Campo Magnético - Lei de Lenz
|
|
|
- Irene Maria do Pilar Duarte Belo
- 8 Há anos
- Visualizações:
Transcrição
1 Campo Magnético - Lei de Lenz Evandro Bastos dos Santos 22 de Maio de Introdução Na aula passada vimos como uma variação do fluxo de campo magnético é capaz de provocar uma fem induzida. Hoje continuamos esse estudo. O sinal negativo da lei de Faraday significa que a fem induzida é oposta a variação do fluxo, e apenas sobre essa variação de fluxo essa lei é aplicada. Uma lei mais geral, apenas a respeito do sentido, é a lei de Lenz. 2 Lei de Lenz A lei de Lenz discorre sobre o sentido de qualquer efeito de indução magnética. Sendo enunciada da seguinte forma O Sentido de qualquer efeito de indução magnética é tal que ele se opõe à causa que produz o efeito. Em outras palavras temos que a lei de Lenz é uma espécie de "lei do contra", e portanto confirma o sinal negativo da lei de Faraday e, por vezes, é mais fácil determinar o sentido da fem pela lei de Lenz e o módulo pela lei de Faraday. Figura 1: Variação do fluxo de campo magnético em uma espira. Na figura 1, temos que o campo está aumentando no sentido positivo do vetor normal à espira, ou seja, o fluxo está aumentando. Portanto pela lei de Lenz a corrente deve ser 1
2 oposta! Essa oposição é em relação ao sentido natural. Pela regra da mão direita, se o campo aponta para cima, a corrente geradora desse campo é no sentido anti-horário, mas a lei de Lenz garante que essa corrente deve ser oposto à essa causa, portanto, no sentido horário é a corrente induzida. De outro modo, podemos explicar que de acordo com a lei de Lenz, deve haver um campo induzido a fim de frear esse aumento do campo, ou seja, um campo induzido no sentido oposto ao aumento. Nesse caso para baixo. A fem, e a corrente, induzida deve ser portanto tal que acompanhe esse campo induzido, no caso é no sentido horário. Figura 2: Variação do fluxo de campo magnético em uma espira. No caso da figura 2 há um campo positivo, porém que está diminuindo, ou seja, uma variação negativa. Nesse caso a lei de Lenz garante que deve haver um campo induzido a fim de frear essa diminuição, ou seja, campo induzido para cima (oposto a diminuição). Portanto a fem, e a corrente, induzida deve ser tal que acompanhe esse campo. Nesse caso no sentido anti-horário. Exemplo: Alternador simples Um exemplo muito interessante, usando as leis de indução, é de um alternador simples, constituído de uma bobina quadrada de área A que gira com velocidade angular ω. Um campo magnético uniforme B aponta no sentido oposto. Calcule a fem induzida. 2
3 Figura 3: Exemplo de um alternador simples. Como a bobina gira, o fluxo de campo magnético é φ B = BA cos θ (1) φ B = BA cos ωt (2) Como a lei de Faraday discorre sobre a variação do fluxo, podemos calculá-lo Que é a fem induzida na espira. dφ B dt = BAω sin ωt (3) ε = BAω sin ωt. (4) 3 Campos Elétricos Induzidos A figura 4 ilustra o campo gerado por n enrolamentos por unidade de comprimento que vimos na aula de lei de Ampère. 3
4 Figura 4: Solenoide com n enrolamentos por unidade de comprimento, que passa uma corrente i, com um campo B gerado em seu interior, com uma espira de raio A posicionada no exterior do solenóide. Esse campo é dado por Se a espira tem área A, o fluxo de campo magnético é B = µ 0 in. (5) A variação com respeito ao tempo, é portanto φ B = BA = µ 0 ina. (6) φ B dt = BA = µ 0nA di dt (7) ε = µ 0 na di dt. (8) Há, portanto, uma fem induzida gerada na espira. Se a espira tiver resistência R, a corrente é i ind = µ 0nA R di dt. (9) Então nos perguntamos, qual é a força capaz de fazer essas cargas (que formam a corrente induzida) se mover. Como força elétrica é o campo elétrico vezes o módulo da carga. F = q E (10) então temos que concluir que há um campo elétrico induzido na espira. Então, o trabalho produzido por esse campo é 4
5 W = E d l = ε (11) c E d l = dφ B dt, (12) c em que c é um caminho qualquer. A equação 12 é a lei de Faraday para campos induzidos, que é a forma utilizada nas equações de Maxwell. Importante que o campo induzido dado pela equação 12 não é um campo conservativo. Isso ocorre porque ele não é gerado por uma distribuição de cargas eletrostáticas, ou matematicamente, porque a integral ao longo de um caminho fechado é diferente de zero. Dessa forma, as leis da eletrostática não são válidas para esses campos, tais como a lei de Gauss ou a definição de diferença de potencial eletrostática. Exercícios: Halliday 9ed cap30: 36, 37, 38 e 39.fd 5
INDUÇÃO MAGNÉTICA. Indução Magnética
INDUÇÃO MAGNÉTIA Prof. ergio Turano de ouza Lei de Faraday Força eletromotriz Lei de Lenz Origem da força magnética e a conservação de energia.. 1 Uma corrente produz campo magnético Um campo magnético
I ind. Indução eletromagnética. Lei de Lenz. Fatos (Michael Faraday em 1831): 2 solenóides
Lei de Lenz Fatos (Michael Faraday em 1831): solenóides A I ind A I ind ao se ligar a chave, aparece corrente induzida na outra espira I di > 0 ao se desligar a chave, também aparece corrente induzida
Sétima Lista - Lei de Faraday
Sétima Lista - Lei de Faraday FGE211 - Física III Sumário O fluxo magnético através de uma superfície S é definido como Φ B = B da A Lei da Indução de Faraday afirma que a força eletromotriz (fem) induzida
8/5/2015. Física Geral III. Aula Teórica 18 (Cap. 32 parte 1/2): 1) Lei da indução de Faraday 2) Fluxo de campo magnético 3) Lei de Lenz
Física Geral III Aula Teórica 18 (Cap. 32 parte 1/2): 1) Lei da indução de Faraday 2) Fluxo de campo magnético 3) Lei de Lenz Prof. Marcio R. Loos Correntes criam campo magnético B devidoa um fio retilíneo
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: L M
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: a) L M = L ( + ) e e L M d = L + L d = L + L = L = L M M d
φ = B A cosθ, em que θ é o ângulo formado entre a normal ao plano da
01 As afirmativas: I) Falsa, pois o ângulo formado entre a normal ao plano da espira é de 60, assim o fluxo eletromagnético é: φ = B A cosθ, em que θ é o ângulo formado entre a normal ao plano da espira
Electromagnetismo Aula Teórica nº 22
Electromagnetismo Aula Teórica nº 22 Departamento de Engenharia Física Faculdade de Engenharia Universidade do Porto PJVG, LMM 1 Breve revisão da última aula O motor de corrente contínua Inductâncias A
Aula 10: Indução e Indutância
Aula 10: Indução e Indutância Curso de Física Geral III F-38 1 o semestre, 014 F38 1S014 1 Indução Aprendemos que: Uma espira condutora percorrida por uma corrente i na presença de um campo magnético sofre
Indução Eletromagnética
Indução Eletromagnética 1 Aprendemos que uma força eletromotriz (fem) é necessária para produzir uma corrente em um circuito. Até aqui, quase sempre tomamos uma bateria como a fonte de fem. Contudo, para
Capitulo 28: A Lei de Faraday
Capitulo 8: A Lei de Faraday 1.A Lei de Faraday Michael Faraday e Joseph Henry(1830) verificaram que campos magnéticos variáveis induzem corrente elétrica. Fem induzida na bobina Fem induzida não é localizada
INDUÇÃO MAGNÉTICA (2)
INDUÇÃO MAGNÉTICA Material Utilizado: - uma bobina de campo (l = 750 mm, n = 485 espiras / mm) (PHYWE 11006.00) - um conjunto de bobinas de indução com número de espiras N e diâmetro D diversos (N = 300
O eletromagnetismo e a energia
O eletromagnetismo e a energia Nesta aula veremos finalmente o que levou a unificação dos campos de estudos elétricos e magnéticos, o que foi uma das maiores revoluções científicas do século XIX A lei
Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)
Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 Maxwell formulou um conjunto de 4 equações (equações de Maxwell) que desempenham no eletromagnetismo o mesmo papel que as leis de Newton
Máquinas Elétricas. Máquinas CC Parte III
Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE 10.1 OBJETIVOS Determinar o valor da componente horizontal da indução magnética terrestre local. 10.2 INTRODUÇÃO Num dado lugar
1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação
Lista de exercícios 9 - Indução e Indutância 1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação φ B = 6,0t2 + 7,0t, onde φb está em miliwebers e t em segundos. (a) Qual
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho (Capítulo 9 Páginas 277a 284) Lei de Faraday. Lei de Lenz. Eletromagnetismo I 1 Prof. Daniel Orquiza Campos
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta
Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação ão: Geração de Corrente Alternada do professor Clóvis Antônio
ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto
ELETRICIDADE GERAL E APLICADA Armando Alves Hosken Neto MAGNETISMO IMÃS: ATRAÇÃO DE CERTOS MATERIAIS (FERRO) MAGNETISMO IMÃ: Dispositivo capaz de atrair Fe, Co, Ni, Aço (ferromagnéticos) MAGNETISMO TIPOS
f = B. A. cos a Weber
FLUXO MAGNÉTICO (f) Tesla T f = B. A. cos a Weber Wb metros quadrados m onde a ângulo formado entre n e B UEPG 1 PERGUNTA gera Se vimos que i B, será que o contrário é gera verdadeiro? Isto é, B i? EXPERIÊNCIAS
Faraday observou que correntes variáveis em um circuito geram uma corrente em um circuito
Capítulo 8 Lei de Faraday Ja vimos que cargas estáticas geram campos elétricos, enquanto cargas em movimento, i.e. correntes, geram campos magnéticos. Neste capítulo, veremos uma segunda maneira de gerar
INDUÇÃO ELETROMAGNÉTICA
INDUÇÃO ELETROMAGNÉTICA 1. (ITA 2009) Uma haste metálica com 5,0 kg de massa e resistência de 2,0 Ω desliza sem atrito sobre duas barras paralelas separadas de 1,0 m, interligadas por um condutor de resistência
INSTITUTO FEDERAL DO PARANA. Campus Campo Largo. Geradores Elétricos Prof. Roberto Sales
Geradores Elétricos 2017 Conteúdo Tema: Geração de energia Subtema: Geradores químicos e mecânicos Geradores químicos Contextualização conceitual: Circuito equivalente; Equação do gerador; Curva de carga;
Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor
Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = ndutor; C = Capacitor No Resistor Considerando uma corrente i( = m cos( ω t + φ) circulando no resistor, teremos nos seus terminais
Física III Escola Politécnica GABARITO DA PS 2 de julho de 2014
Física III - 43231 Escola Politécnica - 214 GABAITO DA PS 2 de julho de 214 Questão 1 Um anel circular de raio a possui carga elétrica positiva uniformemente distribuída com densidade linear λ >. z P a
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA Em 1819, Oersted ao aproximar uma bússola de um fio percorrido por corrente, observou que a agulha se movia, até se posicionar num plano perpendicular ao fio. Esta
FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010
FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 APSA Nº11 11º Ano de Escolaridade 1- Classifique como verdadeiras ou falsas cada uma das seguintes afirmações, corrigindo estas últimas sem recorrer
Aula 21 - Lei de Biot e Savart
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot
Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:
Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.
UDESC 2017/1 FÍSICA. Comentário
7/ FÍSICA I. Incorreta. A corrente elétrica induzida é gerada através da variação de campo magnético, logo campo magnético constante não gera corrente elétrica induzida. II. Correta. Se o campo magnético
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana Força Magnetizante A força magnetomotriz por unidade de comprimento é chamada de força magnetizante (H). = F (Ae/m) ou = Força
Indução Magnética 1/11
Indução Magnética Fluxo de indução magnética Indução electromagnética Lei de Faraday Lei de Lenz f.e.m induzida por movimento Indutância Gerador de corrente alternada. Transformador 1/11 n = Fluxo magnético
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
EXPERIÊNCIA - TORÓIDE FLUXÔMETRO A FLUXÔMETRO Instrumento por meio do qual pode ser executada a exploração de um campo magnético, podendo ser determinada a intensidade dos fluxos locais de indução magnética.
Lei de Faraday e Lenz Auto-indutância e Indutores
Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores Lei de Faraday e Lenz Auto-indutância e Indutores Prof. Clóvis Antônio Petry. Florianópolis,
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti INDUTORES: CONCEITOS E DEFINIÇÕES CAMPO MAGNÉTICO Campo Magnético Nem só os imãs possuem campo magnético, mas a corrente
Questão 1. Questão 3. Questão 2
Questão 1 A autoindutância (ou simplesmente indutância) de uma bobina é igual a 0,02 H. A corrente que flui no indutor é dada por:, onde T = 0,04 s e t é dado em segundos. Obtenha a expressão da f.e.m.
Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016
Lei de Gauss Ignez Caracelli [email protected] Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes
INDUÇÃO MAGNÉTICA. 1 Resumo. 2 Fundamento Teórico
Protocolos das Aulas Práticas 6/7 INDUÇÃO MAGNÉTICA 1 Resumo Um campo magnético de intensidade e frequência variáveis é produzido num solenóide longo. Dentro deste último são introduzidos enrolamentos
Lista de Exercícios. Campo Magnético e Força Magnética
Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B
CAMPO MAGNÉTICO EM CONDUTORES
CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.
Máquinas Elétricas. Odailson Cavalcante de Oliveira
Máquinas Elétricas Odailson Cavalcante de Oliveira Campo Magnético Fluxo magnético Permeabilidade Magnética Relutância Experiência de Oersted Densidade do Campo Magnético Solenoide Vetor Força Magnetizante
Prof. Fábio de Oliveira Borges
Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)
PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:
P3 1/6/13 PUC-IO CB-CTC P3 DE ELETOMAGNETISMO 1.6.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SEÃO ACEITAS ESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas
Capítulo 9. Indução electromagnética. 9.1 Actividade prática. 9.2 Lei de Faraday
Capítulo 9 Indução electromagnética Em 1820, apenas 20 anos após a invenção da pilha voltaica, enquanto o físico dinamarquês Hans Ørsted preparava uma das suas aulas, reparou que cada vez que ligava um
Indução Magnética. E=N d Φ dt
Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei
Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide.
AULA 16.1 Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide. Habilidades: Compreender os princípios físicos envolvidos no magnetismo e eletromagnetismo para relacionar fenômenos
Proposta Eletiva Laboratório III Verificação Experimental da Lei de Faraday
UNIVERSIDADE DE SÃO PAULO USP Proposta Eletiva Laboratório III Verificação Experimental da Lei de Faraday Disciplina: 4300114-Física Experimental III Professor: Alexandre Alarcon do Passo Suaide Grupo:
RESOLUÇÃO DO TC DO CLICK PROFESSOR
Resposta da questão 1: Podemos garantir apenas que o feixe de radiação gama (sem carga) não é desviado pelo campo magnético, atingindo o ponto 3. Usando as regras práticas do eletromagnetismo para determinação
Corrente Alternada. Circuitos Monofásicos (Parte 2)
Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO
TRANSFORMADORES. Introdução
TRANSFORMADORES Introdução Por volta do século XIX, o físico britânico Michael Faraday estabeleceu o fenômeno da indução magnética. Uma das experiências de Faraday consistiu em induzir uma corrente numa
CF360 - Resumo Experimentos Prova 2
CF360 - Resumo Experimentos Prova 2 Fabio Iareke 19 de dezembro de 2011 1 Força Magnética sobre Condutores de Corrente 1.1 Roteiro de Estudos 1. Qual é a expressão para o campo magnético
Se uma carga puramente resistiva for alimentada por uma fonte de tensão AC ou DC, certamente pela mesma circularão correntes idênticas.
Num circuito DC a resistência é o único elemento que se opõe ao fluxo da corrente. Assim num circuito DC que possui uma resistência muito baixa, a tendência da corrente é aumentar muito, podendo assumir
Electromagnetismo. Campo Magnético:
Campo Magnético: http://www.cartoonstock.com/lowres/hkh0154l.jpg Campo Magnético: Existência de ímans Corrente eléctrica A bússola é desviada http://bugman123.com/physics/oppositepoles large.jpg Observação
Aquino, Josué Alexandre.
Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:
Aulas de Eletromagnetismo
Centro Federal de Educação Tecnológica de Santa Catarina Gerência Educacional de Eletrônica Fundamentos de Eletricidade Aulas de Clóvis Antônio Petry, professor. Florianópolis, novembro de 2006. Bibliografia
Lista de exercícios 8 Campos magnéticos produzidos por corrente
Lista de exercícios 8 Campos magnéticos produzidos por corrente 1. Em um certo local das Filipinas o campo magnético da Terra tem um modulo de 39 µt, é horizontal e aponta exatamente para o norte. Suponha
Projeto de Elementos Magnéticos Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Eletrônica de Potência! Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Prof. Clovis
TRANSFORMADOR MONOFÁSICO. Prof. Nelson M. Kanashiro 1. N0ÇÕES DE ELETROMAGNETISMO I I. Densidade de Fluxo Magnético ou simplesmente Campo Magnético,
TRASFORMADOR MOOFÁSCO 1 0ÇÕES DE ELETROMAGETSMO Os materiais magnéticos, denominados como Magnetitas ou Ímãs Permanentes já eram conhecidos pelos gregos a mais de 2500 anos Certas pedras da região da Magnésia
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças
Capítulo 6 Campo Magnético 6.1 Introdução Cargas elétricas geram campos elétricos E e sofrem forças elétricas F e. Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças magnéticas
COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.
COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: /12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega com atraso,
Indução Electromagnética. Força Electromotriz
Indução Electromagnética Força Electromotriz Escola Secundária Anselmo de Andrade 2011/2012 Fluxo Magnético B A cos N B B : Fluxo Magnético (Wb) : Vector Campo Magnética (T) A A: Área da espira (m 2 )
CAMPOS MAGNÉTICOS DEVIDO À CORRENTES
Cálculo do campo magnético devido a uma corrente Considere um fio de forma arbitrária transportando uma corrente i. Qual o campo magnético db em um ponto P devido a um elemento de fio ds? Para fazer esse
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.
Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.
Física 01. Uma haste de comprimento L e massa m uniformemente distribuída repousa sobre dois apoios localizados em suas extremidades. Um bloco de massa m uniformemente distribuída encontra-se sobre a barra
Apresentar as experiências de Faraday e Henry que viabilizaram o surgimento de fem induzidas a partir de campos magnéticos variáveis.
INDUÇÃO ELETROMAGNÉTICA Aula 9 META Apresentar as experiências de Faraday e Henry que viabilizaram o surgimento de fem induzidas a partir de campos magnéticos variáveis. Estudar as correntes de Foucault
Física. Leo Gomes (Vitor Logullo) 20 e Magnetismo
Magnetismo Magnetismo 1. Para ser atraído por um ímã, um parafuso precisa ser: a) mais pesado que o ímã b) mais leve que o ímã c) de latão e cobre d) imantado pela aproximação do ímã e) formando por uma
A força magnética tem origem no movimento das cargas eléctricas.
Grandezas Magnéticas Força e Campo Magnético A força magnética tem origem no movimento das cargas eléctricas. Considere os dois fios condutores paralelos e imersos no espaço vazio representados na Figura
Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética
Magnetismo Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Orientação Geográfica Norte Geográfico N Sul Geográfico S Atração e Repulsão S N N S N S S N N S N S Inseparabilidade N S N S
Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2
ELETROMAGNETISMO Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2 P méd = I rms R = E rms I rms cosφ Onde rms é o valor quadrático
Capítulo VIII Lei de Faraday e a Indução Electromagnética
ELECTROMAGNETISMO Curso de Electrotecnia e de Computadores 1º Ano º Semestre 1-11 Capítulo VIII Lei de Faraday e a Indução Electromagnética 8.1 Campo Magnético variável Com as observações e as descrições
Física. Leo Gomes (Vitor Logullo) Eletromagnetismo
Eletromagnetismo Eletromagnetismo 1. Um imã preso a um carrinho desloca-se com velocidade constante ao longo de um trilho horizontal. Envolvendo o trilho há uma espira metálica, como mostra a figura. Pode-se
Prof. A.F.Guimarães Física 3 Questões 10
Questão 1 Numa região do espaço existe um campo magnético tal que é um vetor constante no espaço, porém variável no tempo. Coloca-se neste campo uma espira contida num plano que forma um ângulo com o vetor.
EM - ELETROMAGNETISMO. Prof. Eduardo Calsan Depto. de Elétrica EN/TN/MC/AI
EM - ELETROMAGNETISMO Prof. Eduardo Calsan Depto. de Elétrica EN/TN/MC/AI Força eletromotriz induzida (f.e.m.i.): analisando um condutor retilíneo em movimento no interior de um campo magnético uniforme,
Fluxo de um campo vetorial e a Lei de Gauss
Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada
Lei de Faraday. Notas de aula: LabFlex: Física Exp. 3 Aula 2, Experiência 3 Bobina de Helmholtz
Lei de Faraday Notas de aula: LaFlex: www.dfn.if.usp.r/curso/laflex Profa. Eloisa Szanto [email protected] Ramal: 7111 Pelletron Física Exp. 3 Aula 2, Experiência 3 Boina de Helmholtz Prof. Henrique
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
EMENTA: Carga e matéria. Campo elétrico. Lei de Gauss. Potencial elétrico. Capacitores
DISCIPLINA: FÍSICA III CRÉDITO: 04 CARGA HORÁRIA: 60 h/a OBJETIVOS: Identificar fenômenos naturais em termos de regularidade e quantificação, bem como interpretar princípios fundamentais que generalizam
Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V.
COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 3º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica
Lei de Gauss Φ = A (1) E da = q int
Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa
Em elétrica cada carga cria em torno de si um campo elétrico, de modo análogo o imã cria um campo magnético, porém num imã não existe um mono-pólo
Magnetismo Em elétrica cada carga cria em torno de si um campo elétrico, de modo análogo o imã cria um campo magnético, porém num imã não existe um mono-pólo assim sempre o imã tem a carga positiva e a
Física Unidade VI Série 2
01 A força magnética F é perpendicular, simultaneamente, ao campo indução B e a velocidade v. No entanto v e B não são, necessariamente, perpendiculares entre si. Resposta: B 1 02 Como a velocidade é paralelo
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
6 O campo magnético terrestre
Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física Electromagnetismo e Física Moderna 6 O campo magnético terrestre Determinação da sua intensidade e orientação Demonstrar
AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL
179 19 AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL 19.1 Indutância No capítulo 1 apresentamos a definição de indutância como sendo a relação entre fluxo magnético concatenado e corrente, não
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado.
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Quando o circuito é puramente resistivo essas variações são instantâneas, porém
1ª Prova de Física I - FCM0101
1ª Prova de Física I - FCM11 #USP: Nome: Instruções: 1. Escreva seu nome e número USP no espaço acima.. A duração da prova é de horas. A prova tem 4 questões. 3. Não é permitido consultar livros, anotações
Eletromagnetismo. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
A Indução Eletromagnética13 Gil da Costa Marques 13.1 Introdução 13.2 Dois fenômenos distintos 13.3 O que é força eletromotriz? 13.4 A lei de Faraday 13.5 Aplicações 13.5.1 Geração de energia elétrica
FORÇA MAGNÉTICA SOBRE CONDUTORES
73 11 FORÇA MAGNÉTCA SOBRE CONDUTORES 11.1 - EFETO DE UM ÍMÃ EM UM FO CONDUZNDO CORRENTE Considere o campo magnético uniforme entre os pólos de um imã permanente, como pode ser visto na figura 11.1. N
Experimento 4 Indutores e circuitos RL com onda quadrada
1. OBJETIVO Experimento 4 Indutores e circuitos RL com onda quadrada O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
