TEORIA ELETRÔNICA DA MAGNETIZAÇÃO
|
|
|
- Sara Paixão César
- 10 Há anos
- Visualizações:
Transcrição
1 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua orige, ou seja, u capo agnético provocado por ua corrente elétrica. Sabeos tabé que existe capos agnéticos provocados por certos ateriais, couente chaados de iãs peranentes. Dizeos que estes ateriais te a capacidade de anter u certo agnetiso residual, ua vez colocados na presença de u capo agnético externo. Entretanto, quer seja o capo provocado por ua corrente elétrica passando por u condutor, quer seja o capo agnético devido a u iã peranente, deveos saber que a orige de abos é a esa, ou seja: todo capo agnético é provocado por corrente elétrica. No prieiro caso isto está bastante claro. Vaos entender por que essa afiração é válida tabé para o segundo caso EFETO DO FERRO EM CAMPOS MANÉTCOS ESTÁTCOS O ferro te a propriedade de ultiplicar o efeito agnético de ua corrente. O capo agnético no centro de u solenóide enrolado sobre ua pequena barra de ferro é uito aior do que o capo agnético no centro do eso solenóide, poré co núcleo de ar. E outras palavras podeos definir o ferro co sendo u condutor de fluxo agnético", e analogia à ateriais coo o cobre, que são bons condutores de corrente elétrica. Nós utilizaos esta propriedade para criar intensos capos agnéticos, anipulá-los e guiá-los por onde desejaros Magnetiso O odelo ainda ais utilizado para representar a estrutura dos ateriais é o odelo atôico. O eleento básico é o átoo, que possui u núcleo relativaente pesado, ao qual é atribuído sinal positivo, orbitado por cargas negativas (elétrons). U elétron orbitando e torno do núcleo de u átoo pode ser considerado, devido à grande velocidade do oviento, coo sendo u icroscópico laço de corrente, coo é sugerido pela figura Este laço de corrente te u oento agnético (dipolo), que é igual ao produto da corrente equivalente, pela área A da espira definida pelo laço de corrente. Este oento pode ser expresso coo u vetor, que é perpendicular ao plano do laço, co direção definida pela regra da ão direita. (Deveos notar que a corrente é oposta à direção do oviento da carga negativa). Quando essa espira de corrente é colocada na presença de u capo agnético externo, haverá u torque tendendo a alinhar o oento do laço co o capo externo, dado por: O ódulo do torque resultante é : Quando o alinhaento é obtido o torque torna-se nulo. T T = (17.1) = senθ (17.2) Considere agora a situação ostrada na figura 17.2a, onde há ilhares de laços atôicos, orientados aleatoreaente. Na figura 17.2b u capo agnético externo é aplicado, fazendo co
2 114 Área A Área A θ corrente corrente figura Elétron girando e torno de u núcleo que todos os oentos agnéticos atôicos se alinhe na direção do capo agnético externo. Olhando para esta configuração, percebeos que esse conjunto forado por ilhares de laços atôicos alinhados na esa direção pode ser considerados coo sendo ua única espira deliitada pelo contorno do aterial que conté os ilhares de laços atôicos (figura 17.2c). Se agora toaros ilhares dessas espiras, coo na figura 17.2d, nós obteos ua capa de corrente cilíndrica, seelhante a u solenóide. Esta discussão siplista serve para dar ua idéia do fenôeno da agnetização. Negligenciaos os efeitos da agitação térica das oléculas, que interfere no processo de alinhaento. Tabé consideraos o átoo coo tendo u único elétron orbitando o núcleo, quando pode haver ais de u, e desprezaos os ovientos de rotação do elétron e do núcleo e torno de seus próprios eixos. Ebora uito longe de u rigoroso trataento de ecânica quântica, nosso odelo siplista perite ter ua visão bastante clara do fenôeno da agnetização. A grande aioria dos fenôenos que estudareos serão e escala acroscópica, e não necessitarão de ua visão rigorosa dos fenôenos icroscópicos envolvidos. = 0 (a) (b) (c) figura (a) - Moentos atôicos aleatoriaente direcionados, (b) - alinhados co u capo externo, (c) - vista frontal ostrando grande laço externo Moento Magnético Resultante
3 115 figura (d) centenas de laços, coo e u solenóide. (d) O VETOR MANETZAÇÃO M Considere u toróide co núcleo de ar, área A e raio R ostrado na figura 17.3a. A densidade de fluxo agnético no interior do toróide será: = µ 0 0 N 0 2π R (17.3) Mas N 0 2π Rpode ser considerado co sendo a densidade de ua lâina de corrente, K. Então: = µ K = µ H (17.4) Seção de Área A Seção de Área A R R 0 0 N 0 espiras 0 N espiras (a) (b) figura (a) Toróide co N 0 espiras produzindo u capo 0 e (b) Toróide co N espiras produzindo u capo Se o eso enrolaento é colocado sobre u anel de ferro co a esa área e raio, o valor de deverá auentar substancialente. agine agora que, ao invés de u anel de ferro nós tenhaos o eso toróide co núcleo de ar, poré, co u núero de espiras N (figura 17.3b) tal que capo agnético produzido por este seja igual ao auento provocado pela presença do núcleo de ferro. Assi: N = µ o = µ 0K' = µ 0M 2πR (17.5) onde N 2π R = K' é a densidade da lâina de corrente fictícia. O capo agnético total será dado por:
4 116 = + = µ ( K+ K') (17.6) 0 0 ou: = µ 0 ( H + M) (17.7) onde: = vetor indução agnética (T) H = vetor intensidade de capo agnético (A/) M = vetor agnetização (A/) Ebora desenvolvida para o caso de u toróide, esta é ua relação vetorial de aplicação geral Assi, seelhanteente ao caso da eletrostática, onde o vetor polarização P está relacionado ao vetor intensidade de capo elétrico E, na agnetostática o vetor agnetização M está relacionado ao vetor intensidade de capo agnético H. Dividindo a equação 17.7 por H nós teos: µ = µ M H (17.8) E eios isotrópicos, M e H estão na esa direção, de odo que o quociente entre eles é u escalar. Para os ateriais ferroagnéticos, que serão os de nosso aior interesse, esta relação e geral não é linear, ou seja, o quociente entre M e H não é linear, e não é possível escrever ua relação ateática exata para essa relação. Entretanto vaos, para o oento, escrever essa relação coo sendo ua constante: χ = M H (17.9) onde χ é a susceptibilidade agnética do aterial e questão. Podeos agora escrever ou: µ = µ ( + χ ) (17.10) 0 1 µ = µ 0 µ r (17.11) onde µ r = 1 + χ é definida coo sendo a pereabilidade relativa do aterial e relação ao vácuo FERROMANETSMO, PARAMANETSMO E DAMANETSMO Todos os ateriais apresenta algu efeito agnético. E alguns ateriais esses efeitos são tão fracos, que esses ateriais são chaados de não-agnéticos. Entretanto, o único eio realente não agnético é o vácuo (daí o fato de ser toado coo sendo o aterial de pereabilidade relativa igual a 1). E geral, os ateriais pode ser classificados de acordo co o seu coportaento agnético e diaagnéticos, paraagnéticos e ferroagnéticos.
5 117 Os ateriais diaagnéticos possue ua pereabilidade relativa ligeiraente inferior a 1 (por exeplo o cobre, co µ r = ), e apresenta a característica de, na presença de u capo agnético, se opore a ele (figura 17.4). E outras palavras, quando u aterial diaagnético é colocado na presença de u capo agnético, ele é repelido por ele. Os ateriais paraagnéticos possue ua pereabilidade relativa ligeiraente superior a 1 (por exeplo o aluínio, co µ r = ) e, na presença de u capo agnético os seus oentos agnéticos se alinha co ele. Quando esse capo é retirado, eles volta a se desalinhar (figura 17.5). E outras palavras, quando u aterial paraagnético é colocado na presença de u capo agnético ele é atraído por ele. Ao coportaento dos ateriais ferroagnéticos será dedicado o próxio ódulo. figura Coportaento de u aterial diaagnético figura Coportaento de u aterial paraanético
6 118
:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante.
Questão 01 - Alternativa B :: Física :: Coo a distância d R é percorrida antes do acionaento dos freios, a velocidade do autoóvel (54 k/h ou 15 /s) peranece constante. Então: v = 15 /s t = 4/5 s v = x
2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem.
POTÊNCIA EM CARGAS GENÉRICAS Prof. Antonio Sergio C. de Menezes. Depto de Engenharia Elétrica Muitas cargas nua instalação elétrica se coporta de fora resistiva ou uito aproxiadaente coo tal. Exeplo: lâpadas
3.3. O Ensaio de Tração
Capítulo 3 - Resistência dos Materiais 3.1. Definição Resistência dos Materiais é u rao da Mecânica plicada que estuda o coportaento dos sólidos quando estão sujeitos a diferentes tipos de carregaento.
F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino
MÓDULO DE WEIBULL F. Jorge Lino Departaento de Engenharia Mecânica e Gestão Industrial da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telf. 22508704/42,
= C. (1) dt. A Equação da Membrana
A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura
Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico
Construção de u sistea de Realidade Virtual (1 a Parte) O Engine Físico Roberto Scalco, Fabrício Martins Pedroso, Jorge Tressino Rua, Ricardo Del Roio, Wellington Francisco Centro Universitário do Instituto
Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente:
Questão 46 gasto pela pedra, entre a janela do 1 o piso e a do piso térreo, é aproxiadaente: A figura ostra, e deterinado instante, dois carros A e B e oviento retilíneo unifore. O carro A, co velocidade
Aplicação da conservação da energia mecânica a movimentos em campos gravíticos
ª aula Suário: licação da conservação da energia ecânica a ovientos e caos gravíticos. nergia oteial elástica. Forças não conservativas e variação da energia ecânica. licação da conservação da energia
Capítulo 14. Fluidos
Capítulo 4 luidos Capítulo 4 - luidos O que é u luido? Massa Especíica e ressão luidos e Repouso Medindo a ressão rincípio de ascal rincípio de rquiedes luidos Ideais e Moviento Equação da continuidade
Resumo com exercícios resolvidos do assunto: Sistemas de Partículas
www.engenhariafacil.weebly.co Resuo co exercícios resolvidos do assunto: Sisteas de Partículas (I) (II) (III) Conservação do Moento Centro de Massa Colisões (I) Conservação do Moento Na ecânica clássica,
FÍSICA DADOS. 10 v som = 340 m/s T (K) = 273 + T( o C) s = 38) 27) Q = mc T = C T 39) i = 30) U = Q τ 42) 31) Instruções:
FÍSICA DADOS 9 N. g = 0 k 0 = 9,0 0 s C 8 c = 3,0 0 v so = 340 /s T (K) = 73 + T( o C) s 0) d = d 0 + v 0 t + at 4) E p = gh 6) 0) v = v 0 + at 5) E c = v 03) v = 04) T= f 05) 0 PV P V = 38) T T V = k0
Aula 6 Primeira Lei da Termodinâmica
Aula 6 Prieira Lei da Terodinâica 1. Introdução Coo vios na aula anterior, o calor e o trabalho são foras equivalentes de transferência de energia para dentro ou para fora do sistea. 2. A Energia interna
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3
Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as
Transformadores e bobinas de alta frequência
Transforadores e bobinas de alta frequência 007 Profª Beatriz Vieira Borges 1 Transforadores e bobinas de alta frequência ideal v 1 v úcleo de ferrite i 1 i + + v 1 v - - v 1 1 1 v i 1 i 007 Profª Beatriz
Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m.
Prof. André otta - [email protected] Siulado 2 Física AFA/EFO 2012 1- Os veículos ostrados na figura desloca-se co velocidades constantes de 20 /s e 12/s e se aproxia de u certo cruzaento. Qual era a distância
1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da
Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA
PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I
PDRÃO DE RESPOST - FÍSC - Grupos H e a UESTÃO: (, pontos) valiador Revisor Íãs são frequenteente utilizados para prender pequenos objetos e superfícies etálicas planas e verticais, coo quadros de avisos
Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.
Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse
Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.
Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco
Modelagem, similaridade e análise dimensional
Modelage, siilaridade e análise diensional Alguns robleas e MF não ode ser resolvidos analiticaente devido a: iitações devido às silificações necessárias no odelo ateático o Falta da inforação coleta (turbulência);
Notas de Aula de Física
Versão preliinar 7 de setebro de 00 Notas de Aula de ísica 05. LEIS DE NEWON... ONDE ESÃO AS ORÇAS?... PRIMEIRA LEI DE NEWON... SEGUNDA LEI DE NEWON... ERCEIRA LEI DE NEWON... 4 APLICAÇÕES DAS LEIS DE
A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash.
Teoria dos Jogos. Introdução A Teoria dos Jogos é devida principalente aos trabalhos desenvolvidos por von Neuann e John Nash. John von Neuann (*90, Budapeste, Hungria; 957, Washington, Estados Unidos).
CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P
63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos
Introdução à Eletricidade e Lei de Coulomb
Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço
Magnetismo. Campo Magnético. Professor Bolinha
Magnetismo Campo Magnético Professor Bolinha Magnetismo Magnetismo é o ramo da Ciência que estuda os materiais magnéticos, ou seja, que estuda materiais capazes de atrair ou repelir outros a distância.
WWW.escoladoeletrotecnico.com.br
CURSO PREPARATÓRO PARA COCURSOS EM ELETROTÉCCA CPCE ELETRCDADE AULA TRASFORMADOR: Polaridade de u enrolaento Enrolaento e série e e paralelo Ensaio a vazio e e curto-circuito Ligações de u transforador
Cap. 7 - Corrente elétrica, Campo elétrico e potencial elétrico
Cap. - Corrente elétrica, Capo elétrico e potencial elétrico.1 A Corrente Elétrica S.J.Troise Disseos anteriorente que os elétrons das caadas ais externas dos átoos são fracaente ligados ao núcleo e por
AULA 17.1. Eletromagnetismo: Introdução ao eletromagnetismo.
AULA 17.1 Eletromagnetismo: Introdução ao eletromagnetismo. 1 INTRODUÇÃO AO ELETROMAGNETISMO A palavra magnetismo está relacionada à Magnésia, região da Ásia onde foi encontrada, pela primeira vez, a magnetita,
Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.
Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os
Capacitância. 4.1 Capacitores e Capacitância. 4.1.1 Capacitor de Placas Paralelas
Capítulo 4 Capacitância 4.1 Capacitores e Capacitância O capacitor é um aparelho eletrônico usado para armazenar energia elétrica. Consiste de dois condutores com um isolante entre eles. Os condutores
Pró-Reitoria de Graduação Curso de Física Trabalho de Conclusão de Curso MAGNETRON: DO RADAR AO FORNO DE MICRO-ONDAS
Pró-Reitoria de Graduação Curso de Física Trabalho de Conclusão de Curso MAGNETRON: DO RADAR AO FORNO DE MICRO-ONDAS Autor: Karla Susane Borges dos Santos Orientador: Dr. Sérgio Luiz Garavelli Co-orientador:
Hoje estou elétrico!
A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava
1 INTRODU Ç Ã O. 1.1. Introdução ao Magnetismo
17 1 INTRODU Ç Ã O 1.1. Introdução ao Magnetismo Os materiais magnéticos vêm desempenhando um papel importante e contribuído de forma vital na história das civilizações e no seu desenvolvimento tecnológico.
Física Unidade VI Série 1
01 a) Os polos sul e norte encontram-se próximos, por isso ocorre atração. b) Polos iguais encontram-se próximos, resultando em repulsão. c) Polos iguais encontram-se próximos, resultando em repulsão.
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:18. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor e Física pela Universidade Ludwig Maxiilian de Munique, Aleanha Universidade Federal da
07. Obras célebres da literatura brasileira foram ambientadas em regiões assinaladas neste mapa:
6 FUVEST 09/0/202 Seu é Direito nas Melhores Faculdades 07. Obras célebres da literatura brasileira fora abientadas e regiões assinaladas neste apa: Co base nas indicações do apa e e seus conhecientos,
UNIVERSIDADE LUTERANA DO BRASIL DEPARTAMENTO DE ENGENHARIA ELÉTRICA ROGÉRIO ESPÍNDOLA SILVEIRA ESTUDO E DESENVOLVIMENTO DE UM MOTOR VOICE COIL
UNIVERSIDADE LUTERANA DO BRASIL PRÓ-REITORIA DE GRADUAÇÃO DEPARTAMENTO DE ENGENHARIA ELÉTRICA ROGÉRIO ESPÍNDOLA SILVEIRA ESTUDO E DESENVOLVIMENTO DE UM MOTOR VOICE COIL Canoas, Dezebro de 2009 Departaento
Indutores. Prof a. Michelle Mendes Santos [email protected]
Indutores Prof a. Michelle Mendes Santos [email protected] Indutores Consistem de um condutor enrolado com N voltas (espiras) na forma de um solenóide, ou de um tiróide. Podem conter ou não um
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
POTENCIAL ELÉTRICO. por unidade de carga
POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para
Aula 4. Inferência para duas populações.
Aula 4. Inferência para duas populações. Teos duas aostras independentes de duas populações P e P : população P aostra x, x,..., x n população P aostra y, y,..., y Observação: taanho de aostras pode ser
Prismas, Cubos e Paralelepípedos
Prisas, Cubos e Paralelepípedos 1 (Ufpa 01) Ua indústria de cerâica localizada no unicípio de São Miguel do Guaá no estado do Pará fabrica tijolos de argila (barro) destinados à construção civil Os tijolos
DISTRIBUIÇÃO ELETRÔNICA E N OS QUâNTICOS TEORIA - PARTE II. Elétron de diferenciação e elétrons de valência. Distribuição eletrônica de íons
DISTRIBUIÇÃO ELETRÔNICA E N OS QUâNTICOS TEORIA - PARTE II Elétron de diferenciação e elétrons de valência O elétron de diferenciação é definido como o último elétron do subnível mais energético de um
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Força Central. Na mecânica clássica, uma força central é caracterizada por uma magnitude que depende, apenas, na distância r do objeto ao ponto de origem da força e que é dirigida ao longo do vetor que
CAPÍTULO 11 CIRCUITOS DE CORRENTE ALTERNADA
APÍTUO 11 UTOS DE OENTE ATENADA 11.1- UM GEADO DE A Φ dt onsidere ua espira girando e u capo agnético confore a figura: -O fluxo agnético será: -onde: Φ Onde: epresentação: NBA OSΘ -ogo a fe induzida na
PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA
PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira
Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E
Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras
Eletricidade Aula 1. Profª Heloise Assis Fazzolari
Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre
Uso de artefatos experimentais como auxílio didático pedagógico no ensino de física de nível médio. Professor Erveton Pinheiro Pinto
Uso de artefatos experimentais como auxílio didático pedagógico no ensino de física de nível médio Professor Erveton Pinheiro Pinto Sumário Introdução; Elaboração do roteiro; Preparação do experimento
Propriedades Magnéticas dos Materiais
Propriedades Magnéticas dos Materiais Prof. Isaac N L Silva Web: www.em.pucrs.br/~isaac E-mail: [email protected] Fonte: Callister Objetivos do estudo 1. Determinar a magnetização dados Xm e H 2. Explicar
Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo
Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois
Magnetismo: Campo Magnético
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel Magnetismo: Campo Magnético Disciplina: Física III Professor: Carlos Alberto Aurora Austral Polo Sul Aurora Boreal Polo
Termodinâmica Aplicada
TERMODINÂMICA Disciplina: Terodinâica Professor: Caruso APLICAÇÕES I Motores de autoóveis Turbinas Bobas e Copressores Usinas Téricas (nucleares, cobustíveis fósseis, bioassa ou qualquer outra fonte térica)
Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Nome: R.A. Gabarito 4 a lista de exercícios
Engenharia Quíica Físico Quíica I. O abaixaento da pressão de vapor do solvente e soluções não eletrolíticas pode ser estudadas pela Lei de Raoult: P X P, onde P é a pressão de vapor do solvente na solução,
Física: Eletromagnetismo
Física: Eletromagnetismo Questões de treinamento para a banca Cesgranrio elaborada pelo prof. Alex Regis Questão 01 Está(ão) correta(s): Considere as afirmações a seguir a respeito de ímãs. I. Convencionou-se
Capítulo 16. Ondas 1
Capítulo 6 Ondas Outline Tipo de Ondas Ondas Longitudinais e Transversais Copriento de Onda e Frequência A velocidade de ua Onda Progressiva Energia e Potencia de ua Onda Progressiva A equação de Onda
CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS
CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por
ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III
Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas
LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais
LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia
FUNDAMENTAÇÃO TEÓRICA
FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto para Trabalho Trimestral de Física Curso: Mecânica Turma: 3112 Data: 14/08/2008 Sala : 269 Aluno: Pedro Santos Nascimento n : 28 Grupo C
INTRODUÇÃO AO MAGNETISMO 311EE TEORIA
1 TEORIA 1 UM BREVE HISTÓRICO Há muito tempo se observou que certos corpos têm a propriedade de atrair o ferro. Esses corpos foram chamados ímãs. Essa propriedade dos ímãs foi observada pela primeira vez
Quantidade de movimento ou momento linear Sistemas materiais
Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas
CORTESIA Prof. Renato Brito
INSTITUTO TECNOÓGICO DE AERONÁUTICA VESTIBUAR 987/988 PROVA DE FÍSICA 0. (ITA- 88 ) U disco gira, e torno do seu eixo, sujeito a u torque constante. Deterinando-se a velocidade angular édia entre os instante
c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.
Questão 1 Um estudante de física, com o intuito de testar algumas teorias sobre circuitos e indução eletromagnética, montou o circuito elétrico indicado na figura ao lado. O circuito é composto de quatro
DIODOS. Professor João Luiz Cesarino Ferreira
DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons
Corrente alternada. Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor.
Corrente alternada Chamamos de corrente elétrica, o movimento ordenado de elétrons dentro de um fio condutor. A corrente elétrica pode ser contínua (quando movimento é em uma única direçaõ e sentido) ou
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Câmpus Ponta Grossa Coordenação do Curso Superior de Tecnologia em Automação Industrial
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Ponta Grossa Coordenação do Curso Superior de Tecnologia em Automação Industrial Jhonathan Junio de Souza Motores de Passo Trabalho apresentado à disciplina
Lei de Gauss Origem: Wikipédia, a enciclopédia livre.
Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que
EXPERIMENTO DE OERSTED 313EE 1 TEORIA
EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 05
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experiental para Engenharia I LISTA 05 Rotação de corpos rígidos 1. A hélice de u avião gira a 1900 rev/in. (a) Calcule a velocidade
Condensador equivalente de uma associação em série
Eletricidade Condensador equivalente de uma associação em série por ser uma associação em série, a ddp U nos terminais da associação é igual à soma das ddps individuais em cada capacitor. U U U U 1 2 3
COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada
COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada DISCIPLINA: Física II SÉRIE: 2ª Ensino Médio TURMA: DATA: 1. (Uerj 2000) Duas partículas de cargas +4Q e -Q coulombs estão localizadas sobre
FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.
FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar
TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO
TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade
condutores em equilíbrio eletrostático. capacitância eletrostática
PARTE I Unidade a 4 capítulo condutores em equilíbrio eletrostático capacitância seções: 41 Propriedades dos condutores em equilíbrio eletrostático 42 Capacitância de um condutor isolado 43 A Terra: potencial
Curso Profissional de Técnico de Energias Renováveis 1º ano. Módulo Q 2 Soluções.
Curso Profissional de Técnico de Energias Renováveis 1º ano Docuento de apoio Módulo Q 2 Soluções. 1. Dispersões 1.1. Disperso e dispersante Dispersão Ua dispersão é ua istura de duas ou ais substâncias,
RESUMO 2 - FÍSICA III
RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8
Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações
SIMULADOR DO COMPORTAMENTO DO DETECTOR DE ONDAS GRAVITACIONAIS MARIO SCHENBERG. Antônio Moreira de Oliveira Neto * IC Rubens de Melo Marinho Junior PQ
SIMULADOR DO COMPORTAMENTO DO DETECTOR DE ONDAS GRAVITACIONAIS MARIO SCHENBERG Antônio Moreira de Oliveira Neto * IC Rubens de Melo Marinho Junior PQ Departaento de Física, ITA, CTA, 18-9, São José dos
MAGNETISMO - ELETROMAGNETISMO
MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire
Relatório Final - F809 Construção de um Motor Elétrico Didático de Corrente Contínua
Relatório Final - F809 Construção de um Motor Elétrico Didático de Corrente Contínua André Lessa - 008087 Orientador: Pedro Raggio 1 Sumário 1 Introdução 3 2 História 3 3 Teoria 3 3.1 Dipolo Magnético...........................
ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com
ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =
ELECTROMAGNETISMO. Dulce Godinho 1. Nov-09 Dulce Godinho 1. Nov-09 Dulce Godinho 2
Dulce Godinho 1 Dulce Godinho 2 Dulce Godinho 1 Dulce Godinho 3 Dulce Godinho 4 Dulce Godinho 2 Dulce Godinho 5 Dulce Godinho 6 Dulce Godinho 3 Dulce Godinho 7 Dulce Godinho 8 Dulce Godinho 4 Dulce Godinho
TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário
TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe
Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico
Campos Podemos definir campo, de forma genérica, como sendo uma região do espaço caracterizada por um conjunto de valores de uma grandeza física que dependem apenas de coordenadas que utilizem uma determinada
Revisões de análise modal e análise sísmica por espectros de resposta
Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro
Quinta aula de estática dos fluidos. Primeiro semestre de 2012
Quinta aula de estática dos fluidos Prieiro seestre de 01 Vaos rocurar alicar o que estudaos até este onto e exercícios. .1 No sistea da figura, desrezando-se o desnível entre os cilindros, deterinar o
AVALIAÇÃO DO MODELO DE TRANSFORMADORES EM FUNÇÃO DA FREQUÊNCIA
Universidade de Brasília Faculdade de Tecnologia Departaento de Engenaria Elétrica AVALIAÇÃO DO MODELO DE TANSFOMADOES EM FUNÇÃO DA FEQUÊNCIA Por Alexandre de Castro Moleta Orientador: Prof.Dr. Marco Aurélio
Sexta Lista - Fontes de Campo Magnético
Sexta Lista - Fontes de Campo Magnético FGE211 - Física III Sumário A Lei de Biot-Savart afirma que o campo magnético d B em um certo ponto devido a um elemento de comprimento d l que carrega consigo uma
Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )
Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Força Central. Na mecânica clássica, uma força central é caracterizada por uma magnitude que depende, apenas, na distância r do objeto ao ponto de origem da força e que é dirigida ao longo do vetor que
Aparelho de elevação ABS 5 kn
1 597 0503 PT 01.2013 pt Instruções de ontage e de serviço Tradução das instruções originais www.sulzer.co Instruções de ontage e de serviço Instruções de ontage e de serviço para aparelho de elevação
Eletrização por Atrito e Indução Eletrostática
Eletrização por Atrito e Indução Eletrostática Referência Alunos da disciplina Produção de Material Didático (FEP 458) Licenciatura em Física - IFUSP -- Turma: Noturno/2005 Introdução Eletrização por atrito
