Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205

Tamanho: px
Começar a partir da página:

Download "Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205"

Transcrição

1 DMA - F67 - Sala 205 doherty@uem.br

2 Em muitas situações trabalhar com uma base particular de V 3 pode simplificar o trabalho.

3 Dado uma base β = { u 1, u 2, u 3 } e outra base β = { w 1, w 2, w 3 } queremos determinar como as coordenadas de um etor na base β se relaciona com as coordenadas deste mesmo etor na base β. Esta relação é apresentada por uma matriz. Veremos como obter esta matriz.

4 Como β e β são bases, existem escalares reais tais que = x1 u1 +x 2 u2 +x 3 u3 = y1 w1 +y 2 w2 +y 3 w3. Isto é, as coordenadas de nas bases β e β, respectiamente, são: [ x 1 ] β = x 2, [ y 1 ] β = y 2 β. x 3 y 3 β

5 Já que β = { u 1, u 2, u 3 } é uma base, podemos escreer cada um dos etores w i,i = 1,2,3 como combinação linear dos etores da base β: w 1 = a 11 u1 +a 21 u2 +a 31 u3 w 2 = a 12 u1 +a 22 u 2 +a 32 u3 w 3 = a 13 u1 +a 23 u2 +a 33 u3.

6 Substituindo os alores de w 1, w 2, w 3 na expressão de : = y1 w1 +y 2 w2 +y 3 w3 = y 1 ( a11 u1 +a 21 u2 +a 31 u3 ) + y 2 ( a12 u1 +a 22 u2 +a 32 u3 ) + y 3 ( a13 u1 +a 23 u2 +a 33 u3 ) = [a 11 y 1 +a 12 y 2 +a 13 y 3 ] u 1 + [a 21 y 1 +a 22 y 2 +a 23 y 3 ] u 2 + [a 31 y 1 +a 32 y 2 +a 33 y 3 ] u 3

7 Assim, temos escrito na base β de duas formas e estas têm de serem iguais: x 1 = a 11 y 1 +a 12 y 2 +a 13 y 3 x 2 = a 21 y 1 +a 22 y 2 +a 23 y 3 x 3 = a 31 y 1 +a 32 y 2 +a 33 y 3.

8 Em forma matricial: x 1 x 2 x 3 β = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 y 1 y 2 y 3 β. (1)

9 A matriz a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 denotada por [M] β β é chamada matriz mudança da base β para a base β.

10 Resumindo: a relação entre as coordenadas de nas duas bases é dada por: [ ] β = M[ ] β

11 Exemplo: Consideremos β = { i, j, k } e β = { w 1, w 2, w 3 } bases de V 3, onde w 1 = 3 i +1 j +1 k, w 2 = i 2 j +1 k, w 3 = i +2 j.

12 Note que w 1 = 3 i +1 j +1 k w 2 = 1 i 2 j +1 k w 3 = 1 i +2 k +0 k.

13 Assim matriz mudança da base β para a base β é [M] β β =

14 Se conhecemos que [ ] β = β para determinar as coordenadas de na base β, basta efetuar o produto dado em (1): x 1 x 2 x 3 β = β

15 e obter x 1 x 2 x 3 β =

16 Se conhecemos que [ ] β = para determinar as coordenadas de na base β, basta resoler o sistema de equações lineares: β

17 2 5 4 β = y 1 y 2 y 3 β.

18 Conhecendo a inersa da matriz, a solução é imedidata, pois [ ] β = M 1 [ ] β.

19 Como obtemos que y 1 y 2 y 3 M 1 = β = 2/11 1/11 4/11 2/11 1/ /11 4/ /11 1/11 4/11 2/11 1/ /11 4/ , β.

20 Donde segue que y 1 y 2 y 3 β =

21 Já obseramos as facilidades que uma base ortogonal nos traz. O processo de ortogonalização de Gram-Schmidt permite transformar uma base de etores em outra base de etores ortogonais.

22 Vamos começar com uma base de 2 etores: Seja β = { 1, 2 } uma base para V 2. Faça 1 = 1 2 = Os etores 1, 2 são ortogonais não nulos. Note que 2 é obtido de 2, subtraindo-se deste a projeção do etor 2 na direção de 1.

23 Vamos apresentar o processo com uma base de 3 etores: Seja β = { 1, 2, 3 } uma base para V 3. Faça 1 = 1 2 = =

24 Vamos ilustrar como estes etores ortogonais foram determinados: Tomemos 1 = 1 e amos determinar escalar c tal que 2 = 2 c 1 seja ortogonal a 1. Portanto, dee ocorrer 2 1 = 0. Disto segue que c =

25 Agora amos procurar um etor 3 = 3 c 1 1 c 2 2 que seja ortogonal a 1 e a 2 simultaneamente. Por analogia ao caso anterior, deemos determinar escalares c 1,c 2 tais que 3 1 = 0 e 3 2 = 0. Note que 3 1 = c c = 0 c 1 = 3 1 e = c c = 0 c =. 2 2

26 Este procedimento pode ser generalizado para uma quantidade maior de etores LI. 1 = 1 2 = =. n = n n 1 n n 1 n 1 n

27 Exemplo: Considere a base β = { 1 = i + j + k, 2 = 2 j + k, 3 = k }. Vamos, à partir desta base, determinar outra ortogonal. Pelo processo de ortogonalização de Gram-Schmidt, temos: 1 = 1 = i + j + k 2 = = i + j +0 k = = 1 3 i j + k. 3

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Sistemas Lineares. Márcio Nascimento

Sistemas Lineares. Márcio Nascimento Sistemas Lineares Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2016.1 14 de abril de

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

e um vetor não-nulo Qualquer uma das equações apresentadas acima [destacadas com um retângulo] é denominada equação vetorial da reta.

e um vetor não-nulo Qualquer uma das equações apresentadas acima [destacadas com um retângulo] é denominada equação vetorial da reta. ESTUDO D RET NO ESPÇO R 3 Como já é de nosso conhecimento dois pontos distintos no plano R 2 determinam somente uma reta atraés deles O mesmo acontece no espaço R 3 ssim amos definir como oter e escreer

Leia mais

Álgebra Linear Semana 02

Álgebra Linear Semana 02 Álgebra Linear Semana 2 Diego Marcon 3 de Abril de 27 Conteúdo Vetores Representação matricial para sistemas Lineares 3 2 Combinações lineares de vetores 4 3 Sistemas lineares e combinações lineares das

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

Sistemas Lineares. Prof. Márcio Nascimento

Sistemas Lineares. Prof. Márcio Nascimento Sistemas Lineares Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 www.matematicauva.org

Leia mais

Álgebra Linear II - Poli - Prova 2

Álgebra Linear II - Poli - Prova 2 Álgebra Linear II - Poli - Prova 4 Q. Seja U um espaço vetorial com dim(u =. Considere as seguintes afirmações: (I existe uma transformação linear T : U U tal que dim(ker T + dim(im T = 5; (II se T : U

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.est.ip.pt/paginaspessoais/lucas lucas@mat.est.ip.pt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

5.7 Projeções Ortogonais

5.7 Projeções Ortogonais 5.7. PROJEÇÕES ORTOGONAIS 5.7 Projeções Ortogonais V espaço vetorial de dimensão n; H V subespaço vetorial de dimensão p; γ = { u, u,..., u p } base ortogonal de H; β = { u, u,..., u p, u p+,..., u n }

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R

Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R Álgebra Linear e Geometria Analítica Eng. Electrotécnica e Eng. Mecânica Ano lectivo: 2006/07 Ficha Prática nº 5: Espaços Vectoriais 1. Considere o espaço vectorial real V = {x, y, z : 2x + 3y + 5z = 0.

Leia mais

Lista de exercícios 14 Ortogonalidade

Lista de exercícios 14 Ortogonalidade Universidade Federal do Paraná Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano

Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Conjunto Ortogonal de Vetores

Conjunto Ortogonal de Vetores Processo de Ortogonalização de Gram-Schmidt Seja V um espaço vetorial de dimensão finita, com produto interno,. Seja B = {v 1, v 2,..., v n } uma base qualquer de V. Sejam Processo de Ortogonalização de

Leia mais

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares.

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Transformações lineares MÓDULO 3 - AULA 18 Aula 18 Transformações lineares Objetivos Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Introdução

Leia mais

MAP Segundo exercício programa Resolvendo sistemas esparsos por Gradientes Conjugados

MAP Segundo exercício programa Resolvendo sistemas esparsos por Gradientes Conjugados MAP-22 - Segundo exercício programa - 20 Resolvendo sistemas esparsos por Gradientes Conjugados Instruções gerais - Os exercícios computacionais pedidos na disciplina Cálculo Numérico têm por objetivo

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. out/ São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto todas

Leia mais

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS

ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores

Leia mais

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares

Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Notas de Aulas 3(Segunda Avaliação)-Produto Interno II Prof. Carlos Alberto S Soares Neste capítulo, estaremos generalizando a noção de projeção ortogonal já desenvolvida em cursos anteriores. Definição

Leia mais

5.3.2 Processo de Ortogonalização de Gram-Schmidt

5.3.2 Processo de Ortogonalização de Gram-Schmidt 8 CAPÍTULO. PRODUTO INTERNO.. Processo de Ortogonalização de Gram-Schmidt Bases ortonormais são úteis, como visto na seção anterior; mas como obtê-las? Partindo-se de uma base qualquer de um subespaço,

Leia mais

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão Notas de Aula Álgebra Linear II IFA 2007.1 Prof. Paulo Goldfeld Versão 2007.03.29 1 2 Contents 2 Espaços Vetoriais 5 2.1 Espaços e Subespaços....................... 5 2.2 Independência Linear.......................

Leia mais

GAAL Exercícios 6: Umas soluções

GAAL Exercícios 6: Umas soluções GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. mai/0 São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Lista 2 com respostas

Lista 2 com respostas Lista 2 com respostas Professora Nataliia Goloshchapova MAT0112-1 semestre de 2015 Exercício 1. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que ( OA, OB, OC ) é base e determine as coordenadas

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique. Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

Aula 22 Produto vetorial, produto misto e volume

Aula 22 Produto vetorial, produto misto e volume Aula 22 Produto vetorial, produto misto e volume MÓDULO 2 - AULA 22 Objetivos Definir o produto misto de três vetores no espaço a partir do cálculo de volumes de paralelepípedos. Exprimir o produto vetorial

Leia mais

Sistemas Lineares. Prof. Márcio Nascimento

Sistemas Lineares. Prof. Márcio Nascimento Sistemas Lineares Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 www.matematicauva.org

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2011

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2011 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 27 18 DE ABRIL DE 2011 y 2y + y 2y = 0 O polinómio característico é r 3 2r 2 + r 2, que tem r = 2 como raiz. Obtemos então r 3 2r 2 + r 2 = (r 2) (r

Leia mais

Lista 5 com respostas

Lista 5 com respostas Lista 5 com respostas PROFESSOR KOSTIATYN IUSENKO MAT4 - semestre de 6 Espaços com produto interno Exercício Consideremos o espaço euclidiano R Sendo u, e v, em R determine um vetor w desse espaço tal

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 2 Sistemas de Equações Lineares 21 Generalidades Chamamos equação linear nas variáveis (incógnitas) x 1, x 2, x 3,, x n uma igualdade da forma a a 1 x 1 + a 2 x 2 + a 3 x 3 + + a n x n = b Os

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

Problema 5a by

Problema 5a by Problema 5a by fernandopaim@paim.pro.br Resolva o sistema linear por escalonamento S = x y z=1 x y z= 1 2x y 3z=2 Resolução Utilizaremos quatro métodos para ilustrar a resolução do sistema linear acima.

Leia mais

Antonio Elias Fabris. Map 2210 Aplicações de Álgebra Linear

Antonio Elias Fabris. Map 2210 Aplicações de Álgebra Linear Fatoração QR Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2210 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) QR 1 / 13 Projetores Um projetor é

Leia mais

GAAL /1 - Simulado - 3 exercícios variados de retas e planos

GAAL /1 - Simulado - 3 exercícios variados de retas e planos GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas

Leia mais

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2 CVGA Edezio 1 Cálculo Vetorial e Geometria Analítica Produto de Vetores Produto Escalar (ou Interno) Chama-se produto escalar (ou produto interno usual) de dois vetores x 1 i + y1 j + z1 k e x2 i + y2

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes: Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE Se y representa a posição de um corpo, o seu movimento é dado por

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE Se y representa a posição de um corpo, o seu movimento é dado por ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 24 27 DE ABRIL DE 2018 EQUAÇÕES DIFERENCIAIS LINEARES DE SEGUNDA ORDEM São da forma d 2 y dt 2 + p(t)dy + q(t)y = g(t) dt Um exemplo destas equações

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Álgebra Linear I - Aula 6. Roteiro

Álgebra Linear I - Aula 6. Roteiro Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Álgebra Linear

Álgebra Linear Álgebra Linear - 09 Lista - Sistemas lineares ) Descreva todas as possíveis matrizes, que estão na forma escada reduzida por linha De acordo com a definição de uma matriz na forma escada reduzida por linhas

Leia mais

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a:

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a: Lista de atividades sobre MDC. Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum e o mıınimo múltiplo comum de números naturais, bem como algumas de suas propri edades.

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

u = ± v. Daí, u v v u = v u e v têm sentidos contrários Por outro lado, suponhamos que podemos escrever u como combinação linear de v

u = ± v. Daí, u v v u = v u e v têm sentidos contrários Por outro lado, suponhamos que podemos escrever u como combinação linear de v 0 u o e v o Como u // v o o u = ± v Daí, o v u u u = ± u, ou seja, u = ± v ssim, se u e v têm mesmo v v u sentido podemos escrever u = v u e v têm sentidos contrários v u temos u = v v Por outro lado,

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional Ed. v1.0 i Copyright 2013 UAB Você tem a liberdade de: Compartilhar copiar, distribuir e transmitir a obra. Remixar criar obras derivadas. Sob as seguintes condições: Atribuição

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais