Introdução à Geometria
|
|
|
- Alfredo Leonardo Campelo Bugalho
- 8 Há anos
- Visualizações:
Transcrição
1 Introdução à Geometria Algumas noções 1. Norma de um vector Seja E um espaço vectorial real de dimensão finita E munido de um produto interno (u, v) u v. Dado um vector v E chama-se norma ou comprimento de v ao número real v = + v v (Exemplo: Se considerarmos em R n o produto interno usual a norma de v = (v 1,..., v n ) R n é v = + v v 2 n.) A função : E E definida por v = + v v para todo o vector v E satisfaz as seguintes propriedades (para todos os vectores v, u e w de E e todo o escalar λ R): 1) v 0. 2) v = 0 se e só se v = 0. 3) λv = λ v. 4) u + v 2 = u 2 + v 2 + 2u v. 5) u v 2 = u 2 + v 2 2u v. 6) Desigualdade de Cauchy-Schwarz v u v u e a igualdade dá-se se e só se existe λ R tal que u = λv ou v = λu. 7) Desigualdade do triângulo v + u v + u e a igualdade dá-se se e só se existe λ R, λ 0 tal que u = λv ou v = λu. 1
2 2 8) u v u v. 9) v + u 2 v u 2 = 4v u. 2. Aplicações ortogonais Considere um espaço vectorial real de dimensão finita E munido de um produto interno (u, v) u v. Definição. Uma função f : E E é uma aplicação ortogonal (relativamente a este produto interno) se para quaisquer dois vectores u, v de E se tem u v = f(u) f(v). Observação. É fácil ver, a partir da definição de norma de um vector, que uma aplicação ortogonal f preserva as normas dos vectores, i.e. f(v) = v, para todo o vector v E. Proposição Toda a aplicação ortogonal é uma aplicação linear bijectiva (ou seja um isomorfismo de espaços vectoriais). Demonstração. Seja f uma aplicação ortogonal. Vejamos primeiro que f é linear. Sejam u, v E. Temos f(u+v) f(u) f(v) 2 = f(u+v) 2 2f(u+v) ((f(u)+f(v))+ f(u)+f(v) 2 = = f(u+v) 2 2f(u+v) f(u) 2f(u+v) f(v)+ f(u) 2 +2f(u) f(v)+ f(v) 2. Como por hipótese f preserva o produto interno a última expressão é igual a u + v 2 2(u + v) (u) 2(u + v) (v) + u 2 + 2(u v) + v 2, e logo a u + v 2 2(u + v) (u + v) + u + v 2 = (u + v) (u + v) 2 = 0. Logo f(u + v) f(u) f(v) 2 = 0 e portanto f(u + v) = f(u) + f(v). Sejam u E, λ R. Temos f(λu) λf(u) 2 = f(λu) 2 2λ(f(λu) f(u)) + λf(u) 2. Por hipótese f preserva o produto interno e a norma donde f(λu) 2 = λu 2, λ(f(λu) f(u)) = 2λ(λu u), λf(u) 2 = λ 2 f(u) 2 = λ 2 u 2 = λu 2. Logo f(λu) λf(u) 2 = λu 2 2λ(λu u)+ λu 2 = λu λu 2 = 0, donde f(λu) = λf(u). Logo f é linear.
3 Já que f é um endomorfismo de E, que tem dimensão finita, para ver que f é bijectiva, basta mostrar que Kerf = {0}. Seja x Kerf. Então f(x) = 0 donde f(x) f(x) = 0, e portanto como f preserva o produto interno, temos x x = 0, implicando que x = 0. Logo Kerf = {0}. 3 Propriedades das aplicações ortogonais de espaços de dimensão finita I) A aplicação inversa de uma aplicação ortogonal é ainda ortogonal. II) A composição de duas aplicações ortogonais de E em E é uma aplicação ortogonal. III) Se λ é um valor próprio de uma aplicação ortogonal, então λ = 1. IV) Dada uma aplicação linear f : E E, as seguintes afirmações são equivalentes: (i) f : E E é uma aplicação ortogonal. (ii) f(u) = u para todo o vector u de E. (iii) Existe uma base ortonormada (e 1,..., e n ) de E tal que (f(e 1 ),..., f(e n )) é uma base ortonormada de E. (iv) Para toda a base ortonormada (e 1,..., e n ) de E, (f(e 1 ),..., f(e n )) é uma base ortonormada de E. (v) A matriz que representa f em relação a uma base ortonormada é uma matriz ortogonal (ou seja uma matriz tal que A T = A 1 ). V) Se f : E E é uma aplicação ortogonal, então para quaisquer vectores u, v tem-se (u, v) = (f(u), f(v)). VI) Se f : E E é uma aplicação ortogonal e u, v são vectores próprios associados a valores próprios distintos, então u v = 0. VII) Se f : E E é uma aplicação ortogonal e W é um subespaço vectorial, então f(w ) = (f(w )) Aplicações ortogonais de R 2 com o produto interno usual. Considere em R 2 o produto interno usual, que é o produto interno em relação ao qual a base canónica é ortonormada. Seja f uma aplicação ortogonal de R 2 em R 2, e A a matriz de f em relação à base canónica. Então, como a base canónica é ortornormada em relação ao produto interno usual, por IV v), a matriz A é ortogonal.
4 4 a c Seja A = Como A é ortogonal temos A b d T A = Id, donde a 2 + b 2 = 1 a 2 + c 2 = 1 c 2 + d 2 = 1. Temos também AA T = Id, donde b ac + bd = d 2 = 1 ab + cd = 0 Como a 2 + b 2 = 1 existe θ [0, 2π[ tal que a = cos θ e b = sin θ. Usando as equações acima fácilmente se conclui que então ou c = sin θ e d = cos θ, ou c = sin θ e d = cos θ. No primeiro caso temos det A = 1 e no segundo temos det A = 1. Vamos discutir separadamente os dois casos. Caso I: det A = 1 cos θ sin θ Seja A =, com θ [0, 2π[. sin θ cos θ 1 0 Se cos θ = 1 então ou A = e f = Id ou A = e f = Id. 0 1 Se cos θ 1 então o polinómio característico de A, que é x 2 2 cos θx + 1, não tem raízes reais donde f não tem nenhum valor próprio real. Em particular, para todo o vector não nulo v, f(v) e v são vectores linearmente independentes. Caso II: det A = 1 cos θ sin θ Se A =, então o polinómio característico de A, sin θ cos θ que é x 2 1 tem as raízes 1 e 1, donde existe uma base ortogonal de R 2 formada por vectores próprios de f. O subespaço próprio associado ao valor próprio 1 é o subespaço gerado pelo vector (cos( θ), sin( θ)). O 2 2 subespaço próprio associado ao valor próprio 1 é o subespaço gerado pelo vector ( sin( θ), cos( θ)). 2 2 Seja B = (v, u) uma base de R 2 tal que v é um vector próprio associado ao valor próprio 1 e u é um vector próprio[ associado] ao valor 1 0 próprio 1. Então D := M(f; B, B) é tal que D =, donde 0 1 para qualquer vector w = λ 1 v + λ 2 u R 2 se tem f(w) = λ 1 v λ 2 u e logo f, considerada como aplicação de espaço afim, é exactamente a reflexão na recta que passa por O = (0, 0) e está associada ao subespaço próprio associado ao valor próprio 1, ou seja o subespaço vectorial < (cos( θ), sin( θ)) >. 2 2
5 Definição No caso I, i. e. se det A = 1, diz-se que f é uma rotação de centro em (0, 0) e ângulo θ e denota-se f por R((0, 0), θ). Este nome vem do facto de para todo o θ 0, π se ter que o ângulo orientado de v e f(v) é θ. 5 Definição No caso II, i. e. se det A = 1, diz-se que f é uma reflexão. De facto f considerada como aplicação de espaço afim é exactamente a reflexão na recta s = (0, 0)+ < (cos( θ 2 ), sin(θ 2 )) >. 3. Ângulo orientado de duas rectas em R 2 Dadas duas rectas l, m de R 2, define-se o ângulo orientado de l e m, or (l, m) como sendo o menor dos ângulos orientados or (u, v), onde u é vector director de l e v é vector director de m. Note-se que o ângulo orientado de duas rectas varia entre 0 e π. Pela definição e tendo em conta que dados dois vectores u, v não nulos se tem or ( u, v) or (u, v) π + or (u, v) e or ( u, v) or (u, v), para calcular o ângulo orientado de duas rectas l e m basta tomar um vector director u de l e um vector director v de m. Se or (u, v ) < π, então or (l, m) = or (u, v ). Se or (u, v ) π então or (l, m) = or (u, v ) π. Têm-se as seguintes propriedades: 1) or (l, m) = π or (m, l); 2) se u e v são vectores directores de l e m respectivamente, então 2 or (l, m) 2 or (u, v), mod(2π); 3) se l, m, n são rectas de R 2, então 2 or (l, n) = 2( or (l, m) + or (m, n)), mod(2π). Demonstração Exercício. Exemplo Consideremos as rectas l = (3, 20)+ < (1, 1) > e m = (π, 2)+ < ( 3 + 1, 3 1) >. Temos cos ((1, 1), ( 3 + 1, 3 1)) = = 3 2
6 6 e logo ((1, 1), ( 3+1, 3 1)) = π. Como 1( 3 1) 1( 3+1) < 0, 6 or ((1, 1), ( 3 1, 3 + 1)) = 2π π 6. Logo or (l, m) = π π. 6
Seja f um endomorfismo de um espaço vectorial E de dimensão finita.
6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
Resolução do 1 o Teste - A (6 de Novembro de 2004)
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto
ficha 6 espaços lineares com produto interno
Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 006/07 5 a Lista: Ortogonalidade Nos exercícios em que n~ao é especificado o produto interno, considere o produto interno
Produto interno no espaço vectorial R n
ALGA - 00/0 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se
ficha 5 transformações lineares
Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação
Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática
Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula
ALGA I. Bases, coordenadas e dimensão
Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........
Lista 6: transformações lineares.
Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal
ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes
Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19
Capítulo 6 Espaços vectoriais com produto interno ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Definição e propriedades ALGA 2008/2009 Mest.
ÁLGEBRA LINEAR. Exame Final
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
10 a Lista de Exercícios
Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores
Produto interno, externo e misto
Produto interno, externo e misto Definição: Chama-se norma (ou comprimento) do vector u ao comprimento do segmento de recta [OP ] e representa-se por u. Definição: Sejam a = OA e b = OB dois vectores não
Produto interno no espaço vectorial R n
ALGA - 008/09 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se
Indicação de uma possível resolução do exame
Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere
ALGA I. Representação matricial das aplicações lineares
Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e
3 Espaços com Produto Interno
3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +
Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica
Lista de exercícios cap. 3. um produto interno no IR²:
Lista de exercícios cap. 3 1) Sejamu = (x, y ) e v = (x, y ). Mostrar que cada operação a seguir define um produto interno no IR²: a) u. v = x x + y y b) u. v = 2x x + 5y y c)u. v = x x + x y + x y + 2y
Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais
Matemática. Lic. em Enologia, 2009/2010
Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v
Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia
Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
ESPAÇOS VETORIAIS EUCLIDIANOS
ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma
Produto interno e produto vetorial no espaço
14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................
TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial
TESTE FINAL DE ÁLGEBRA LINEAR 18 de Janeiro de 2017 Instituto Superior Técnico - Engenharia Aeroespacial Nome: Número: O que vai fazer? Só T1+T2 Só T3 T1+T2 e T3 Problema a b c d lalala Problema a b c
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
4 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008
4 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 8 Solução de alguns exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A,
Forma Canônica de Matrizes 2 2
Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).
F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que
Ângulo e ortogonalidade em espaços com produto interno
Ângulo e ortogonalidade em espaços com produto interno Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Definir a noção de ângulo
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Matemática /09 - Produto Interno 32. Produto Interno
Matemática - 2008/09 - Produto Interno 32 Produto Interno A noção de produto interno (ou escalar) de vectores foi introduzida no ensino secundário, para vectores com duas ou três coordenadass. Neste capítulo
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto
Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC
Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss
ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral
Módulo 9 ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Contents 9.1 Operadores auto-adjuntos (simétricos e hermitianos) 136 9. Teorema espectral para operadores auto-adjuntos...........
1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:
Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna
Produto interno, externo e misto de vectores
MTDI I - 00/08 - Produto Interno Produto interno, externo e misto de vectores A noção de produto interno (ou escalar) de vectores foi introduzida no ensino secundário, para vectores com duas ou três coordenadass.
INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano
1 INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano Exercícios - transformações lineares determinante e
EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço
6 Valores e Vectores Próprios de Transformações Lineares
Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
Colectânea de Exercícios
ÁLGEBRA Colectânea de Exercícios P. Milheiro de Oliveira 1998/1999 Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto A presente colectânea de exercícios foi elaborada para
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l
Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
Aula 6 Produto interno
MÓDULO 1 - AULA 6 Objetivos Aula 6 Produto interno Estabelecer os conceitos de norma de um vetor e de ângulo entre dois vetores do espaço. Definir o produto interno de vetores no espaço e estabelecer suas
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas
Álgebra Linear e Geometria Analítica Folhas práticas OCV 2009/10
3901N3 - Álgebra Linear e Geometria Analítica Folhas práticas OCV 2009/10 Salvatore Cosentino Departamento de Matemática e Aplicações - Universidade do Minho Campus de Gualtar - 4710 Braga - PORTUGAL gab
1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.
ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V
Sebenta de exercícios de Álgebra Linear e Geometria Analítica. Curso: Eng. Topográ ca
Sebenta de exercícios de Álgebra Linear e Geometria Analítica Curso: Eng. Topográ ca Ano Lectivo 009/010 4 de Setembro de 009 (Versão: 1.0) Índice Notações e terminologia ii 1 Revisão sobre noções elementares
Um Estudo Sobre Espaços Vetoriais Simpléticos
Um Estudo Sobre Espaços Vetoriais Simpléticos Fabiano Borges da Silva Lívia T. Minami Borges 28 de novembro de 2015 Resumo O presente artigo estuda de maneira detalhada espaços vetoriais que possuem uma
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00
Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00 QUESTÃO 1 (1,2 pts) - Determine os valores de a R para os quais os vetores u = (1, 0, a), v = ( 2, 1, 0) e w = (a,
= f(0) D2 f 0 (x, x) + o( x 2 )
6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos
1 Grupos (23/04) Sim(R 2 ) T T
1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.
1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:
Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:
Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números
Álgebra Linear - Exercícios resolvidos
Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos
Problemas de Álgebra Linear
Problemas de Álgebra Linear Curso: Engenharia Aeroespacial o Semestre 203/204 Prof Paulo Pinto http://wwwmathistutlpt/ ppinto/ Conteúdo Sistemas de equações lineares e álgebra matricial Álgebra de matrizes
Pequena Introdução à Trigonometria Hiperbólica
Pequena Introdução à Trigonometria Hiperbólica (Filipe Oliveira, 9) 1 Motivação Consideremos o plano euclidiano munido de um referencial ortonormado (, e 1, e ). Quando θ percorre o intervalo [; π[, o
Universidade Federal de Uberlândia Faculdade de Matemática
Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais
Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 8 Formas Bilineares Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 8: Formas Bilineares Meta
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
Ficha de Trabalho 09 e 10
Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização
(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:
1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016
1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de
Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q
Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática
III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1
Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então
OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS*
OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* FABIANA BARBOSA DA SILVA, ALINE MOTA DE MESQUITA ASSIS, JOSÉ EDER SALVADOR DE VASCONCELOS Resumo: o objetivo deste artigo é apresentar
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
ALGA - Eng. Civil e Eng. Topográ ca - ISE / Geometria Analítica 89. Geometria Analítica
ALGA - Eng. Civil e Eng. Topográ ca - ISE - 011/01 - Geometria Analítica 9 Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste
MAT 112 Vetores e Geometria. Prova SUB C
MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.
PROBLEMAS DE ÁLGEBRA LINEAR
PROBLEMAS DE ÁLGEBRA LINEAR P. FREITAS Conteúdo. Números complexos. Sistemas de equações; método de eliminação de Gauss 3. Operações com matrizes 3 4. Inversão de matrizes 4 5. Característica e núcleo
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
