Funções de distribuição quânticas

Tamanho: px
Começar a partir da página:

Download "Funções de distribuição quânticas"

Transcrição

1 Bose-Einstein: Funções de distribuição quânticas f ε) 1 BE( ε α e e kt 1 Fermi-Dirac: f FD (ε) e 1 ε-ε F kt + 1 Boltzmann (clássica): f Boltz (ε) e 1 ε α e kt Essas funções de distribuição fornecem a probabilidade de ocupação, por intervalo de energia, dos estados de um sistema à temperatura T. Cuidado, pois a taxa de ocupação (ou número médio de partículas por estado), requer o conhecimento de mais um parâmetro, que é a densidade de estados (e a informação de quantas partículas podem ocupar um determinado estado). 1

2 Densidade de estados Problema: N partículas (clássicas) confinadas em um volume V L. Níveis de energia para um poço infinito D de lado L:, que podemos escrever: Que é a equação de 1 esfera de raio R (E n /E 0 ) 1/ no espaço n x, n y, n z. Assim, o número de estados abaixo de R é: E a densidade de estados:, ou Podemos então determinar a constante α pela condição de normalização.

3 Limites de validade da distribuição de Maxwell-Boltzmann: partículas não relativísticas, pois usamos E K mv /; λ << d (distância intermolecular muito maior que o comprimento de onda de de Broglie). h Mas: λ h/p e p /m kt/. Portanto: λ. Assim: mkt h V N h << ou, << 1 / mkt N V ( mkt ) / α ( πmkt ) V α h N Mas acabamos de ver que: e h N πmkt e / ( ) V e -α << 1 para que a função de distribuição de Boltzmann possa ser usada. Caso de 1 mol de H em CNTP: e α h c N ( 1,4 kev.nm) ( ) / πmc kt V ( π GeV 0,05 ev) 5 ( 1,4 ev.m) ,051 6 / ( π ev 5 ev) /,4 m 10 ( 14) / 6 10,4 10 0,051 5,5 10 cm 10 5 << 1

4 Distribuição de Boltzmann n T ε ( ε ) d n T ε ( ε ) d 0,950 0,599 kt n T ε ( ε ) d 0,49 4

5 Distribuição de Bose n T ε ( ε ) d n T ε ( ε ) d 0,778 9,88 kt n T ε ( ε ) d 5,4 5

6 Distribuição de Fermi ε F n( ε F ) 0,5 kt 6

7 Limite ε >> kt n Boltz ~ n Bose ~ n Fermi << 1 7

8 Propriedades das distribuições Distribuição Características Exemplo Boltzmann Partículas idênticas, mas distinguíveis Gás ideal Bose-Einstein Partículas idênticas, indistinguíveis, que não obedecem ao Princípio de Exclusão (spin inteiro ou nulo) Gás de fótons, 4 He Fermi-Dirac Partículas idênticas, indistinguíveis, que obedecem ao Princípio de Exclusão (spin semi-inteiro) Gás de elétrons 8

9 Calor específico de um sólido cristalino Modelo clássico: N A átomos, com graus de liberdade de oscilação. Cada oscilador unidimensional tem gdl, com kt/ de energia em cada um. Assim, du d(rt ) U N A kt RT. Mas CV R dt dt Lei de Dulong-Petit C V 0 se T 0 K, variando com T para baixas T. Einstein (1907): osciladores quantizados. 9

10 Probabilidade da existência de um fônon de energia à temperatura T: hω A energia interna do sólido deve ser a energia contida nos fônons em 1 mol do sólido. Isso deve ser a probabilidade do fônon existir, vezes a energia por fônon,, vezes o peso estatístico para 1 mol de sólido, g N A. Assim, hω (Bose-Einstein) 10

11 hω kt E Não funciona para baixas T Debye osciladores acoplados A energia média, por fônon, num sólido à temperatura T, é: Para altas temperaturas, hω << kt e, nesse caso, u kt, os níveis parecem contínuos e o resultado clássico C R vale. Quando hω >> kt, a energia média de um fônon é muito menor que o espaçamento dos níveis e ele não consegue trocar energia com os átomos. Nessa situação os átomos não conseguem absorver energia e C V tende a zero. 11

12 4 He líquido A transição de fase He1 He é clara na curva do calor específico em função da temperatura. O ponto de transição é conhecido como ponto λ: 10 6 O He líquido ferve na fase He1 e deixa de fazê-lo na fase He, pois a viscosidade 0. 1

13 Vimos que o número de partículas é dado por: N 0 n( E) de ( mkt ) / g( E) f ( E) de ( m) Bose h 0 0 1/ π / V e α E E e 1/ kt de 1 π V x dx com x E/kT α x h e e 1 0 O problema com a nossa contagem de número de estados, é que usamos uma distribuição contínua de energias. Quando E é grande, isso não é um problema, pois a densidade de estados é muito grande. Mas, quando E 0, temos problemas, pois, g(e) E 1/ g(e) 0 se E 0. Quando T é baixa, a probabilidade de haver muitos bósons no estado de energia mais baixa é muito grande e aí nossa contagem erra feio. Ou seja, nossa condição de normalização deixa de valer abaixo de uma temperatura crítica, T C. Vamos então assumir a normalização como: ( mkt ) / 0 AV α π V x 1/ / N n + dx n0 + ( kt ) G( ) α x h e e 1 0 1/ x G( α) dx Para α 0: G( π 0), 61 α x e e 1 Com: 0 1

14 Quando α ~ 1/N (e α 1) já é suficientemente pequeno para que possamos usar o resultado de G(0) e determinar o número de partículas no estado fundamental: ( ) / ( ) / π n N AV kt G(0) N AV, 61 0 kt / T 1 N 0 N 1 ; e T T C C k,61av Ou: n n N 0 1 T T C / No caso do He, T C : T C T C π πh c kmc π(00 MeV.fm) -5 4 GeV 8,6 10 ev.k π,75 K,74 K 8,6 / πh km 8 1,9 10 m,61 ρ,61 / / 1 ( 7 7,7 10 m ) Abaixo dessa temperatura (na verdade,17 K), a fração de átomos no estado fundamental (com propriedades de superfluido) aumenta. 14 / Comentar He, T C,7 mk

15 Boltzmann como boa aproximação das distribuições quânticas Fator de Boltzmann: n ( ε ) ( ε ) g g ( ε ) ( ε ) e ε ε kt n Podemos usá-lo para determinar a razão de ocupação de estados em um sistema quântico, quando ε >> kt. Exemplo: colisões térmicas de átomos em um gás à temperatura T. Estados excitados são pouco populados podemos usar o fator de Boltzmann para determinar as populações relativas e determinar as correspondentes intensidades de transição. Ou vice-versa, como discutimos no caso da determinação de temperatura de estrelas a partir da observação de espectros. Vamos usar o fator de Boltzmann para estudar o funcionamento do LASER. 15

16 Processos para transição entre estados atômicos: fóton de v (ε ε 1 )/h ρ T 8πv hv 8πhv ( v) hv kt c e 1 c A1 ( v) B1 e B hv kt 1 e B Vida média típica de um estado excitado atômico é 10 ns. Alguns estados, por conta do momento angular elevado, podem ter vidas médias da ordem de ms, sendo chamados de metaestáveis A1 A 8π ρ 1 e hv kt B1 B1 B c Esses são os coeficientes A e B de Einstein, que publicou trabalho sobre esse assunto em Só temos a razão entre eles, mas A pode ser calculado. O resultado B 1 B 1 mostra que os processos de emissão e absorção B Planck (estimulados) só dependem das características físicas do átomo. 16 hv

17 A Bρ( v) hv e kt 1 para átomos em equilíbrio térmico, emissão espontânea >> estimulada, se hv >> kt, que é a condição usual em átomos e moléculas. A estimulada pode ser importante se hv kt, ou se hv << kt. taxa de emissão taxa de absorção n Quando hv << kt, temos: A + nbρ( v) A 1 n1b ( v) + ρ Bρ( v) taxa de emissão n e taxa de absorção n n n 1 n n 1 1 hv e hv kt 1 1 n n kt + Se o sistema está em equilíbrio térmico Boltzmann n << n 1. Mas fora do equilíbrio vale tudo. Se invertermos a população, fazendo n > n 1, poderemos ter emissão > absorção, fazendo com que a radiação na freqüência v (ε ε 1 )/h, seja amplificada. Só que esse processo faz a população mudar. Para manter o processo é necessário manter a população invertida, por meio da injeção de energia no sistema. hv kt n n 17 1

18 Light Amplification by Stimulated Emission of Radiation Existem vários tipos de laser, mas todos têm algumas características comuns: 1) Uma fonte de energia (pulsada ou contínua) capaz de produzir inversão de população entre níveis atômicos. No caso do laser de He-Ne essa fonte é uma descarga elétrica, que transfere energia aos átomos por meio de colisões atômicas. No caso de lasers que usam cristais, é usada iluminação intensa e de espectro largo, processo conhecido como bombeamento ótico. ) Um material cujos átomos tenham pelo menos níveis de energia: o estado fundamental; um estado intermediário com meia-vida, t s, relativamente longa (metaestável); e um terceiro estado, de energia mais alta, para bombeamento. ) Um método que contenha os fótons emitidos inicialmente no meio, de forma que eles possam estimular transições em outros átomos. Isso, em geral, é feito por meio de espelhos nas extremidades do sistema, de forma que os fótons atravessem o meio muitas vezes. Dessa forma, o laser pode ser entendido como um ressoador ótico. a oscilação consiste de uma onda plana refletida entre os espelhos das extremidades. Essas ondas que caminham em direções opostas formam uma onda estacionária com nós nos espelhos. Para que luz de alta intensidade seja extraída, um dos espelhos é semi-transparente. 18

19 19

20 Lasers de 4 níveis Nesse caso, como E 1 E 0 >> kt, o nível E 1 é praticamente despopulado, ou seja, N 1 ~ 0 que a inversão de população é muito fácil de ser atingida. Assim: N c ~ N e a potência mínima necessária é: N c hv 8πv t s hv 8πhv P V t s c t p t s c t p Notem que, no caso do laser de níveis, o decaimento se faz entre o nível e o estado fundamental, que é muito populado. Nesse caso: N 1 ~ N >> N c Oos lasers de 4 níveis são muito mais eficientes que os de níveis. 0

21 Modelo de elétrons livres em um metal Vamos considerar e em um poço D (limites da rede cristalina) Número de estados (caso anterior x, pois estados de spin em cada nível): g( E) de 8πV (m h ) 1/ E 1/ de Ocupação dos estados (distribuição de Fermi): f E 1 1 ( ), com EF αkt α E / kt ( E EF kt e e + 1 e ) / + 1 Então a ocupação dos estados de energia do gás de e, fica: n 1/ 1/ 8πV (m ) E de E) f ( E) g( E) de ( E EF ) kt h e + 1 Normalização: se T 0 K estados populados só até E F f(e) 1, se E < E F e f(e) 0, se E > E F. ( / 1

22 1,0 0,8 E 1/ X 0,6 n(e) 0,4 0, 0,0 0,0 0, 0,4 0,6 0,8 1,0 E f(e) 1, se E < E F e f(e) 0, se E > E F. Assim: N EF 1/ EF 8πV (m ) n( E) de h 0 0 / E F (0) h 8m N πv E 1/ de Expressão define E F em T 0 K 16πV (m h ) 1/ E / F

23 E F / h N h ρ ( 0) 8m πv 8m π / com ρ N/V. Excelente aprox. para kt << E F (até milhares de K, para metais comuns, veja tabela na próxima transparência). Vemos então que, à medida que mais partículas são adicionadas ao sistema, E F cresce. Se a temperatura estiver ligeiramente acima de 0 K, E F deixa de ser a energia do último estado ocupado e é definida como a energia em que n(e) ½; à medida que T aumenta, E F diminui. Para temperaturas suficientemente altas, E F < 0, implicando que todos os estados, em média, têm menos de ½ partícula.

24 A energia total do sistema, em T 0 K, é: E Mas E F 1/ F 8πV (m ) n( E) EdE E h 0 N 16πV (m ) 1/ E h E 0 E / de 5 / F NE F 16πV (m 5h Notem que, mesmo em T 0 K, o último férmion adicionado, aquele com energia E F, tem velocidade dada por: 1 mv F E v F F E m F ) 1/ E 5/ F (0) No caso de 1 e - de condução em um metal típico (E F ~ 5 ev) a velocidade de Fermi é da ordem de 10 6 m/s (a 0 K!). A temperatura de Fermi é definida como: T F E F /k. 4

25 PV N λ NkT 1± + L 5/ V No caso da energia média, por partícula, do sistema, temos: ε E N kt 1± λ + L 5/ N V Substituindo o valor do comprimento de onda térmico: ε E 1 N h ( ) kt 1± + L 5/ / N V πmkt + férmions bósons Daí pode-se perceber que a energia média de um gás de férmions é um pouco superior à de um gás ideal, enquanto à de um gás de bósons é um pouco menor. Valor do termo de correção é boa indicação da necessidade, ou não, de se usar as distribuições quânticas. Se o termo de correção << 1 a distribuição de Boltzmann (e os resultados decorrentes dela) são OK. 5

26 Analisamos os e - como férmions em uma caixa D (poço infinito). Sabemos, no entanto, que e - são capazes de deixar o metal (foto-elétrico, emissão termiônica, etc.), portanto o poço tem uma profundidade finita. Sabendo que a ocupação dos estados deve obedecer a uma distribuição de Fermi e que os e - de energia mais alta precisam de W (função trabalho) para serem arrancados, podemos avaliar a profundidade do poço. Se o poço tem profundidade V 0, os e - de energia mais alta têm E F acima do fundo. São esses que precisam de W para serem arrancados. Assim: V 0 E F + W. Com esse modelo podemos entender fenômenos como o potencial de contato entre metais e a emissão termiônica. 6

27 Potencial de contato entre metais. Note que não é (W B W A )/ Potencial de contato 7

28 Moléculas Moléculas é uma coleção de ou mais núcleos e seus elétrons associados, com todas as ligações complexas unidas pelas forças Os tipos mais importantes de ligação molecular são: covalente, iônica e van der Waals. Quando dois átomos se combinam de tal modo que um ou mais e - são transferidos de um para outro átomo Quando dois átomos se combinam de tal modo que um ou mais e - são dividos pelos átomos Começamos com a o sistema mais simples: que consiste de dois prótons (H) e apenas um elétron. Os dois prótons exercem uma repulsão coulombiana um sobre o outro e ambos exercendo uma atração coulombiana sobre o elétron. Usamos a aproximação de Born- Oppenheimer, que considera os núcleos fixos, apenas o e - se movimenta. + H 8

29 A energia potencial percebida pelo e - durante seu movimento é: Energia do estado fundamental do H Operador energia cinética do e - energias potenciais atrativas de cada um dos prótons A eq. de Schrödinger para a autofunção eletrônica é dada por: Ligações covalentes: a molécula H + k 1 4πε e ε e é um autovalor da energia do e - repulsão próton-próton, incluída como parte da energia do e - Se tivéssemos apenas 1 próton (potenciais dados pelas linhas pontilhadas) teríamos 1 átomo de H, cuja solução é conhecida. 0 9

30 ψ + ψ 0

31 Espacial ψ Espacial antisimétrica ψ + Espacial simétrica 1

32 No equilibrio a distância de separação internuclear é de 0,11nm Podemos fazer uma análise quantitativa do que acontece com o sistema H +, a partir de um H mais 1 próton, inicialmente muito afastados. A energia do e - no estado fundamental do H é -1,6 ev e a repulsão coulombiana entre os prótons, U p, desprezível. Quando os prótons se aproximam, U p aumenta, mas a mudança na energia do e - vai depender se ele está no estado simétrico ou anti-simétrico, conforme mostra a figura abaixo. Quando a distância entre os prótons tende a 0, o estado tende ao He +, cuja energia, no estado fundamental é -54,4 ev, e, no 1 estado excitado (1 nó) é -1,6 ev. o Mínimo de U p + E S sistema H + ligado,,7ev energia para dissoc. H e H + Não tem mínimo, devido a ligação do e - no estado Ψ-(Ψ A )

33 No caso da molécula H, podemos fazer um exercçio semelhante ao anterior, mas considerando átomos de H. Notem que, nesse caso, com e -, a autofunção total do sistema eletrônico tem que ser anti-simétrica. Isso pode ser conseguido com (espacial sim.)x(spin anti) ou (espacial anti)x(spin sim.). Novamente o estado ligante será aquele com a função de onda espacial simétrica, que aumenta a densidade de carga negativa na região entre os prótons. Spins anti-paralelos e autofunção espacial simétrica estado ligado Nesse caso, quando a distância entre os átomos for grande, o sistema é composto de H, com energia total de -7, ev. À medida que os átomos se aproximam a energia varia conforme a figura ao lado. Essas ligações são denominadas ligações s, pois as autofunções dos e - são autofunções s. Spins paralelos e autofunção espacial anti-simétrica

34 Ligações p-p Orbitais atômicos tipo p também fazem ligações covalentes. m l 0 p p x y iϕ e + e senθ iϕ e e senθ iϕ iϕ senθ cosϕ senθ senϕ Combinação linear dos estados com m l ±1 4

35 Distribuição de probabilidade dos orbitais p Vamos supor átomos com e - na camada p, que estejam se aproximando ao longo do eixo z. Nesse caso, os orbitais 1s e s estão ocupados e não podem formar orbitais moleculares. Apenas aqueles do estado p estão disponíveis. Como no caso anterior, dependendo da configuração das funções de onda espacial e de spin, teremos orbitais ligantes e anti-ligantes. Maior superposição ligação mais intensa 5

36 Ligações s-p direcionais H O NH 6

37 Ligações s-p híbridas CH 4 A configuração eletrônica do C é: 1s s p. De onde vem, então, a valência 4? Um dos primeiros estados excitados do C ocorre quando 1 e - s é promovido para a camada p: 1s s 1 p. Nessa configuração temos 4 e - desemparelhados, nos orbitais s, p x, p y, p z. Mesmo assim ainda não obtemos uma situação que corresponda à simetria observada na molécula CH 4. As energias são próximas, mas não iguais. De novo temos uma combinação linear de 4 estados: Conhecidos como orbitais sp híbridos. C H 6 7

38 Ligações iônicas? Molécula estável E(KCl) < E(K) + E(Cl) 8

39 Cuidado com o referencial usado no Eisberg r 0 0,7 nm 4,4-,60.7eV ke U ( r) + EExcl + E r Ion E Ion energia necessária para formar o cátion e o ânion separados. E Ion 0,7 ev para o KCl. E Excl energia de repulsão devida ao princípio de exclusão: E Excl Ar n com A e n constantes para cada molécula. Máxima distância de separação da molécula ke E r Energia de dissociação 4,40eV Ion 9

40 A energia de dissociação de uma molécula é definida como a energia necessária para separar os íons e formar os átomos novamente. 40

41 Covalente/Iônica Moléculas homoatômicas, como H, N e O, apresentam ligações puramente covalentes, devido à simetria entre as distribuições de carga presentes nos átomos. No entanto, em moléculas heteroatômicas, devido às diferenças entre os potenciais coulombianos, as ligações são uma mistura de iônica e covalente. Mesmo nas ligações iônicas típicas, como NaCl, há uma fração covalente, pois o e - cedido tem probabilidade não nula de ser achado no Na. O grau de ionicidade de uma molécula pode ser avaliado pelo seu momento de dipolo elétrico. Tomemos o caso do NaCl: se a ligação fosse puramente iônica, o átomo de Na seria o centro da carga positiva, enquanto que o Cl seria o da negativa. Assim: p calc er 0, onde r 0 é a distância de equilíbrio entre os íons. No caso do NaCl teríamos p calc,78x10 9 C.m. No entanto, o momento de dipolo elétrico medido é: p exp,00x10 9 C.m. Dessa forma, podemos dizer que a molécula NaCl é,00/,78 0,79 (x100) 79 % iônica. Portanto deve ser 1 % covalente. Um outro exemplo interessante é o LiH. Nesse caso, p exp 1,96x10 9 C.m. E o valor calculado, com base na distância de equilíbrio de 0,160 nm, é: p calc,56x10 9 C.m, o que dá uma ionicidade de 1,96/,56x %. Portanto essa ligação é apenas % covalente. 41

Funções de distribuição quânticas

Funções de distribuição quânticas Bose-Einstein: Funções de distribuição quânticas f BE ( 1 ) e α e kt 1 Fermi-Dirac: f FD ( ) e - kt 1 F + 1 Boltzmann (clássica): 1 f Boltz ( ) e α e kt Essas funções de distribuição fornecem a probabilidade

Leia mais

Moléculas. Usamos a aproximação de Born- Oppenheimer, que considera os núcleos fixos, apenas o e - se movimenta.

Moléculas. Usamos a aproximação de Born- Oppenheimer, que considera os núcleos fixos, apenas o e - se movimenta. Moléculas Moléculas é uma coleção de 2 ou mais núcleos e seus elétrons associados, com todas as ligações complexas unidas pelas forças Os tipos mais importantes de ligação molecular são: covalente, iônica

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 2008 1 MQ átomos > < Moléculas moléculas e sólidos núcleos e partículas Moléculas

Leia mais

Física Moderna II Aula 15

Física Moderna II Aula 15 Universidade de São Paulo Instituto de ísica º Semestre de 05 Profa. Márcia de Almeida Rizzutto Oscar Sala sala 0 rizzutto@if.usp.br ísica Moderna II Monitor: Gabriel M. de Souza Santos Sala 09 Ala Central

Leia mais

1 Ψ S. bósons estatística de Bose: n(e) = e α e E/kT 1 1 Ψ A. férmions estatística de Fermi: n(e) = e α e E/kT +1

1 Ψ S. bósons estatística de Bose: n(e) = e α e E/kT 1 1 Ψ A. férmions estatística de Fermi: n(e) = e α e E/kT +1 Estatística Quântica Boltzmann: n(e) = 1 e α e E/kT Indistinguibilidade Ψ S ou Ψ A 1 Ψ S bósons estatística de Bose: n(e) = e α e E/kT 1 1 Ψ A férmions estatística de Fermi: n(e) = e α e E/kT +1 1 Distribuição

Leia mais

Teoria de bandas nos sólidos

Teoria de bandas nos sólidos Teoria de bandas nos sólidos Situação: átomos idênticos, distantes níveis de energia desse sistema têm degenerescência de troca dupla. A parte espacial da autofunção eletrônica pode ser uma combinação

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 12 ESTATÍSTICA QUÂNTICA Primeira Edição junho de 2005 CAPÍTULO 12 ESTATÍSTICA QUÂNTICA ÍNDICE 12-1- Introdução 12.2- Indistinguibilidade

Leia mais

Física Moderna 2. Aula 9. Moléculas. Tipos de ligações. Íon H2 + Iônica Covalente Outras: ponte de hidrogênio van der Waals

Física Moderna 2. Aula 9. Moléculas. Tipos de ligações. Íon H2 + Iônica Covalente Outras: ponte de hidrogênio van der Waals Física Moderna 2 Aula 9 Moléculas Tipos de ligações Iônica Covalente Outras: Íon H2 + ponte de hidrogênio van der Waals 1 Moléculas Uma molécula é um arranjo estável de dois ou mais átomos. Por estável

Leia mais

Átomos e Moléculas. Ligações moleculares. Energia do ion. A molécula de hidrogênio H 2

Átomos e Moléculas. Ligações moleculares. Energia do ion. A molécula de hidrogênio H 2 Ligações moleculares Átomos e Moléculas Energia do ion H 2 + A molécula de hidrogênio Ligações moleculares Uma molécula é formada por um conjunto de átomos que interagem formando um sistema com energia

Leia mais

Funções de distribuição quânticas

Funções de distribuição quânticas Bos-Einstin: Funçõs d distribuição quânticas f ε) 1 BE ( ε α 1 Frmi-Dirac: f FD (ε) 1 ε-ε F + 1 Boltzmann (clássica): f Boltz (ε) 1 ε α Essas funçõs d distribuição forncm a probabilidad d ocupação, por

Leia mais

Física Moderna II Aula 08. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal

Física Moderna II Aula 08. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal Física Moderna II Aula 08 Marcelo G Munhoz Edifício HEPIC, sala 202, ramal 916940 munhoz@if.usp.br 1 Física Moderna II Particle Physics Education CD-ROM 1999 CERN Sólidos Átomos de 1 e - Núcleo Atômico

Leia mais

Mecânica Quântica e Indiscernibilidade

Mecânica Quântica e Indiscernibilidade Mecânica Quântica e Indiscernibilidade t ou ou?? Mecânica clássica Partículas discerníveis ( A, A ) ψ ( A A ) ψ =, Mecânica quântica Partículas indiscerníveis ( A, A ) ψ ( A A ) ψ = ψ, ou = ( A, A ) ψ

Leia mais

N P P N. Ciências de Materiais I Prof. Nilson C. Cruz. Aula 2 Ligação Química. Átomos. Diferença entre materiais = Diferença entre arranjos atômicos e

N P P N. Ciências de Materiais I Prof. Nilson C. Cruz. Aula 2 Ligação Química. Átomos. Diferença entre materiais = Diferença entre arranjos atômicos e Ciências de Materiais I Prof. Nilson C. Cruz Aula 2 Ligação Química Átomos Diferença entre materiais = Diferença entre arranjos atômicos e N P P N e N P e Carga (x 1,6x10-19 C) 0 1-1 Massa (x 1,673x10-24

Leia mais

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15 Ligações iônicas? Molécula estável E(KCl) < E(K) + E(Cl) 43376 - Física Modena Aula 5 ,7 nm ke U ( ) + EExcl + E Ion E Ion enegia necessáia paa foma o cátion e o ânion sepaados. E Ion,7 ev paa o KCl. E

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula

Leia mais

Ligações Atômicas e Bandas de Energia. Livro Texto - Capítulo 2

Ligações Atômicas e Bandas de Energia. Livro Texto - Capítulo 2 40 Ligações Atômicas e Bandas de Energia Livro Texto - Capítulo 2 Ligação Atômica 41 Porque estudar a estrutura atômica? As propriedades macroscópicas dos materiais dependem essencialmente do tipo de ligação

Leia mais

Física do Estado Sólido: Sólidos Condutores

Física do Estado Sólido: Sólidos Condutores Física do Estado Sólido: Sólidos Condutores Trabalho de Física Moderna II Professor Marcelo Gameiro Munhoz 7 de maio de 2012 André E. Zaidan Cristiane Calil Kores Rebeca Bayeh Física do Estado Sólido -

Leia mais

Motivação 10/29/2018. Física: compreender as propriedades dos átomos (últimos ~ 100 anos) Experimentos mais precisos :

Motivação 10/29/2018. Física: compreender as propriedades dos átomos (últimos ~ 100 anos) Experimentos mais precisos : Cap. 40 Tudo sobre átomos Algumas propriedades dos átomos: Agrupamentos; Emissão e absorção de luz; Momento angular e magnético. Experimento de Einstein de Haas: Momento angular e magnético ORBITAL. Experimento

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOB1021 - FÍSICA IV Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de Lorena (EEL) Universidade

Leia mais

Física Molecular Estrutura das Ligações Químicas

Física Molecular Estrutura das Ligações Químicas Física Molecular Estrutura das Ligações Químicas 100 É razoável focalizar o estudo de moléculas nas interações entre elétrons e núcleos já reagrupados em caroço atômico (núcleo + camadas fechadas internas),

Leia mais

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos O problema de 1 elétron O princípio variacional Função de onda tentativa Átomo de H unidimensional Íon H2 + unidimensional Equação

Leia mais

Estrutura dos Materiais. e Engenharia dos Materiais Prof. Douglas Gouvêa

Estrutura dos Materiais. e Engenharia dos Materiais Prof. Douglas Gouvêa Ligações Químicas e Estrutura dos Materiais PMT 5783 - Fundamentos de Ciência e Engenharia dos Materiais Prof. Douglas Gouvêa Objetivos Descrever a estrutura atômica e suas conseqüências no tipo de ligação

Leia mais

Raios atômicos Física Moderna 2 Aula 6

Raios atômicos Física Moderna 2 Aula 6 Raios atômicos 1 2 8 8 18 18 32 2 Energias de ionização 3 Espectros de R-X A organização da tabela periódica reflete a distribuição dos e - nas camadas mais externas dos átomos. No entanto, é importante

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. QUÍMICA estudo

Leia mais

Aula 17 Tudo sobre os Átomos

Aula 17 Tudo sobre os Átomos Aula 17 Tudo sobre os Átomos Física 4 Ref. Halliday Volume4 Sumário Algumas propriedades dos átomos; O spin do elétron; Momento Angular e momento magnético; O experimento de Stern-Gerlach; O princípio

Leia mais

Aula-11. (quase) Tudo sobre os átomos

Aula-11. (quase) Tudo sobre os átomos Aula-11 (quase) Tudo sobre os átomos Algumas propriedades: Átomos são estáveis (quase sempre) Os átomos se combinam (como o fazem é descrito pela mecânica quântica) Os átomos podem ser agrupados em famílias

Leia mais

CAPÍTULO 41 HALLIDAY, RESNICK. 8ª EDIÇÃO

CAPÍTULO 41 HALLIDAY, RESNICK. 8ª EDIÇÃO FÍSICA QUÂNTICA: CONDUÇÃO M SÓLIDOS Prof. André L. C. Conceição DAFIS CAPÍTULO 41 HALLIDAY, RSNICK. 8ª DIÇÃO Condução em sólidos Revisão 1) Átomos podem ser agrupados em famílias 1 Revisão 2) Momento angular

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Livro texto: Modern Quantum Chemistry Introduction to Advanced Elecronic Structure Theory

Leia mais

Tabela Periódica dos elementos

Tabela Periódica dos elementos Tabela Periódica dos elementos 8 8 Alcalinos, um elétron livre na camada (pode ser facilmente removido), bons condutores Todos possuem subcamada fechada 18 18 3 1 ATENÇÃO 0 Ca (Z=0 A=40) tem camadas completas,

Leia mais

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular.

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular. O spin do elétron Vimos, na aula, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com valores, com propriedades de momento angular. Analogia com o momento angular orbital e e com e foram observadas

Leia mais

CAPÍTULO 40 HALLIDAY, RESNICK. 8ª EDIÇÃO

CAPÍTULO 40 HALLIDAY, RESNICK. 8ª EDIÇÃO FÍSICA QUÂNTICA: ÁTOMOS Prof. André L. C. Conceição DAFIS CAPÍTULO 40 HALLIDAY, RESNICK. 8ª EDIÇÃO Tudo sobre os átomos Revisão 1) Modelo de Bohr: átomo de hidrogênio 1) O elétron de um átomo de hidrogênio

Leia mais

Capítulo 40: Tudo sobre os Átomos

Capítulo 40: Tudo sobre os Átomos Capítulo 40: Tudo sobre os Átomos Sumário Algumas Propriedades dos Átomos O Spin do Elétron Momento Ângular e Momento Magnético O experimento destern-gerlach Resonância Magnética Princípio da Exclusão

Leia mais

Física Estatística ??? Representação macroscópica. Representação microscópica. sistema U (S, V, N) S (U, V, N)

Física Estatística ??? Representação macroscópica. Representação microscópica. sistema U (S, V, N) S (U, V, N) Física Estatística sistema Representação macroscópica U (S, V, N) S (U, V, N) Representação microscópica??? Física Estatística - Prof. Paulo Suzuki 1 Física Estatística Formalismo microcanônico S (U, V,

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. Estrutura Eletrônica

Leia mais

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético Conteúdo 1 Revisão de Física Moderna 1 1.1 Equação de Schrödinger; Autoestados e Valores Esperados.. 1 1.2 O Poço de Potencial Innito:Quantização da Energia.............................. 7 1.3 O Oscilador

Leia mais

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das frases abaixo descreve corretamente a menor energia possível

Leia mais

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 CF100 - Física Moderna II 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 1 Átomos Multieletrônicos 2 Partículas Idênticas 3 Na física quântica, o princípio da incerteza impede a observação

Leia mais

Propriedades e classificação dos sólidos Semicondutores Dopados Dispositivos semicondutores Exercícios

Propriedades e classificação dos sólidos Semicondutores Dopados Dispositivos semicondutores Exercícios SÓLIDOS Fundamentos de Física Moderna (1108090) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2015.2 1 / 42 Sumário Propriedades e classificação dos sólidos Propriedades elétricas dos sólidos Isolantes

Leia mais

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado.

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado. Introdução. Consideramos nos textos anteriores sistemas quantum mecânicos que possuem vários níveis de energia mas somente um elétron orbital, ou seja, consideramos até o presente momento átomos hidrogenóides.

Leia mais

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z 6/Maio/2013 Aula 21 Efeito de túnel quântico: decaimento alfa. Aplicações: nanotecnologias; microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. Átomo de hidrogénio Modelo de Bohr 8/Maio/2013

Leia mais

Física estatística. Sistemas de Fermi ideais MEFT, IST

Física estatística. Sistemas de Fermi ideais MEFT, IST Física estatística Sistemas de Fermi ideais MEFT, IST Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level. Enrico Fermi (1901

Leia mais

Estrutura Atômica. Prof. Dr. Carlos Roberto Grandini. Bauru 2006

Estrutura Atômica. Prof. Dr. Carlos Roberto Grandini. Bauru 2006 Estrutura Atômica Prof. Dr. Carlos Roberto Grandini Bauru 2006 O que é nanotecnologia? Nanotecnologia pode ser considerada como um conjunto de atividades ao nível de átomos e moléculas que tem aplicação

Leia mais

Introdução à Astrofísica. Lição 21 Fontes de Energia Estelar

Introdução à Astrofísica. Lição 21 Fontes de Energia Estelar Introdução à Astrofísica Lição 21 Fontes de Energia Estelar A taxa de energia que sai de uma estrela é extremamente grande, contudo ainda não tratamos da questão que relaciona à fonte de toda essa energia.

Leia mais

Cap. 41 -Condução de eletricidade em sólidos

Cap. 41 -Condução de eletricidade em sólidos Cap. 41 -Condução de eletricidade em sólidos Propriedades elétricas dos sólidos; Níveis de energia em um sólido cristalino: Átomo; Molécula; Sólido. Estrutura eletrônica e condução: Isolantes (T = 0);

Leia mais

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 FF-296: Teoria do Funcional da Densidade I Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Tema de hoje: Problema de 2 elétrons Férmions Hartree-Fock Troca

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

O Método de Hartree-Fock

O Método de Hartree-Fock O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA Edição de junho de 2014 CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA ÍNDICE 3.1-

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 24 Prof. Dr. Anselmo E de Oliveira

Leia mais

3) Quais são os valores possíveis do número quântico magnético de spin? a) -1,- ½,0, ½,1 b) 0 e + ½ c) 1, 0 e +1 d) 0, 1, 2, 3,...

3) Quais são os valores possíveis do número quântico magnético de spin? a) -1,- ½,0, ½,1 b) 0 e + ½ c) 1, 0 e +1 d) 0, 1, 2, 3,... Fundamentos de Física Capítulo 40 Tudo sobre átomos. Questões Múltipla escolha cap. 40 Fundamentos de Física Halliday Resnick Walker 1) Qual das opções abaixo não é uma propriedade dos átomos? a) Os átomos

Leia mais

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 11 de Dezembro de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

Ligações Químicas - I

Ligações Químicas - I Ligações Químicas - I Orbitais atômicos e números quânticos A tabela periódica; propriedades Ligações químicas A ligação iônica Ligação covalente Orbitais moleculares (LCAO) Hibridização Geometrias moleculares

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 7 SOLUÇÕES DA EQUAÇÃO DE SCHRÖDINGER INDEPENDENTE DO TEMPO Primeira Edição junho de 2005 CAPÍTULO 07 SOLUÇÕES DA EQUAÇÃO DE SCHRÖDINGER

Leia mais

Física estatística MEFT, IST. Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.

Física estatística MEFT, IST. Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write. Física estatística Gases ideais nas estatísticas quânticas: conjunto microcanónico MEFT, IST Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.

Leia mais

MODELO ATÔMICO DE BOHR 1913

MODELO ATÔMICO DE BOHR 1913 MODELO ATÔMICO DE BOHR 1913 Niels Bohr (1885-1961) +sico dinamarquês, trabalhou com Rutherford Modelo atômico de Rutherford Lembre que: havia dificuldades para explicar: u u Como um átomo poderia ser estável

Leia mais

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 18 Professora: Mazé Bechara Aula 28 Discussão da 1ª prova e Apresentação do Tópico III 1. Soluções das questões da prova com comentários. Critérios de correção.

Leia mais

ESTRUTURA MOLECULAR. Prof. Harley P. Martins filho

ESTRUTURA MOLECULAR. Prof. Harley P. Martins filho ESTRUTURA MOLECULAR Prof. Harley P. Martins filho o A aproximação de Born-Oppenheimer Núcleos são muito mais pesados que elétrons dinâmica dos elétrons pode ser estudada com os núcleos parados (aproximação

Leia mais

FNC Física Moderna 2 Aula 26

FNC Física Moderna 2 Aula 26 FNC 0376 - Física Moderna Aula 6 1 Física Nuclear: cronologia do início Descoberta da Radioatividade (Becquerel) 1896 Separação química do Ra (Marie e Pierre Curie) 1898 Modelo atômico de Rutherford 1911

Leia mais

GASES. https://www.youtube.com/watch?v=wtmmvs3uiv0. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education

GASES. https://www.youtube.com/watch?v=wtmmvs3uiv0. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education GASES PV nrt https://www.youtube.com/watch?v=wtmmvs3uiv0 David P. White QUÍMICA: A Ciência Central 9ª Edição volume, pressão e temperatura Um gás consiste em átomos (individualmente ou ligados formando

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 2008 1 Tabela Periódica dos elementos 2 8 8 Alcalinos, um elétron livre na camada

Leia mais

ASPECTOS GERAIS. Prof. Harley P. Martins filho

ASPECTOS GERAIS. Prof. Harley P. Martins filho /6/08 ASPECTOS GERAIS Prof. Harley P. Martins filho Aspectos Gerais Espectroscopia por emissão: Abaixamento de energia de um sistema de um nível permitido para outro, com emissão da energia perdida na

Leia mais

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Por propriedade ótica subentende-se a reposta do material à exposição à radiação eletromagnética e, em particular, à luz visível.

Leia mais

Física Quântica. Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli. Pieter Westera

Física Quântica. Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli. Pieter Westera Física Quântica Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html Quantização do Momento Angular

Leia mais

Física IV Escola Politécnica P3 7 de dezembro de 2017

Física IV Escola Politécnica P3 7 de dezembro de 2017 Física IV - 4323204 Escola Politécnica - 2017 P3 7 de dezembro de 2017 Questão 1 Uma partícula de massa m que se move em uma dimensão possui energia potencial que varia com a posição como mostra a figura.

Leia mais

Aplicações de Semicondutores em Medicina

Aplicações de Semicondutores em Medicina Aplicações de Semicondutores em Medicina A estrutura dos cristais semicondutores Luiz Antonio Pereira dos Santos CNEN-CRCN PRÓ-ENGENHARIAS UFS-IPEN-CRCN Aracaju Março - 010 Como é a estrutura da matéria?

Leia mais

TEORIAS ATÔMICAS. Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807)

TEORIAS ATÔMICAS. Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807) TEORIAS ATÔMICAS Átomo Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807) 1. Os elementos são constituídos por partículas extremamente pequenas chamadas átomos; 2. Todos os átomos

Leia mais

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1 Teoria de Bandas 1 Elétrons Livres CF086 - Introdução a Física do Estado Sólido 1 Introdução Para iniciar a investigação da contribuição eletrônica para as propriedades físicas relevantes, vamos considerar

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS Introdução Propriedades

Leia mais

Aula 15 Mais sobre Ondas de Matéria

Aula 15 Mais sobre Ondas de Matéria Aula 15 Mais sobre Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário...relembrando... Relembrando... Elétrons e Ondas de Matéria Em 1924, Louis de Broglie propôs um novo raciocínio: Se um feixe luminoso

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Ligação Covalente. O íon molecular H 2

Ligação Covalente. O íon molecular H 2 O íon molecular H 2 + Dois núcleos de hidrogênio estão ligados por um único elétron O que acontece à medida que os núcleos se aproximam? 4 O íon molecular H 2 + Dois núcleos de hidrogênio estão ligados

Leia mais

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN

INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN Introdução à Astrofísica Lição 18 A Distribuição de Maxwell INTRODUÇÃO À ASTROFÍSICA LIÇÃO 19 A DISTRIBUIÇÃO DE MAXWELL-BOLZTMANN Um estado de um gás é especificado por suas coordenadas, de modo que representemos

Leia mais

Química Orgânica Ambiental

Química Orgânica Ambiental Química Orgânica Ambiental Aula 1 Estrutura Eletrônica e ligação química Prof. Dr. Leandro Vinícius Alves Gurgel 1. Introdução: O átomo Os átomos são formados por nêutrons, prótons e elétrons: Prótons

Leia mais

ÁTOMOS DE MUITOS ELÉTRONS E MOLÉCULAS

ÁTOMOS DE MUITOS ELÉTRONS E MOLÉCULAS FÍSICA PARA ENGENHARIA ELÉTRICA José Fernando Fragalli Departamento de Física Udesc/Joinville ÁTOMOS DE MUITOS ELÉTRONS E MOLÉCULAS É errado pensar que a tarefa da física é descobrir como a natureza é.

Leia mais

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier A Estrutura Eletrônica dos Átomos Prof. Fernando R. Xavier UDESC 2015 Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson, etc 400 a.c. até 1897 d.c. Nascimento da Mecânica Quântica

Leia mais

Se as partículas A e B são os átomos que formam uma molécula diatômica, a energia potencial do sistema pode ser expressa pela seguinte função:

Se as partículas A e B são os átomos que formam uma molécula diatômica, a energia potencial do sistema pode ser expressa pela seguinte função: Curvas de Energia Potencial Consideremos o sistema formado por duas partículas, A e B, cujos movimentos estão limitados à mesma linha reta, o eixo x do referencial. Além disso, vamos considerar que o referencial

Leia mais

ESTRUTURA ELETRÔNICA DOS ÁTOMOS

ESTRUTURA ELETRÔNICA DOS ÁTOMOS ESTRUTURA ELETRÔNICA DOS ÁTOMOS 2 Natureza ondulatória da luz 3 Natureza ondulatória da luz 4 Natureza ondulatória da luz 5 Natureza ondulatória da luz 6 Energia quantizada e fótons Planck quantum h é

Leia mais

Cap. 39 Mais ondas de matéria

Cap. 39 Mais ondas de matéria Cap. 39 Mais ondas de matéria Ondas em cordas e ondas de matéria; Energia de um elétron confinado (1D); Mudanças de energia; Função de onda de um elétron confinado (1D); Elétron em poço finito; Outras

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto o. Semestre de 008 Conteúdo (P) Cap. 7, 8 e 9 Eisberg (/ do 9.7), Cap. 7 do Tipler, Cap. 7 e parte

Leia mais

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi (2016-2) Sólido cristalino Num modelo para um sólido cristalino podemos supor que os N átomos sejam equivalentes a 3N osciladores harmônicos

Leia mais

Física para Ciências Biológicas Lista de Exercícios 5 - CASA Data: 22/05/2014

Física para Ciências Biológicas Lista de Exercícios 5 - CASA Data: 22/05/2014 Física para Ciências Biológicas - 2014 Lista de Exercícios 5 - CASA Data: 22/05/2014 1. Abaixo representamos a energia de interação dos átomos de K e Cl em função da distância interatômica. A energia de

Leia mais

Instituto de Física USP. Física Moderna I. Aula 13. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 13. Professora: Mazé Bechara Instituto de Física USP Física Moderna I Aula 13 Professora: Mazé Bechara Aula 13 Processos de criação e de aniquilação de matéria 1. Outros processos que evidenciam o caráter corpuscular da radiação (chocantes

Leia mais

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White Natureza ondulatória da luz Todas as ondas têm um comprimento de onda característico, λ, e uma amplitude, A.

Leia mais

Aula 18 Condução de Eletricidade nos Sólidos

Aula 18 Condução de Eletricidade nos Sólidos Aula 18 Condução de Eletricidade nos Sólidos Física 4 Ref. Halliday Volume4 Sumário Capítulo 41: Condução de Eletricidade nos Sólidos Propriedades Elétricas dos Sólidos Níveis de Energia em um Sólido Cristalino

Leia mais

EVFITA. Óptica Quântica. Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv

EVFITA. Óptica Quântica. Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv EVFITA Óptica Quântica Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv Primórdios da Quântica Radiação de Corpo Negro Fenômenos Efeito Fotoelétrico Ópticos Espectro Solar Para descrever o espectro

Leia mais

pessoal.utfpr.edu.br/renan

pessoal.utfpr.edu.br/renan Aula 2: Espectro de emissão do hidrogênio: Balmer e Rydberg O átomo de Bohr Princípio da incerteza Partícula na caixa Prof. Renan Borsoi Campos pessoal.utfpr.edu.br/renan O espectro eletromagnético da

Leia mais

h mc 2 =hν mc 2 =hc/ λ

h mc 2 =hν mc 2 =hc/ λ Louis de Broglie investigou as propriedades ondulatórias da matéria na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tinha associado a ele um λ. Ele igualou as duas expressões

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 SOLUÇÕES DA EQUAÇÃO DE SCHORÖDINGER INDEPENDENTE DO TEMPO Edição de junho de 2014 CAPÍTULO 06 SOLUÇÕES DA EQUAÇÃO DE SCRÖDINGER INDEPENDENTE

Leia mais

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico)

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico) Formalismo microcanônico ( ensemble microcanônico) sist(j) estado j f j = Ω j Ω Formalismo canônico ( ensemble canônico) reservatório de temperatura tot res sistema f j = Ω res+sist(j) Ω tot sist(j) Física

Leia mais

Estrutura Atômica. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomos Polieletrônicos

Estrutura Atômica. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomos Polieletrônicos Estrutura Atômica Química Quântica Prof a. Dr a. Carla Dalmolin Átomos Polieletrônicos Átomos Polieletrônicos Átomos que possuem mais de 1 elétron A Eq. de Schrödinger pode ser resolvida exatamente apenas

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Estrutura da Matéria Profª Fanny Nascimento Costa

Estrutura da Matéria Profª Fanny Nascimento Costa Estrutura da Matéria Profª Fanny Nascimento Costa (fanny.costa@ufabc.edu.br) Aula 08 Átomos multieletrônicos; Spin; Princípio da exclusão de Pauli; Periodicidade Onde está o elétron? https://www.youtube.com/watch?v=8rohpz0a70i

Leia mais

Física Moderna II Aula 08

Física Moderna II Aula 08 Universidade de São Paulo Instituto de Física 1 º Semestre de 2015 Profa. Márcia de Almeida Rizzutto Oscar Sala sala 220 rizzutto@if.usp.br Física Moderna II Aula 08 Monitor: Gabriel M. de Souza Santos

Leia mais

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014)

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014) Física IV Poli Engenharia Elétrica: ª Aula (4/11/14) Prof. Alvaro Vannucci a última aula vimos: Átomos multi-eletrônicos: as energias dos estados quânticos podem ser avaliadas através da expressão: 13,6

Leia mais

Física IV - FAP2204 Escola Politécnica GABARITO DA P3 8 de dezembro de 2009

Física IV - FAP2204 Escola Politécnica GABARITO DA P3 8 de dezembro de 2009 P3 Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P3 8 de dezembro de 2009 Questão 1 Numaexperiência deespalhamentocompton, umelétrondemassam 0 emrepousoespalha um fóton de comprimento de onda

Leia mais

Valores esperados. ψ (x)xψ(x)dx. ψ ψ dx. xp(x)dx P(x)dx. Vimos que: x = = ψ xψ dx. No caso geral de uma função de x: f (x) = f (x) =

Valores esperados. ψ (x)xψ(x)dx. ψ ψ dx. xp(x)dx P(x)dx. Vimos que: x = = ψ xψ dx. No caso geral de uma função de x: f (x) = f (x) = Vimos que: x = + Valores esperados ψ (x)xψ(x)dx xp(x)dx P(x)dx = ψ xψ dx ψ ψ dx No caso geral de uma função de x: f (x) = f (x) = + ψ (x) ˆf (x)ψ(x)dx Para o momento e a energia: ˆp = i x e Ê = i t. 4300375

Leia mais