete Logo: F 1 (0.70) χ 2 (4) < < F 1 χ(4)(0.80) < F χ 2 (5.2997) < 0.80 (4) < valor p < ão devemos rejeitar H 0 a qualquer.s. α 0 20%, por exemplo, a qualquer dos íveis usuais de sigificâcia de 1%, 5% e 10%; devemos rejeitar H 0 a qualquer.s. α 0 30%. Alterativa Decisão (com base o valor-p determiado usado máquia de calcular) ágia 6 de 8

7 Uma vez que este teste está associado a uma região de rejeição que é um itervalo à direita temos: valor p (T > t H 0 ) Cosequetemete: (T > H 0 ) 1 F χ 2 (5 0 1) (5.2997) ão devemos rejeitar H 0 a qualquer.s. α %, por exemplo, a qualquer dos íveis usuais de sigificâcia de 1%, 5% e 10%; devemos rejeitar H 0 a qualquer.s. α 0 > %. 2. Num estudo sobre seguraça rodoviária, pretede-se aalisar a ifluêcia da velocidade a que um veículo pesado se desloca (x, em metros por segudo) sobre a distâcia percorrida pelo veículo após o iício da travagem (Y, em metros), deomiada distâcia de travagem. Cosidere o modelo de regressão liear simples, Y i β 0 + β 1 x i + ɛ i (i 1,..., ), com as hipóteses de trabalho habituais, e que as observações relativas a 52 veículos pesados coduziram aos seguites resultados: 52 x i 1 138, 52 x2 i , 52 y i 249.7, 52 y2 i , 52 x iy i (a) Obteha as estimativas de míimos quadrados de β 0 e β 1 e iterprete a estimativa de β 1. (2.0) Modelo de RLS Y i β 0 + β 1 x i + ɛ i Y i distâcia de travagem do i ésimo veículo pesado x i velocidade a que o i ésimo veículo pesado se desloca ɛ i erro aleatório associado à medição da distâcia de travagem do i ésimo veículo] Estimativas de β 0 e β 1 Uma vez que 52 e x i 1 138, x 1 x i x2 i x2 i ( x) y i 249.7, ȳ 1 y i y2 i y2 i (ȳ) x iy i x iy i x ȳ ,] a estimativa dos míimos quadrados de β 1 e β 0 são, para este modelo, iguais a: ˆβ 1 x iy i xȳ x2 i ( x) ˆβ 0 ȳ ˆβ 1 x ágia 7 de 8

8 Iterpretação da estimativa de míimos quadrados de β 1 ˆβ Caso a velocidade a que veículo pesado se desloca aumete em um m/s, estima-se que o valor esperado da distâcia de travagem aumete aproximadamete metros. (b) Costrua um itervalo de cofiaça a 95% para β 1. Será que existe uma relação liear etre a (4.0) distâcia média de travagem de um veículo pesado e a velocidade a que o mesmo se desloca? Hipóteses de trabalho ɛ i i.i.d. Normal(0, σ 2 ), i 1,..., (hipótese de trabalho) β 0, β 1, σ 2 descohecidos] ágia 8 de 8

9 IC a 95% para β 1 asso 1 V.a. fulcral para β 1 Z ˆβ 1 β 1 ˆσ 2 x2 i x2 t ( 2) asso 2 Quatis de probabilidade Já que (1 α) 100% 95% temos α 0.05 e lidaremos com dois quatis simétricos a α b α iguais a: ±F 1 t ( 2) (1 α/2) ±F 1 t (52 2) (1 0.05/2) F 1 t (50) Φ 1 (0.975) tabela ± asso 3 Iversão da desigualdade a α Z b α (a α Z b α) 1 α F 1 t ( 2) (1 α/2) { ˆβ1 F 1 t ( 2) (1 α/2) ˆβ 1 β 1 ˆσ 2 x 2 x2 i ˆσ 2 x 2 i x2 β 1 ˆβ 1 + F 1 t ( 2) (1 α/2) F 1 t ( 2) (1 α/2) 1 α } ˆσ 2 1 α. x 2 i x2 asso 4 Cocretização Tedo em cota que a estimativa de σ 2 é dada por ( ) ( ˆσ 2 1 )] yi 2 ȳ 2 ( 2 ˆβ 1 ) 2 x 2 i x 2 segue-se 1 ( ) , IC (1 α) 100% (β 1) IC 95% (β 1) ˆβ 1 ± F 1 t ( 2) (1 α/2) ± , 0.215]. 39 ] ] ˆσ 2 x2 i x2 Hipóteses H 0 : β 1 β 1,0 0 H 1 : β 1 β 1,0 0 (existe relação liear etre o valor esperado de Y e x) Decisão Ivocado a relação etre itervalos de cofiaça e testes de hipóteses bilaterais, devemos rejeitar a hipótese H 0 : β 1 β 1,0 0 2 ao.s. de α 100% 100% 95% 5% (ou a qualquer outro.s. maior que 5%) já que 0 IC 95% (β 1 ) 91, 0.215]. Esta aalogia é válida porque: a v.a. fulcral para β 1 usada a costrução do IC é também utilizada para defiir a estatística de teste sobre β 1 ; o ível de sigificâcia do teste, 5%, é igual a (100% ível de cofiaça do IC).] 2 A favor da hipótese H 1 : β 1 β 1,0 0. ágia 9 de 8

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática robabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ o semestre 0/0 o Teste A 08/06/0 9:00 Duração: hora e 30 miutos Justifiue coveietemete todas as respostas!

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática robabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec 2 o semestre 20/202 2 o Teste B 08/06/202 :00 Duração: hora e 30 miutos Justifique

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas o semestre 017/018 04/07/018 15:00 o Teste C 10 valores 1. Admita que os tempos (em cetea

Leia mais

Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique coveietemete todas as respostas 2 o semestre 2016/2017 16/06/2017 9h:00 2 o teste 10 valores 1.

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Grupo I robabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 2 o semestre 2016/2017 05/07/2017 15:00 2 o Teste C 10 valores 1. Admita que a proporção

Leia mais

Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique coveietemete todas as respostas 2 o semestre 206/207

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 /0/208 09:00 2 o teste A 0 valores. Admita

Leia mais

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique coveietemete todas as respostas 1 o semestre 2017/2018 11/01/2018

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 1 o semestre 2018/2019 30/01/2019 15:00 2 o Teste C 10 valores 1. Seja X X 1, X 2,...,

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 09/06/2016 11:00 2 o teste B Grupo I 10 valores 1. Seja

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Justifique coveietemete todas as respostas 2 o semestre 207/208

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique coveietemete todas as respostas! o semestre 015/016

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Duração: 90 miutos Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! o semestre 015/016 09/06/016 11:00 o teste B Grupo I 10 valores 1. Seja (X 1,

Leia mais

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS Probabilidades e Estatística / Itrod. às Probabilidades e Estatística TODOS OS CURSOS Exame Época Especial 7/8 3/7/7 9: Duração: 3 horas Justifique coveietemete todas as respostas Grupo I 5 valores. Uma

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Gruo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as resostas 1 o semestre 2017/2018 30/01/2018 15:00 2 o Teste C 10 valores 1. A variável aleatória X

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Probabilidades e Estatística TODOS OS CURSOS Exame Época Especial 2016/2017 24/07/2017 09:00 Duração: 3 horas Justifique coveietemete todas as respostas Grupo I 5 valores 1. Uma compahia de seguros divide

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática Probabilidades e Estatística Primeiro exame/segudo teste 2 o semestre 29/21 Duração: 18/9 miutos Grupo I Justifique coveietemete todas as respostas. 17/6/21 9: horas 1. Com base

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ o semestre 011/01 Exame de Época

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar potual por itervalos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos potual e itervalar Lic. Eg. Biomédica e Bioegeharia-2009/2010 potual por itervalos A Teoria das Probabilidades cosiste

Leia mais

Estatística II Licenciatura em Gestão TESTE I

Estatística II Licenciatura em Gestão TESTE I Estatística II Liceciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circustâcia, é motivo suficiete para a aulação

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Justifique coveietemete todas as respostas 2 o semestre 2017/2018

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 8//207 :00 o Teste B 0 valores. Um teste

Leia mais

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique coveietemete todas as respostas 2 o semestre 208/209 04/05/209 9:00 o Teste A 0 valores. As amostras de

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste SEMESTRE PAR /7 Data: 3 de Juho de 7 Duração: h m Tóicos de Resolução.

Leia mais

Probabilidades e Estatística 2005/06

Probabilidades e Estatística 2005/06 Departameto de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística 2005/06 Resolução do 1 o Exame/2 o Teste 10/01/2006 h00 Grupo I - 5.0 val. 1. Um ovo método de detecção de

Leia mais

Probabilidades e Estatística MEEC, LEIC-A, LEGM

Probabilidades e Estatística MEEC, LEIC-A, LEGM Departamento de Matemática Probabilidades e Estatística MEEC, LEIC-A, LEGM Exame a Época / o Teste (Grupos III e IV) o semestre 009/00 Duração: 80 / 90 minutos /06/00 9:00 horas Grupo I Exercício 5 valores

Leia mais

Complementos de Probabilidades e Estatística

Complementos de Probabilidades e Estatística Departameto de Matemática, IST Secção de Probabilidades e Estatística Complemetos de Probabilidades e Estatística Exame de a. Época / 2o. Teste 2o. Semestre 2009/0 Duração: 3 horas / hora e 45 miutos Se

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

1 Estimação de Parâmetros

1 Estimação de Parâmetros 1 Estimação de arâmetros Vários tipos de estudos tem o objetivo de obter coclusões fazer iferêcias a respeito de parâmetros de uma população. A impossibilidade de avaliar toda a população faz com que a

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 9 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 1 o semestre 217/218 3/1/218 11:3 1 o Teste C 1 valores 1. A Marta e o João irão passar

Leia mais

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA Objetivos da aula: Compreeder que um estimador é uma variável aleatória e, portato, pode-se estabelecer sua distribuição probabilística; Estabelecer

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Lista IC, tamanho de amostra e TH

Lista IC, tamanho de amostra e TH Lista IC, tamaho de amostra e TH 1. Cosidere a amostra abaixo e costrua um itervalo de cofiaça para a média populacioal. Cosidere um ível de cofiaça de 99%. 17 3 19 3 3 1 18 0 13 17 16 Como ão temos o

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

7. Estimação por intervalos

7. Estimação por intervalos 7. Estimação por itervalos 7.1 Itervalos de cofiaça. (8-1, 8-2.4) Motivação 7.1 Itervalos de cofiaça Para além de uma estimativa potual para o parâmetro descohecido, é importate adiatar um itervalo que

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ o semestre 11/1 Exame de Época Especial

Leia mais

Caderno de Exercício 2

Caderno de Exercício 2 1 Cadero de Exercício Estimação Potual e Itervalos de Cofiaça 1. Exercícios Aulas 1. Exercício 8.6 do livro Statistics for Ecoomics ad Busiess. O úmero de adares vedidos em cada dia por uma empresa imobiliária

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

Exame Final Nacional de Matemática Aplicada às Ciências Sociais a Fase

Exame Final Nacional de Matemática Aplicada às Ciências Sociais a Fase Exame Fial Nacioal de Matemática Aplicada às Ciêcias Sociais 04 -. a Fase Proposta de resolução... Aplicado o método de Hodt a distribuição dos madatos, temos: Partido A B C D E Número de votos 4 4 Divisão

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Inferência Estatística

Inferência Estatística Iferêcia Estatística opulação Amostra Itroduç Itrodução à Iferêcia Estatística Como tirar coclusões tomar decisões a partir de iformação parcial / icompleta (amostra) projectado /geeralizado resultados

Leia mais

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma

Leia mais

6. Estimação pontual. 6.1 Inferência estatística. (7-1)

6. Estimação pontual. 6.1 Inferência estatística. (7-1) 6. Estimação potual A Teoria das Probabilidades compreede o estudo dos modelos matemáticos capazes de descrever o comportameto de feómeos aleatórios, modelos esses que se dizem probabilísticos. Foi sobre

Leia mais

d) A partir do item c) encontre um estimador não viciado para σ 2.

d) A partir do item c) encontre um estimador não viciado para σ 2. Uiversidade de Brasília Departameto de Estatística 6 a Lista de PE 1 Seja X 1,, X ) uma AAS tal que EX i ) = µ e VarX i ) = σ 2 a) Ecotre EXi 2 ) e E X 2) b) Calcule EX i X) X i X) 2 c) Se T =, mostre

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Regressão Linear Múltipla

Regressão Linear Múltipla Regressão Liear Múltipla Lucas Sataa da Cuha http://www.uel.br/pessoal/lscuha/ 28 de ovembro de 2018 Lodria 1 / 20 Há muitos problemas que é razoável esperar que as previsões de uma variável devam melhorar

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

Nosso objetivo agora é estudar a média de uma variável quantitativa X. Denotamos a média desconhecida como E(X)=µ

Nosso objetivo agora é estudar a média de uma variável quantitativa X. Denotamos a média desconhecida como E(X)=µ TESTE DE HIPÓTESES PARA A MÉDIA POPULACIONAL µ Nosso objetivo agora é estudar a média de uma variável quatitativa X. Deotamos a média descohecida como E(X)µ Mais precisamete, estimamos a média µ, costruímos

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros População p Amostra X S pˆ (parâmetros:

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 mutos Grupo I Probabldades e Estatístca LEGM, LEIC-A, LEIC-T, MA, MEMec Justfque coveetemete todas as respostas 2 o semestre 2017/2018 14/06/2018 11:00 2 o Teste B 10 valores 1. Os dvíduos

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Modelos de regressão É usual estarmos interessados em estabelecer uma relação entre uma variável

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CESPE/UB FUB/0 fa 5 4 CONHECIMENTOS ESPECÍFICOS 60 As distribuições B e C possuem os mesmos valores para os quartis Q e Q, e o quartil superior em B correspode ao quartil cetral (Q ) da distribuição A.

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Duração: 90 mutos Grupo I Probabldades e Estatístca LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBol, MEBom, MEEC, MEFT, MEMec, MEQ Justfque coveetemete todas as respostas 1 o semestre 018/019 10/01/019 09:00 o

Leia mais

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e Prof. Jaete Pereira Amador 1 1 Itrodução Um fator de grade importâcia a pesquisa é saber calcular corretamete o tamaho da amostra que será trabalhada. Devemos ter em mete que as estatísticas calculadas

Leia mais

Complementos de Probabilidades e Estatística

Complementos de Probabilidades e Estatística Departameto de Matemática, IST Uidade de Probabilidades e Estatística Complemetos de Probabilidades e Estatística 2o. Teste 2o. Semestre 2010/11 Duração: 1 hora e 45 miutos 08/06/2011 8 horas Sala V1.08

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Grupo I. (a) A função de probabilidade marginal de X, P (X = x), é dada por

Grupo I. (a) A função de probabilidade marginal de X, P (X = x), é dada por Probabilidades e Estatística + Probabilidades e Estatística I Solução do Exame de 2 a chamada 3 de Fevereiro de 2003 LEFT + LMAC Grupo I (a) A função de probabilidade marginal de X, P (X = x), é dada por

Leia mais

Estimação de Parâmetros. 1. Introdução

Estimação de Parâmetros. 1. Introdução Estimação de Parâmetros. Itrodução O objetivo da Estatística é a realização de iferêcia acerca de uma população, baseadas as iformações amostrais. Como as populações são caracterizados por medidas uméricas

Leia mais

σ = Proporção (estrato C): =

σ = Proporção (estrato C): = Ficha para praticar 16 1.1. Por exemplo: Amostra:.º 7 (Vera Lima).º 6 (Vasco Braga).º 5 (Berardo Silva).º (Liliaa Pires).º 1 (Joaa Cardoso).º 1 (Pedro Vieira).º (Aa Sousa).º 10 (Fracisco Medes) 1.. a)

Leia mais

ESTIMAÇÃO PARA A MÉDIA

ESTIMAÇÃO PARA A MÉDIA ESTIMAÇÃO PARA A MÉDIA Objetivo Estimar a média de uma variável aleatória, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Vamos observar elemetos, extraídos ao

Leia mais

Exercícios de Intervalos de Confiança para media, variância e proporção

Exercícios de Intervalos de Confiança para media, variância e proporção Exercícios de Itervalos de Cofiaça para media, variâcia e proporção 1. Se uma amostra aleatória =5, tem uma média amostral de 51,3 e uma desvio padrão populacioal de σ=. Costrua o itervalo com 95% de cofiaça

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Jaete Pereira Amador Itrodução Os métodos utilizados para realização de iferêcias a respeito dos parâmetros pertecem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através da

Leia mais

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

7. INTERVALOS DE CONFIANÇA

7. INTERVALOS DE CONFIANÇA 7 INTRVALOS D CONFIANÇA 00 stimação por itervalos,, é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro θ Se L(,, ) e U(,, ) são duas fuções tais que L < U e P(L θ U), o itervalo

Leia mais

Universidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Engenharia Civil Introdução à Inferência Estatística - Prof a Eveliny

Universidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Engenharia Civil Introdução à Inferência Estatística - Prof a Eveliny 1 Itrodução Uiversidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Egeharia Civil Itrodução à Iferêcia Estatística - Prof a Eveliy Vimos o iício do curso como resumir descritivamete variáveis

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais