A fórmula da equação do 2º grau
|
|
|
- Terezinha Lobo Batista
- 8 Há anos
- Visualizações:
Transcrição
1 A UA UL LA A fórmula da equação do 2º grau Introdução Nesta aula vamos encontrar uma fórmula para resolver a equação do 2º grau. ax² + bx + c = 0 (com a ¹ 0) Você poderá naturalmente perguntar por que será necessária tal fórmula, já que conseguimos, na aula anterior, resolver equações sem usar fórmulas. Diremos então que a fórmula torna a resolução mais rápida e permite o uso mais eficiente da máquina de calcular para obter as raízes da equação. Ainda observando a fórmula, vamos descobrir quando uma equação do 2º grau possui soluções ou não. Nossa aula Inicialmente, vamos resolver uma equação do 2º grau para recordar o método que desenvolvemos na aula passada. Observe cuidadosamente todos os passos porque eles serão os mesmos que utilizaremos no caso geral. Resolução da equação 3x² + 5x + 1 = 0 EXEMPLO 1 Solução: 1º passo: Como o coeficiente de x² ² é 3, dividimos todos os termos da equação por 3. x x = 0 2º passo: Passamos o termo independente para o outro lado. x
2 3º passo: Agora, vamos acrescentar aos dois lados da equação um número capaz de transformar o lado esquerdo em um quadrado perfeito. Para fazer isso, pegamos a metade do coeficiente de x: = 5 A U L A e elevamos ao quadrado: Temos, então, æ5ö² = èø 3 x² + 5 æ5 3 x + ö² è = - 1 ø 3 + æ5ö² èø ou, ainda, x² + 2. ² 5 æ5ö² x + èø = Observe agora que o lado esquerdo é um quadrado perfeito e que podemos reunir as duas frações do lado direito igualando seus denominadores. æ è x + 5 ö² ø 12 = æ è x + ö² 5 ø = º passo: Extraímos a raiz quadrada dos dois lados. x + 5 =± 13 5º passo: Deixamos a letra x isolada do lado esquerdo para obter as duas soluções. - 5 ± 13-5 ± 13 ou O caso geral: a solução da equação ax² + bx + c = 0 Desejamos agora que você acompanhe a dedução da fórmula, observando que os passos são exatamente os mesmos. 1º passo: Como o coeficiente de x² ² é a, dividimos todos os termos da equação por a. x 2 + b a x + c a = 0
3 A U L A 2º passo: Passamos o termo independente para o outro lado. x 2 + b a -c a 3º passo: Para transformar o lado esquerdo em um quadrado perfeito, pegamos a metade do coeficiente de x: 1 2 b a = b e o elevamos ao quadrado: æ b ö² è ø = b² 4a² Depois, acrescentamos esse número aos dois lados: x² + 2. b æ b ö² x + c è = - + ø a æ b ö² è ø x² + 2. b æ x + b ö² = - è ø c a + b² 4a² Observando que o lado esquerdo é agora um quadrado perfeito e que podemos reunir as duas frações do lado direito igualando seus denominadores, temos æ bö² x + è = - c. 4a + b² ø a 4a 4a² æ ö² è x + b ø = - 4ac + b² 4a² 4a² æ ö² x + b è = b² - 4ac ø 4a² 4º passo: Extraímos a raiz quadrada dos dois lados. x + b = ± b2-4ac 5º passo: Deixamos x isolado do lado esquerdo. - b ± b2-4ac ou -b ± b2-4ac E aí está nossa fórmula.
4 Quando uma equação do 2º grau possui solução? Na fórmula que encontramos para a solução da equação do 2º grau, vemos que, dentro da raiz quadrada, existe o número b² - 4ac. Esse número é, em geral, representado pela letra grega D (delta) e chama-se discriminante. Usando essa nova letra, temos que as raízes da equação ax² + bx + c = 0 são: A U L A - -b+ D e - -b- D onde D =b 2-4ac Veja agora que, se o número D for positivo, encontramos duas raízes diferentes. Se, entretanto, D for zero, encontramos um só valor para a raiz. Se D for negativo a equação não terá solução. EXEMPLO 2 Resolver a equação 2x² - 7x + 3 = 0 Solução: Vamos resolvê-la usando a fórmula: -b ± b2-4ac Na nossa equação, a = 2, b = 7 e c = 3. Substituindo, temos: - (- 7) ± Ö (- 7)² ± ± 4 7 ± 5 4 As soluções são, portanto: = 12 4 = = 2 4 = 1 2
5 A U L A Veja que, nesse exemplo, o discriminante é, que possui raiz quadrada exata. Mas, isso nem sempre acontece. No exemplo do início desta aula, encontramos, para raízes da equação 3x² + 5x + 1 = 0, os valores: e Para obter valores aproximados desses números, podemos utilizar a máquina de calcular. É o que veremos a seguir. Usando a máquina de calcular Consideremos, mais uma vez, a equação 3x² + 5x + 1 = 0. Vamos resolvê-la outra vez, usando agora a fórmula. Temos a = 3, b = 5 e c = 1. Substituindo, temos: -5 ± ± 13 Rapidamente encontramos as soluções. Para obter valores aproximados dessas duas raízes, começamos calculando 13 e guardando o resultado na memória. Digitamos, então: - 5 ± Ö 5² VISOR 1 3 M+ _ 3, O resultado que aparece no visor está guardado. Podemos então limpá-lo apertando a tecla ON/C Para obter a 1ª solução, digitamos. VISOR 5 + MR = _ 0, Para obter a 2ª solução, digitamos: VISOR MR = _ 1,43485 Concluímos então que, com duas casas decimais, as raízes da equação 3x² + 5x + 1 = 0 são, aproximadamente, 0,23 e 1,43 43.
6 Casos particulares Na equação ax² + bx + c = 0, quando encontramos b = 0 ou c = 0, não há vantagem em utilizar a fórmula. Observe os exemplos seguintes. A U L A EXEMPLO 3 Resolva a equação 2x 2 32 = 0. Solução: Para resolver essa equação, passamos o termo independente para o outro lado e, em seguida, dividimos os dois lados por 2 (o coeficiente de x²). ² 2x 2 =32 2x 2 2 = 32 2 x 2 = 1 Extraindo a raiz quadrada, temos ± 4. EXEMPLO 4 Resolva a equação 2x² 5 0. Solução: Para resolver essa equação (que possui c = 0), o procedimento é diferente. Inicialmente colocamos a letra x em evidência: x. (2x - 5) = 0 Temos então um produto de dois números que dá zero. Isto só é possível se um desses números for zero. Como primeiro caso, podemos ter 0. Como segundo caso, podemos ter: 2x - 5 = Assim, as duas raízes de 2x² 5 0 são 0 e. 2
7 Exercícios A U L A Exercício 1 Resolva as equações: a) x² 9 = 0 b) x² + 5 = 0 c) x² 3 = 0 Exercício 2 Resolva as equações: a) x² 3 0 b) 3x² Exercício 3 Resolva as equações: a) x² 5x + = 0 b) x² 3x 10 = 0 c) x² 3x + 1 = 0 d) x² x + 9 = 0 e) x² + 2x + 3 = 0 Exercício 4 Resolva as equações seguintes e use a máquina de calcular para obter valores aproximados das raízes (duas casas decimais são suficientes). a) 2x² + 3x 4 = 0 b) 3x² 10x + = 0
EQUAÇÃO DO 2º GRAU. Prof. Patricia Caldana
EQUAÇÃO DO 2º GRAU Prof. Patricia Caldana Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas
Semelhança e áreas 1,5
A UA UL LA 21 21 Semelhança e áreas Introdução Na Aula 17, estudamos o Teorema de Tales e a semelhança de triângulos. Nesta aula, vamos tornar mais geral o conceito de semelhança e ver como se comportam
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação
AmigoPai. Matemática. Exercícios de Equação de 2 Grau
AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar
Matemática Régis Cortes EQUAÇÕES DE GRAUS
EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a
A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula
A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:
EQUAÇÕES BIQUADRADAS
EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Os logaritmos decimais
A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.
Equações exponenciais
A UA UL LA Equações exponenciais Introdução Vamos apresentar, nesta aula, equações onde a incógnita aparece no expoente. São as equações exponenciais. Resolver uma equação é encontrar os valores da incógnita
Aula 05 - Erivaldo MATEMÁTICA BÁSICA
Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro
Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e
Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver
A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer
a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.
Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é
A equação do 2º grau
A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Equação do Segundo Grau
Equação do Segundo Grau Denomina-se equação do 2 grau, qualquer sentença matemática que possa ser reduzida à forma ax 2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a 0. a, b e
1 Completando Quadrados
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.
Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010
Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais
MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,
Equacionando problemas - II
A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula
Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Equações Algébricas ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas 1 Exercícios Introdutórios
a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8
Equação do 1º Grau Introdução Equação é uma sentença matemática aberta epressa por uma igualdade envolvendo epressões matemáticas. Uma equação é composta por incógnitas e coeficientes (esses são conhecidos).
A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2
A equação da reta A UUL AL A Vamos, nesta aula, retomar o assunto que começamos a estudar nas Aulas 9 e 30: a equação da reta. Aprenderemos hoje outra forma de obter a equação da reta e veremos diversas
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
Complemento Matemático 02 Ciências da Natureza I EQUAÇÃO DO 2º GRAU Física - Ensino Médio Material do aluno
A relação existente entre equações e fenômenos físicos Leia atentamente a afirmação abaixo: Complemento Matemático 0 Ciências da Natureza I EQUAÇÃO DO º GRAU Uma equação é uma descrição matemática de um
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur EQUAÇÕES EQUAÇÕES DE 1º GRAU (COM UMA VARIÁVEL) Equação é toda sentença matemática
Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Equações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 3 de novembro de 018 No material da aula
Produtos notáveis. O cálculo algébrico é uma valiosa ferramenta. Vejamos a área da figura abaixo, cujo lado mede a. Área: a 2.
A UA UL LA Acesse: http://fuvestibular.com.br/ Produtos notáveis Introdução O cálculo algébrico é uma valiosa ferramenta para a álgebra e para a geometria. Em aulas anteriores, já vimos algumas operações
A fórmula de Bhaskara
A fórmula de Bhaskara [email protected] A equação do 2º grau apresenta a seguinte forma geral, onde os coeficientes são constantes e o coeficiente deve ser diferente de zero, caso contrário, não
PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo
PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a
EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:
EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau
Somando os termos. as progressões geométricas.
Somando os termos das progressões geométricas A UUL AL A Quando estudamos as progressões aritméticas (Aula 34), encontramos uma fórmula bastante prática para calcular a soma de ualuer uantidade de termos.
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de
Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula
A UUL AL A Sistemas do 1º grau Pedro e José são amigos. Ao saírem do trabalho, passaram por uma livraria onde havia vários objetos em promoção. Pedro comprou 2 cadernos e 3 livros e pagou R$ 17,40, no
Material Teórico - Módulo Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos Nono Ano do Ensino Funcamental Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
Lista de Exercícios Equações do 2º Grau
Lista de Exercícios Equações do º Grau Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero. Aula Equações do Segundo Grau (Parte de ) Endereço: https://youtu.be/4r4rioccmm Gabaritos
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que
AULA 4: EQUIVALÊNCIA DE TAXAS
MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos
Resolvendo equações. 2 = 26-3 α φ-1
A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas
NIVELAMENTO 2012/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase
NIVELAMENTO 0/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica. Adição e Subtração Regra:. REGRAS DOS SINAIS Sinais iguais: Adicionamos os algarismos
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
Integração por frações parciais - Parte 1
Universidade de Brasília Departamento de Matemática Cálculo Integração por frações parciais - Parte Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções
1. EQUAÇÃO DO 1º GRAU COM UMA VARIÁVEL
CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 0 ASSUNTO: REVISÃO Esta aula é composta pelo teto da apostila aaio e por um link de acesso à AULA VIRTUAL gravada. Estude com atenção o teto antes de acessar a aula
Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:
Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão
IGUALDADES EM IR IDENTIDADES NOTÁVEIS
IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
EC09 - ANALISANDO O PONTO DE EQUILÍBRIO
1 2 a) Calcular curvas de Oferta e Demanda; b) Calcular o Ponto de Equilíbrio de Mercado; c) Expressar, graficamente, o Ponto de Equilíbrio de mercado. 3 INTRODUÇÃO DESENVOLVIMENTO 1 O CONCEITO DE PONTO
1 Congruências e aritmética modular
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
MATEMÁTICA BÁSICA SUMÁRIO
MATEMÁTICA BÁSICA SUMÁRIO 1 Operações com frações 2 Divisão de frações 3 Operações com números relativos 4 Resolução de equações do 1º grau (1º tipo) 5 Resolução de equações do 1º grau (2º tipo) 6 Resolução
Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Primeiro Ano do Ensino Médio
Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações-Produto Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 23 de
Função de 2º Grau. Parábola: formas geométricas no cotidiano
1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando
Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas
Material Teórico - O Plano Cartesiano e Sistemas de Equações Sistemas de Equações do Primeiro Grau com Duas Incógnitas Sétimo Ano do Ensino Fundamental Prof Francisco Bruno Holanda Prof Antonio Caminha
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;
OBMEP NA ESCOLA Soluções
OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 04 ATIVIDADE 01 Outro grande recurso do GeoGebra é o de resolver simbolicamente
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores
Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo
O limite de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
Fundamentos Tecnológicos
Fundamentos Tecnológicos Equações Algébricas e Equação de 1º Grau Início da aula 06 Equações Algébricas Expressões Algébricas - Definição Expressões algébricas são expressões matemáticas que apresentam
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c
47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
Fundamentos Teóricos e Metodológicos do Uso de Tecnologias no Ensino de Matemática Prof. Fernando Guedes Cury
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS GRADUAÇÃO EM ENSINO DE CIÊNCIAS NATURAIS E MATEMÁTICA Fundamentos Teóricos e Metodológicos do Uso de Tecnologias
Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?
EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.
MAT 2110 : Cálculo para Química
MAT 2110 : Cálculo para Química Aula 3/ Sexta 28/02/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informaçãoes gerais: Site: ver o link para MAT 2110 na pagina http://www.ime.usp.br/~sylvain/courses.html
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais. Prof Jorge Jr.
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais Prof Jorge Jr. A CONTA DE ENERGIA ELÉTRICA Devido ao aumento da energia elétrica, Maria Eduarda resolveu registrar as suas despesas com a conta
Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano
Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b
