5.7 Projeções Ortogonais
|
|
|
- Fernanda Ventura de Almeida
- 7 Há anos
- Visualizações:
Transcrição
1 5.7. PROJEÇÕES ORTOGONAIS 5.7 Projeções Ortogonais V espaço vetorial de dimensão n; H V subespaço vetorial de dimensão p; γ = { u, u,..., u p } base ortogonal de H; β = { u, u,..., u p, u p+,..., u n } extensão de γ a base ortogonal de V. (β pode ser obtida estendendo-se γ e depois ortogonalizando-se por Gram-Schmidt.) Já vimos que, neste caso, δ = { u p+,..., u n } é base ortogonal de H. Teorema (de Pitágoras) Se v H H e v H H, então v H + v H = v H + v H. Prova: Lembrando que v H, v H = v H, v H =, temos: v H + v H = v H + v H, v H + v H = v H, v H + v H, v H + v H, v H + v H, v H = v H, v H + v H, v H = v H + v H Teorema Dado v V, existe uma única decomposição da forma v = v H + v H v H H e v H H. onde Prova: Existência: v = n a i u i = i= p a i u i + i= }{{} H n i=p+ a i u i } {{ } H Unicidade: Suponha que v = v H + v H = w H + w H sejam duas decomposições. Então v H w }{{ H + v } H w H = z }{{} H + z H =. H H Mas, usando Pitágoras, = = z H + z H = z H + z H, o que implica z H = e z H =, que por sua vez implica v H = w H e v H = w H. Definição Projeção ortogonal sobre H: P H : V H v v H tal que v = v H + v H com v H H Observação Fica claro da definição que v = P H v + P H v v V. Portanto, P H + P H = I e P H = I P H. Propriedades:
2 . P H é linear;. P H v = v H, ou seja, N(P H ) = H ;. P H v = v v H;. A imagem de P H é R(P H ) = H; 5. P H = P H; 6. P T H = P H; Prova:. Se v = v H + v H com v H H e v H H e w = w H + w H com w H H e w H H, então α v + w = (α v H + w H ) + (α v H + w H ) com α v H + w H H e α v H + w H H. Assim, P H (α v + w) = αp H v + P H w.. P H v = v = + v H, com v H H.. P H v = v (I P H ) v = P H v = v (H ) = H.. Da Propriedade, segue que H R(P H ). Mas da Definição decorre que R(P H ) H. 5. Como P H v H, a Propriedade garante que P H v = P H(P H v) = P H v. 6. Para quaisquer v e w, temos que v T P T H w = (P H v) T w = ( v H ) T w = ( v H ) T ( w H + w H ) = ( v H ) T w H + ( v H ) T w H = ( v H ) T w H = ( v H ) T w H + ( v H ) T w H = ( v H + v H ) T w H = v T w H = v T P H w. Assim, v T (PH T P H) w = v, w V. Sejam { w, w,..., w n } base de V e v i = (PH T P H ) w i, i =,,..., n. Então v T i (PH T P H) w i = (PH T P H) w i =, i =,,..., n, ou seja, (PH T P H) w i =, i =,,..., n. Isto garante que PH T P H = ( aqui é a transformação linear nula) e portanto PH T = P H Calculando P H v Dado um vetor v, já vimos como expressá-lo em termos de uma base ortogonal β: v = n i= v, u i u i, u i u i = p v, u i u i= i, u i u i + }{{} H n i=p+ v, u i u i, u i u i } {{ } H = P H v + P H v. Conclusão: se γ = { u, u,..., u p } é base ortogonal de H, então P H v = p v, u i i= u u i, u i i. Se γ = { q, q,..., q p } é não apenas ortogonal, mas sim ortonormal, então os denominadores são todos iguais a e a fórmula se simplifica para P H v = p i= v, u i u i = QQ T v, onde Q n p é a matriz ortogonal com colunas q i, i =,,..., p. Isto nos dá uma fórmula para a matriz de projeção: P H = QQ T.
3 5.7. PROJEÇÕES ORTOGONAIS Exemplo H = span P H v = v, u u, u u = Exemplo H = span e v =,, P H v = (I P H ) v =,. Calcule P H v e P H v. e v = = /7 /7 /7 = = /7 /7 /7. Calcule P H v. Primeira solução É necessária uma base ortogonal para H. Por Gram-Schmidt, u = e u = Assim,, =,, = é base ortogonal de H e portanto P H v = v, u u, u u + v, u u, u u, =, = 5/ / /,,.. = /7 /7 /7. /7 /7 /7.
4 Segunda solução Usando que P H = I P H, precisamos de uma base para H. [ Seja A =. Então o espaço-linha de A é R(A T ) = span [ [,, = H. Mas vimos que R(A T ) = N(A), ou seja, H = N(A). Assim, para encontrarmos uma base de H, resolvemos o sistema homogêneo x = x x = x. x = x é base de H e, como trata-se de um conjunto contendo um único vetor, é uma base ortogonal. Assim, podemos utilizar a fórmula:, P H v = v, u u, u u = = 6, = / / /. Finalmente, P H v = (I P H ) v = / / / = 5/ / /. 5.8 Mínimos Quadrados Já vimos que o sistema linear A x = b tem solução(ões) se e somente se b R(A). O que fazer quando b / R(A)?. Nem sempre a resposta o problema não tem solução é plenamente satisfatória, como ilustra o exemplo a seguir. Imagine, de forma super-simplificada, que um paciente deva fazer uma refeição consistindo de arroz e carne, de forma a totalizar 5g de alimento com 5 Kcal e 5g de gordura. Dado que g de arroz tem.5kcal e.g de gordura e que a mesma quantidade de carne tem. Kcal e.g de gordura, que quantidade de cada alimento deve ser ingerida? Seja x a quantidade de arroz, em gramas, e y a quantidade de carne. Precisamos de uma solução para o sistema linear x + y = 5.5x +.y = 5.x +.y = 5. ou É fácil verificar, no entanto, que este é um sistema inconsistente. Mas esta resposta não há de ajudar muito o nosso paciente!.
5 5.8. MÍNIMOS QUADRADOS 5 Note que.5... [ 8 = Isto significa que 8g de arroz e de carne é uma quase-solução : 5g de alimento (ao invés de 5g), 5.Kcal (ao invés de 5Kcal) e.87g de gordura (ao invés de 5g). Para fins de alimentação, estes erros são totalmente aceitáveis. Quando uma quase-solução existe, e como encontrá-la? Primeiro, devemos entender a geometria do problema. Observe a figura abaixo:. Uma quase-solução é um vetor x cuja imagem por A, A x, está bem próxima de b. Isto é, a distância entre b e A x, b A x, deve ser mínima. A solução no sentido de mínimos quadrados do sistema A x = b é definida como o argumento que minimiza b A x. O vetor b A x é denominado resíduo associado a x e iremos denotá-lo por r. Vamos começar investigando um problema correlato mais simples. Dado H V subespaço vetorial e b V, qual é o vetor b H H mais próximo de b? Podemos decompor b como b = P H b + PH b e portanto a quantidade a ser minimizada pode ser escrita como b b H = P H b + PH b b H. Ou, equivalentemente, podemos minimizar b b H = P H b bh + P }{{} H b }{{} = P H b bh + P H b, H H onde a última identidade se deve ao Teorema de Pitágoras. Note que estamos minimizando uma função de b H, mas o termo P H b não depende desta variável. Assim, o mínimo é obtido minimizando-se o termo P H b bh, o que obviamente se dá quando b H = P H b. Isto responde à nossa pergunta: existe um único vetor b H H cuja distância a H é mínima e este vetor é dado pela projeção ortgonal de b sobre H. Voltando ao nosso sistema linear A x = b, note que minimizar r = b A x com x qualquer é o mesmo que minimizar b y com y R(A). Mas este último problema nós já resolvemos: y = P R(A) b. Portanto, r = b A x é minimizado quando A x = PR(A) b. Nesta situação, r = b A x = b P R(A) b = (I PR(A) ) b = P R(A) b = P N(A T ) b N(A T ). Portanto, = A T r = A T ( b A x) = A T b A T A x,
6 6 o que implica Vale também a volta: A T A x = A T b. A T A x = A T b b A x N(A T ) b A x R(A) P R(A) ( b A x) = P R(A) A x = P R(A) b A x = P R(A) b. Resumindo: os sistemas lineares A x = P R(A) b e A T A x = A T b são sempre consistentes, quaisquer que sejam A e b, e são equivalentes (isto é, possuem o mesmo conjunto solução). Ademais, as soluções destes sistemas são os argumentos que minimizam a norma do resíduo b A x e são ditas soluções no sentido de mínimos quadrados de A x = b. Observação Se um sistema linear tem solução no sentido clássico, então b R(A) e portanto P R(A) b = b. O sistema A x = PR(A) b é idêntico ao sistema original A x = b. As soluções de mínimo quadrado coincidem, neste caso, com as soluções clássicas. Lema A m n qualquer. A T A é invertível se e somente se as colunas de A são linearmente independentes. Prova: Se A T A é invertível, N(A T A) = { } e portanto N(A) = { }, o que implica a independência linear das colunas de A. Se A T A não é invertível, existe x tal que A T A x =. Portanto, A x = x T A T A x = x T =, o que implica A x = e a existência de uma combinação linear não-trivial das colunas de A dando. Corolário O problema de mínimos quadrados tem solução única se e somente se as colunas de A são linearmente independentes. Incidentalmente, obtivemos uma fórmula alternativa para a matriz de projeção. Se { a, a,..., a p } é base de H e A é a matriz [ a a... a p, então A T A é invertível e a solução de A T A x = A T b é dada por x = (A T A) A T b. Sabemos que este vetor satisfaz também a A x = P R(A) b = PH b, ou seja, PH b = A(A T A) A T b. Isto nos dá a fórmula alternativa P H = A(A T A) A T para a matriz de projeção. Exemplo Resolva, no sentido dos mínimos quadrados, [ x =. y 5 e calcule P H 5, onde H = span,.
7 5.8. MÍNIMOS QUADRADOS 7 Solução A T A x = A T b : [ [ [ x y = [ 9 [ x y [ x y = = [ [ 5/ /. 5. A projeção é dada por A(A T A) A T b. Mas x = (A T A) A T b já foi calculado acima. Basta fazer [ A x = 5/ =. / Exemplo A equação que modela um determinado fenômeno físico é dada por f(t) = at + bt + c (por exemplo, f pode ser a posição de um corpo uniformemente acelerado). Com o objetivo de se determinar os parâmetros a, b e c, uma série de experimentos são realizados, com os seguintes resultados: As posições medidas foram: t f(t) Determine os parâmetros a, b e c que melhor ajustam os dados experimentais no sentido dos mínimos quadrados. Solução Gostaríamos que, para determinada escolha de a, b e c, fossem satisfeitas simultaneamente as equações a + b + c = a + b + c =. a. a + b + c = 7.7 ou 9 b = 7.7 a + b + c = 7. 6 c 7.. a 5 + b 5 + c = A solução aproximada é obtida resolvendo-se a 5 9 b = 6 c a b c = a b c
8 8 Para estes valores dos parâmetros, o modelo prevê a seguinte tabela bastante próxima da real. t f(t) Exemplo 5 Vamos retomar oexemplo e oferecer agora uma terceira solução. H = span, e v =. Queremos calcular P H v. A idéia é escrever um problema de mínimos quadrados cuja solução x satisfaça A x = P H v. Para isto, basta encontrarmos uma matriz A tal que R(A) = H e tomarmos o lado direito b = v. Tal matriz pode ser obtida colocando-se os vetores que geram H em suas colunas. Assim, A =, b = e Portanto, A T A x = [ [ 9 x = P H v = A x = [ x = A T b = [ x = [ / 8/ [ / 8/ = 5/ / /...
Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l
Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32
ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços
GAAL Exercícios 6: Umas soluções
GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}
Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:
Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l
Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada
ESPAÇOS VETORIAIS EUCLIDIANOS
ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
Dependência linear e bases
Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência
Antonio Elias Fabris. Map 2210 Aplicações de Álgebra Linear
Fatoração QR Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2210 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) QR 1 / 13 Projetores Um projetor é
Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores
Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência
MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios
MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação
Álgebra Linear Exercícios Resolvidos
Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos
Lista 8 de Álgebra Linear /01 Produto Interno
Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática
Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos
Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço
Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas
Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?
Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00
Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof Juliana Coelho - 07h00-09h00 QUESTÃO 1 (2,0 pts - Considere os seguintes vetores de R3 : u = (3, 2, 2, v = (1, 3, 1 e w = ( 1, 4, 4 Responda as
Álgebra Linear
Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas
Ângulo e ortogonalidade em espaços com produto interno
Ângulo e ortogonalidade em espaços com produto interno Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Definir a noção de ângulo
Álgebra Linear Semana 03
Álgebra Linear Semana 3 Diego Marcon de Abril de 27 Conteúdo Dependência e independência linear 2 Independência linear e sistemas lineares 3 3 Transformações lineares 4 4 Matriz de uma transformação linear
Método dos Mínimos Quadrados Lineares
Método dos Mínimos Quadrados Lineares Orientando: Alex Rogger Cardoso Ventura alexrogger@hotmailcom Orientador: Max Leandro Nobre Gonçalves maxlng@ufgbr Co-orientador: Ademir Alves Aguiar ademiraguia@gmailcom
ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R
ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Combinação linear de vetores. 2. Subespaços e geradores. Roteiro 1 Combinação linear de vetores Definição 1 (Combinação linear de vetores). Dada um conjunto de vetores U =
Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos
Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho
Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)
Renato Martins Assunção
Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear
Álgebra Linear. Transformações Lineares
Álgebra Linear Transformações Lineares Fórmulas e Resumo Teórico Para fins gerais, considere V um espaço vetorial e uma transformação T: V W. Propriedades de Transformações Lineares - T é linear se: Para
Aula 10 Produto interno, vetorial e misto -
MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando
Produto Misto, Determinante e Volume
15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................
Álgebra Linear Semana 05
Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
Lista 5 com respostas
Lista 5 com respostas PROFESSOR KOSTIATYN IUSENKO MAT4 - semestre de 6 Espaços com produto interno Exercício Consideremos o espaço euclidiano R Sendo u, e v, em R determine um vetor w desse espaço tal
pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas
A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar
Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de
ÁLGEBRA LINEAR. Exame Final
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0
Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0
Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
Cálculo Numérico BCC760
Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita
Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.
1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,
Método de Gauss-Jordan e Sistemas Homogêneos
Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Fix 4.6: Considere I : V V e T : V W definidas por I(v) = v e T (v) = 0 para todo v V. (c) Nuc(T ) = (V, W, 0); (d) Im(T ) = (V, W, 0);
Fix 4.6: Considere I : V V e T : V W definidas por I(v) = v e T (v) = 0 para todo v V. (a) Nuc(I) = (V, W, 0); (b) Im(I) = (V, W, 0); (c) Nuc(T ) = (V, W, 0); (d) Im(T ) = (V, W, 0); 11 4.6: (a) 0; (b)
Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205
DMA - F67 - Sala 205 e-mail:[email protected] Em muitas situações trabalhar com uma base particular de V 3 pode simplificar o trabalho. Dado uma base β = { u 1, u 2, u 3 } e outra base β = { w 1, w 2, w 3
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
Lista de exercícios 7 Independência Linear.
Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (
x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:
ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller
ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2)
Espaço Dual, Transposta e Adjunta nota da álgebra linear 2) Sadao Massago Outubro de 2009 1 Espaço Dual Dado um espaço vetorial V sobre o corpo F, o espaço dual V é o espaço de todas transformações lineares
5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:
MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:
Álgebra Linear II - Poli - Prova 2
Álgebra Linear II - Poli - Prova 4 Q. Seja U um espaço vetorial com dim(u =. Considere as seguintes afirmações: (I existe uma transformação linear T : U U tal que dim(ker T + dim(im T = 5; (II se T : U
Introdução a Regressão Linear
Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Introdução a Regressão Linear
Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de
G2 de Álgebra Linear I
G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha
Lista de exercícios 3 Aritmética Matricial
Universidade Federal do Paraná 2 semestre 26. Algebra Linear Olivier Brahic Lista de exercícios 3 Aritmética Matricial Exercício : Se A 3 4 2 2 2 e B 2 3 2 4, calcule: a 2A, c 2A 3B e AB g A B b A + B
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de
Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013
MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro
Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3
Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios
Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada
Lista de exercícios 8 Bases e Dimensão.
Universidade Federal do Paraná semestre 05. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 8 Bases e Dimensão. Exercício : No exercício da Folha 7, indique se os vetores formam uma base para
folha prática 5 valores próprios e vetores próprios página 1/3
folha prática 5 valores próprios e vetores próprios página 1/ Universidade de Aveiro Departamento de Matemática 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue
. Repare que ao multiplicar os vetores (-1,1) e
Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny
1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
